메뉴 건너뛰기




Volumn , Issue , 2017, Pages 1812-1834

Measuring global disease with Wikipedia: Success, failure, and a research agenda

Author keywords

Disease; Epidemiology; Forecasting; Modeling; Wikipedia

Indexed keywords

COMPUTER SUPPORTED COOPERATIVE WORK; DISEASES; EPIDEMIOLOGY; FORECASTING; INTERACTIVE COMPUTER SYSTEMS; MODELS; NETWORK SECURITY; OPEN SOURCE SOFTWARE; OPEN SYSTEMS; SEMANTICS;

EID: 85014791442     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2998181.2998183     Document Type: Conference Paper
Times cited : (34)

References (182)
  • 2
    • 84861991954 scopus 로고    scopus 로고
    • Twitter improves seasonal influenza prediction
    • Harshavardhan Achrekar et al. 2012. Twitter improves seasonal influenza prediction. In Health Informatics (HEALTHINF). http://www.cs.uml.edu/~bliu/pub/healthinf-2012.pdf
    • (2012) Health Informatics (HEALTHINF)
    • Achrekar, H.1
  • 5
    • 84962424457 scopus 로고    scopus 로고
    • Assessing Ebola-related web search behaviour: Insights and implications from an analytical study of Google Trends-based query volumes
    • Cristiano Alicino et al. Assessing Ebola-related web search behaviour: Insights and implications from an analytical study of Google Trends-based query volumes. Infectious Diseases of Poverty 4 (2015). http://dx.doi.org/10.1186/s40249-015-0090-9
    • (2015) Infectious Diseases of Poverty , pp. 4
    • Alicino, C.1
  • 6
    • 84887451593 scopus 로고    scopus 로고
    • Analysis and forecasting of trending topics in online media streams
    • Tim Althoff et al. 2013. Analysis and forecasting of trending topics in online media streams. In Multimedia. http://dx.doi.org/10.1145/2502081.2502117
    • (2013) Multimedia
    • Althoff, T.1
  • 7
    • 80052395153 scopus 로고    scopus 로고
    • Prediction of dengue incidence using search query surveillance
    • Aug. 2011
    • Benjamin M. Althouse, Yih Yng Ng, and Derek A. T. Cummings. Prediction of dengue incidence using search query surveillance. PLOS Neglected Tropical Diseases 5, 8 (Aug. 2011). http://dx.doi.org/10. 1371/journal.pntd.0001258
    • PLOS Neglected Tropical Diseases , vol.5 , Issue.8
    • Althouse, B.M.1    Ng, Y.Y.2    Cummings, D.A.T.3
  • 9
    • 84921645203 scopus 로고    scopus 로고
    • Using Google Flu Trends data in forecasting influenza-like-illness related ED visits in Omaha, Nebraska
    • Sept. 2014
    • Ozgur M. Araz, Dan Bentley, and Robert L. Muelleman. Using Google Flu Trends data in forecasting influenza-like-illness related ED visits in Omaha, Nebraska. The American Journal of Emergency Medicine 32, 9 (Sept. 2014). http://dx.doi.org/10. 1016/j.ajem.2014.05.052
    • The American Journal of Emergency Medicine , vol.32 , Issue.9
    • Araz, O.M.1    Bentley, D.2    Muelleman, R.L.3
  • 10
    • 84914695342 scopus 로고    scopus 로고
    • The reliability of tweets as a supplementary method of seasonal influenza surveillance
    • Nov. 2014
    • Anoshé A. Aslam et al. The reliability of tweets as a supplementary method of seasonal influenza surveillance. Journal of Medical Internet Research 16, 11 (Nov. 2014). http://dx.doi.org/10.2196/jmir.3532
    • Journal of Medical Internet Research , vol.16 , pp. 11
    • Aslam, A.A.1
  • 11
    • 84876400825 scopus 로고    scopus 로고
    • Seasonality in seeking mental health information on Google
    • May 2013
    • John W. Ayers et al. Seasonality in seeking mental health information on Google. American Journal of Preventive Medicine 44, 5 (May 2013). http://dx. doi.org/10.1016/j.amepre.2013.01.012
    • American Journal of Preventive Medicine , vol.44 , pp. 5
    • Ayers, J.W.1
  • 12
    • 84944542091 scopus 로고    scopus 로고
    • Use of internet search queries to enhance surveillance of foodborne illness
    • Nov. 2015
    • Gyung Jin Bahk, Yong Soo Kim, and Myoung Su Park. Use of internet search queries to enhance surveillance of foodborne illness. Emerging Infectious Diseases 21, 11 (Nov. 2015). http://dx.doi.org/10.3201/eid2111.141834
    • Emerging Infectious Diseases , vol.21 , pp. 11
    • Bahk, G.J.1    Kim, Y.S.2    Park, M.S.3
  • 13
    • 84962788689 scopus 로고    scopus 로고
    • Prediction of influenza outbreaks by integrating Wikipedia article access logs and Google Flu Trend data
    • Batuhan Bardak and Mehmet Tan. 2015. Prediction of influenza outbreaks by integrating Wikipedia article access logs and Google Flu Trend data. In IEEE Bioinformatics and Bioengineering (BIBE). http://dx.doi.org/10.1109/BIBE.2015.7367640
    • (2015) IEEE Bioinformatics and Bioengineering (BIBE)
    • Bardak, B.1    Tan, M.2
  • 14
    • 84956629322 scopus 로고    scopus 로고
    • Oak acorn crop and Google search volume predict Lyme disease risk in temperate Europe
    • Jan.
    • Michal Bogdziewicz and Jakub Szymkowiak. Oak acorn crop and Google search volume predict Lyme disease risk in temperate Europe. Basic and Applied Ecology (Jan. 2016). http://dx.doi.org/10.1016/j.baae.2016.01.002
    • (2016) Basic and Applied Ecology
    • Bogdziewicz, M.1    Szymkowiak, J.2
  • 15
    • 33744550544 scopus 로고    scopus 로고
    • Categorization, prioritization, and surveillance of potential bioterrorism agents
    • June
    • Stephanie M. Borchardt, Kathleen A. Ritger, and Mark S. Dworkin. Categorization, prioritization, and surveillance of potential bioterrorism agents. Infectious Disease Clinics of North America 20, 2 (June 2006). http://dx.doi.org/10.1016/j.idc.2006.02. 005
    • (2006) Infectious Disease Clinics of North America , vol.20 , pp. 2
    • Borchardt, S.M.1    Ritger, K.A.2    Dworkin, M.S.3
  • 16
    • 2542501592 scopus 로고    scopus 로고
    • Systematic review: Surveillance systems for early detection of bioterrorism-related diseases
    • Dena M. Bravata et al. Systematic review: Surveillance systems for early detection of bioterrorism-related diseases. Annals of Internal Medicine 140, 11 (June 2004). http://dx.doi.org/10.7326/0003-4819-140-11-200406010-00013
    • Annals of Internal Medicine 140, 11 (June 2004)
    • Bravata, D.M.1
  • 17
    • 80051472497 scopus 로고    scopus 로고
    • Use of Google Insights for Search to track seasonal and geographic kidney stone incidence in the United States
    • Aug.
    • Benjamin N. Breyer et al. Use of Google Insights for Search to track seasonal and geographic kidney stone incidence in the United States. Urology 78, 2 (Aug. 2011). http://dx.doi.org/10.1016/j.urology. 2011.01.010
    • (2011) Urology , vol.78 , pp. 2
    • Breyer, B.N.1
  • 18
    • 84957603347 scopus 로고    scopus 로고
    • Why do people Google movement disorders? An infodemiological study of information seeking behaviors
    • Feb.
    • Francesco Brigo and Roberto Erro. Why do people Google movement disorders? An infodemiological study of information seeking behaviors. Neurological Sciences (Feb. 2016). http://dx.doi.org/10.1007/s10072-016-2501-5
    • (2016) Neurological Sciences
    • Brigo, F.1    Erro, R.2
  • 19
    • 85014799325 scopus 로고    scopus 로고
    • Using social media to perform local influenza surveillance in an inner-city hospital: A retrospective observational study
    • David Andre Broniatowski et al. Using social media to perform local influenza surveillance in an inner-city hospital: A retrospective observational study. JMIR Public Health and Surveillance 1, 1 (2015). http://dx.doi.org/10.2196/publichealth.4472
    • (2015) JMIR Public Health and Surveillance , vol.1 , pp. 1
    • Broniatowski, D.A.1
  • 20
    • 84891941337 scopus 로고    scopus 로고
    • National and local influenza surveillance through Twitter: An analysis of the 2012-2013 influenza epidemic
    • Dec.
    • David A. Broniatowski, Michael J. Paul, and Mark Dredze. National and local influenza surveillance through Twitter: An analysis of the 2012-2013 influenza epidemic. PLOS ONE 8, 12 (Dec. 2013). http://dx. doi.org/10.1371/journal.pone.0083672
    • (2013) PLOS ONE , vol.8 , pp. 12
    • Broniatowski, D.A.1    Paul, M.J.2    Dredze, M.3
  • 21
    • 84940740947 scopus 로고    scopus 로고
    • Flexible modeling of epidemics with an empirical bayes framework
    • Aug.
    • Logan C. Brooks et al. Flexible modeling of epidemics with an empirical bayes framework. PLOS Computational Biology 11, 8 (Aug. 2015). http://dx. doi.org/10.1371/journal.pcbi.1004382
    • (2015) PLOS Computational Biology , vol.11 , pp. 8
    • Brooks, L.C.1
  • 22
    • 85014741995 scopus 로고    scopus 로고
    • Was the NBA draft lottery rigged for the New Orleans Hornets to win?
    • May
    • Matt Brooks. Was the NBA draft lottery rigged for the New Orleans Hornets to win? Washington Post (May 2012). https://www.washingtonpost.com/blogs/early-lead/post/was-the-nba-draft-lotteryrigged-for-the-new-orleans-hornets-towin/2012/05/31/gJQAmL5V4U-blog.html
    • (2012) Washington Post
    • Brooks, M.1
  • 23
    • 84870891033 scopus 로고    scopus 로고
    • Using web mining for discovering spatial patterns and hot spots for spatial generalization
    • Li Chen et al. Eds.
    • Jan Burdziej and Piotr Gawrysiak. 2012. Using web mining for discovering spatial patterns and hot spots for spatial generalization. In Foundations of Intelligent Systems, Li Chen et al. (Eds.). Number 7661. http://link.springer.com/chapter/10.1007/978-3-642-34624-8-21
    • (2012) Foundations of Intelligent Systems , Issue.7661
    • Burdziej, J.1    Gawrysiak, P.2
  • 24
    • 84873655668 scopus 로고    scopus 로고
    • When Google got flu wrong
    • Feb.
    • Declan Butler. When Google got flu wrong. Nature 494, 7436 (Feb. 2013). http://dx.doi.org/10.1038/494155a
    • (2013) Nature , vol.494 , pp. 7436
    • Butler, D.1
  • 25
    • 72849140260 scopus 로고    scopus 로고
    • Google Trends: A web-based tool for real-time surveillance of disease outbreaks
    • Nov.
    • Herman Anthony Carneiro and Eleftherios Mylonakis. Google Trends: A web-based tool for real-time surveillance of disease outbreaks. Clinical Infectious Diseases 49, 10 (Nov. 2009). http://dx.doi.org/10.1086/630200
    • (2009) Clinical Infectious Diseases , vol.49 , pp. 10
    • Carneiro, H.A.1    Mylonakis, E.2
  • 27
    • 85014762635 scopus 로고    scopus 로고
    • Centers for Disease Control and Prevention (CDC). MMWR morbidity tables. (2015). http://wonder.cdc.gov/mmwr/mmwrmorb.asp
    • (2015) MMWR Morbidity Tables
  • 29
    • 85007593764 scopus 로고    scopus 로고
    • What can Wikipedia and Google tell us about stock prices under diferent market regimes?
    • June
    • Boris Cergol and Matjaž Omladic. What can Wikipedia and Google tell us about stock prices under diferent market regimes? Ars Mathematica Contemporanea 9, 2 (June 2015). http://amcjournal.eu/index.php/amc/article/view/561
    • (2015) Ars Mathematica Contemporanea , vol.9 , pp. 2
    • Cergol, B.1    Omladic, M.2
  • 30
    • 84924813547 scopus 로고    scopus 로고
    • Forecasting a moving target: Ensemble models for ILI case count predictions
    • Prithwish Chakraborty et al. 2014. Forecasting a moving target: Ensemble models for ILI case count predictions. In SIAM Data Mining. http://epubs.siam.org/doi/abs/10.1137/1. 9781611973440.30
    • (2014) SIAM Data Mining
    • Chakraborty, P.1
  • 31
    • 79957985746 scopus 로고    scopus 로고
    • Using web search query data to monitor dengue epidemics: A new model for neglected tropical disease surveillance
    • May
    • Emily H. Chan et al. Using web search query data to monitor dengue epidemics: A new model for neglected tropical disease surveillance. PLOS Neglected Tropical Diseases 5, 5 (May 2011). http://dx.doi.org/10. 1371/journal.pntd.0001206
    • (2011) PLOS Neglected Tropical Diseases , vol.5 , pp. 5
    • Chan, E.H.1
  • 32
    • 85014747471 scopus 로고    scopus 로고
    • Ph. D. University of North Texas
    • Jedsada Chartree. 2014. Monitoring dengue outbreaks using online data. Ph. D. University of North Texas. http://digital.library.unt.edu/ark:/67531/metadc500167/m2/1/high-res-d/dissertation.pdf
    • (2014) Monitoring Dengue Outbreaks Using Online Data
    • Chartree, J.1
  • 33
    • 84891910497 scopus 로고    scopus 로고
    • Correlation between national influenza surveillance data and Google Trends in South Korea
    • Dec.
    • Sungjin Cho et al. Correlation between national influenza surveillance data and Google Trends in South Korea. PLOS ONE 8, 12 (Dec. 2013). http://dx.doi.org/10.1371/journal.pone.0081422
    • (2013) PLOS ONE , vol.8 , pp. 12
    • Cho, S.1
  • 34
    • 84856799141 scopus 로고    scopus 로고
    • Online reporting for malaria surveillance using micro-monetary incentives, in urban India 2010-2011
    • Feb.
    • Rumi Chunara et al. Online reporting for malaria surveillance using micro-monetary incentives, in urban India 2010-2011. Malaria Journal 11, 1 (Feb. 2012). http://dx.doi.org/10.1186/1475-2875-11-43
    • (2012) Malaria Journal , vol.11 , pp. 1
    • Chunara, R.1
  • 35
    • 84903371093 scopus 로고    scopus 로고
    • Flu Near You: An online self-reported influenza surveillance system in the USA
    • March
    • Rumi Chunara et al. Flu Near You: An online self-reported influenza surveillance system in the USA. Online Journal of Public Health Informatics 5, 1 (March 2013). http://dx.doi.org/10.5210/ojphi.v5i1.4456
    • (2013) Online Journal of Public Health Informatics , vol.5 , pp. 1
    • Chunara, R.1
  • 36
    • 84855664643 scopus 로고    scopus 로고
    • Social and news media enable estimation of epidemiological patterns early in the 2010 Haitian cholera outbreak
    • Jan.
    • Rumi Chunara, Jason R Andrews, and John S Brownstein. Social and news media enable estimation of epidemiological patterns early in the 2010 Haitian cholera outbreak. American Journal of Tropical Medicine and Hygiene 86, 1 (Jan. 2012). http://dx.doi.org/10.4269/ajtmh.2012.11-0597
    • (2012) American Journal of Tropical Medicine and Hygiene , vol.86 , pp. 1
    • Chunara, R.1    Andrews, J.R.2    Brownstein, J.S.3
  • 37
    • 78651268092 scopus 로고    scopus 로고
    • WikiPop: Personalized event detection system based on Wikipedia page view statistics
    • Marek Ciglan and Kjetil Nørvåg. 2010. WikiPop: Personalized event detection system based on Wikipedia page view statistics. In Information and Knowledge Management (CIKM). http://dx.doi.org/10.1145/1871437.1871769
    • (2010) Information and Knowledge Management (CIKM)
    • Ciglan, M.1    Nørvåg, K.2
  • 38
    • 57249114504 scopus 로고    scopus 로고
    • BioCaster: Detecting public health rumors with a Web-based text mining system
    • Dec.
    • Nigel Collier et al. BioCaster: Detecting public health rumors with a Web-based text mining system. Bioinformatics 24, 24 (Dec. 2008). http://dx.doi.org/10.1093/bioinformatics/btn534
    • (2008) Bioinformatics , vol.24 , pp. 24
    • Collier, N.1
  • 39
    • 29144482775 scopus 로고    scopus 로고
    • Cancer internet search activity on a major search engine, United States 2001-2003
    • July
    • Crystale Purvis Cooper et al. Cancer internet search activity on a major search engine, United States 2001-2003. Journal of Medical Internet Research 7, 3 (July 2005). http://dx.doi.org/10.2196/jmir.7.3.e36
    • (2005) Journal of Medical Internet Research , vol.7 , pp. 3
    • Cooper, C.P.1
  • 40
    • 79956040653 scopus 로고    scopus 로고
    • Towards detecting influenza epidemics by analyzing Twitter messages
    • Aron Culotta. 2010. Towards detecting influenza epidemics by analyzing Twitter messages. In Workshop on Social Media Analytics (SOMA). http://dx.doi.org/10.1145/1964858.1964874
    • (2010) Workshop on Social Media Analytics (SOMA)
    • Culotta, A.1
  • 41
    • 84874751668 scopus 로고    scopus 로고
    • Lightweight methods to estimate influenza rates and alcohol sales volume from Twitter messages
    • March
    • Aron Culotta. Lightweight methods to estimate influenza rates and alcohol sales volume from Twitter messages. Language Resources and Evaluation 47, 1 (March 2013). http://dx.doi.org/10.1007/s10579-012-9185-0
    • (2013) Language Resources and Evaluation , vol.47 , pp. 1
    • Culotta, A.1
  • 42
    • 84900461706 scopus 로고    scopus 로고
    • Estimating county health statistics with Twitter
    • Aron Culotta. 2014. Estimating county health statistics with Twitter. In Human Factors in Computing Systems (CHI). http://dx.doi.org/10.1145/2556288.2557139
    • (2014) Human Factors in Computing Systems (CHI)
    • Culotta, A.1
  • 43
    • 84930999810 scopus 로고    scopus 로고
    • Using networks to combine "big data" and traditional surveillance to improve influenza predictions
    • Jan.
    • Michael W. Davidson, Dotan A. Haim, and Jennifer M. Radin. Using networks to combine "big data" and traditional surveillance to improve influenza predictions. Scientific Reports 5 (Jan. 2015). http://dx.doi.org/10.1038/srep08154
    • (2015) Scientific Reports 5
    • Davidson, M.W.1    Haim, D.A.2    Radin, J.M.3
  • 45
    • 84866693729 scopus 로고    scopus 로고
    • Norovirus disease surveillance using Google internet query share data
    • Oct.
    • Rishi Desai et al. Norovirus disease surveillance using Google internet query share data. Clinical Infectious Diseases 55, 8 (Oct. 2012). http://dx.doi.org/10.1093/cid/cis579
    • (2012) Clinical Infectious Diseases , vol.55 , pp. 8
    • Desai, R.1
  • 46
    • 84871944768 scopus 로고    scopus 로고
    • Enhancing Twitter data analysis with simple semantic filtering: Example in tracking influenza-like illnesses
    • Son Doan, Lucila Ohno-Machado, and Nigel Collier. 2012. Enhancing Twitter data analysis with simple semantic filtering: Example in tracking influenza-like illnesses. In Healthcare Informatics, Imaging and Systems Biology (HISB). http://dx.doi.org/10.1109/HISB.2012.21
    • (2012) Healthcare Informatics, Imaging and Systems Biology (HISB)
    • Doan, S.1    Ohno-Machado, L.2    Collier, N.3
  • 47
    • 0036570326 scopus 로고    scopus 로고
    • Completeness of notifiable infectious disease reporting in the United States: An analytical literature review
    • Jan.
    • Timothy J. Doyle, M. Kathleen Glynn, and Samuel L. Groseclose. Completeness of notifiable infectious disease reporting in the United States: An analytical literature review. American Journal of Epidemiology 155, 9 (Jan. 2002). http://dx.doi.org/10.1093/aje/155.9.866
    • (2002) American Journal of Epidemiology , vol.155 , pp. 9
    • Doyle, T.J.1    Kathleen Glynn, M.2    Groseclose, S.L.3
  • 48
    • 84874002846 scopus 로고    scopus 로고
    • Influenza forecasting with Google Flu Trends
    • Feb.
    • Andrea Freyer Dugas et al. Influenza forecasting with Google Flu Trends. PLOS ONE 8, 2 (Feb. 2013). http://dx.doi.org/10.1371/journal.pone. 0056176
    • (2013) PLOS ONE , vol.8 , pp. 2
    • Dugas, A.F.1
  • 49
    • 79957634893 scopus 로고    scopus 로고
    • Internet queries and methicillin-resistant Staphylococcus aureus surveillance
    • June
    • Vanja M. Dukic, Michael Z. David, and Diane S. Lauderdale. Internet queries and methicillin-resistant Staphylococcus aureus surveillance. Emerging Infectious Diseases 17, 6 (June 2011). http://dx.doi.org/10.3201/eid1706.101451
    • (2011) Emerging Infectious Diseases , vol.17 , pp. 6
    • Dukic, V.M.1    David, M.Z.2    Lauderdale, D.S.3
  • 50
    • 84903550789 scopus 로고    scopus 로고
    • Detecting the norovirus season in Sweden using search engine data - Meeting the needs of hospital infection control teams
    • June
    • Michael Edelstein et al. Detecting the norovirus season in Sweden using search engine data - Meeting the needs of hospital infection control teams. PLOS ONE 9, 6 (June 2014). http://dx.doi.org/10.1371/journal.pone.0100309
    • (2014) PLOS ONE , vol.9 , pp. 6
    • Edelstein, M.1
  • 51
    • 84922758277 scopus 로고    scopus 로고
    • Psychological language on Twitter predicts county-level heart disease mortality
    • Feb.
    • Johannes C. Eichstaedt et al. Psychological language on Twitter predicts county-level heart disease mortality. Psychological Science 26, 2 (Feb. 2015). http://dx.doi.org/10.1177/0956797614557867
    • (2015) Psychological Science , vol.26 , pp. 2
    • Eichstaedt, J.C.1
  • 52
    • 84930374811 scopus 로고    scopus 로고
    • Forecasting emergency department visits using internet data
    • April
    • Andreas Ekström et al. Forecasting emergency department visits using internet data. Annals of Emergency Medicine 65, 4 (April 2015). http://dx. doi.org/10.1016/j.annemergmed.2014.10.008
    • (2015) Annals of Emergency Medicine , vol.65 , pp. 4
    • Ekström, A.1
  • 53
    • 34748880596 scopus 로고    scopus 로고
    • Infodemiology: Tracking flu-related searches on the web for syndromic surveillance
    • Gunther Eysenbach. Infodemiology: Tracking flu-related searches on the web for syndromic surveillance. AMIA Annual Symposium 2006 (2006). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1839505
    • (2006) AMIA Annual Symposium 2006
    • Eysenbach, G.1
  • 54
    • 85014759631 scopus 로고    scopus 로고
    • Eliciting disease data from Wikipedia articles
    • Geoffrey Fairchild et al. 2015. Eliciting disease data from Wikipedia articles. In Weblogs and Social Media (ICWSM) Workshops. http://www.aaai.org/ocs/index.php/ICWSM/ICWSM15/paper/view/10630
    • (2015) Weblogs and Social Media (ICWSM) Workshops
    • Fairchild, G.1
  • 55
    • 39649091877 scopus 로고    scopus 로고
    • HealthMap: Global infectious disease monitoring through automated classification and visualization of internet media reports
    • Jan.
    • Clark C. Freifeld et al. HealthMap: Global infectious disease monitoring through automated classification and visualization of internet media reports. Journal of the American Medical Informatics Association 15, 2 (Jan. 2008). http://dx.doi.org/10.1197/jamia. M2544
    • (2008) Journal of the American Medical Informatics Association , vol.15 , pp. 2
    • Freifeld, C.C.1
  • 56
    • 77949444879 scopus 로고    scopus 로고
    • A framework for public health action: The health impact pyramid
    • April
    • Thomas R. Frieden. A framework for public health action: The health impact pyramid. American Journal of Public Health 100, 4 (April 2010). http://dx.doi.org/10.2105/AJPH.2009.185652
    • (2010) American Journal of Public Health , vol.100 , pp. 4
    • Frieden, T.R.1
  • 57
    • 84912131759 scopus 로고    scopus 로고
    • Global disease monitoring and forecasting with Wikipedia
    • Nov.
    • Nicholas Generous et al. Global disease monitoring and forecasting with Wikipedia. PLOS Computational Biology 10, 11 (Nov. 2014). http://dx.doi.org/10. 1371/journal.pcbi.1003892
    • (2014) PLOS Computational Biology , vol.10 , pp. 11
    • Generous, N.1
  • 58
    • 84941313426 scopus 로고    scopus 로고
    • Can Twitter be a source of information on allergy? Correlation of pollen counts with tweets reporting symptoms of allergic rhinoconjunctivitis and names of antihistamine drugs
    • July
    • Francesco Gesualdo et al. Can Twitter be a source of information on allergy? Correlation of pollen counts with tweets reporting symptoms of allergic rhinoconjunctivitis and names of antihistamine drugs. PLOS ONE 10, 7 (July 2015). http://dx.doi.org/10.1371/journal.pone.0133706
    • (2015) PLOS ONE , vol.10 , pp. 7
    • Gesualdo, F.1
  • 59
    • 60549098239 scopus 로고    scopus 로고
    • Detecting influenza epidemics using search engine query data
    • Nov.
    • Jeremy Ginsberg et al. Detecting influenza epidemics using search engine query data. Nature 457, 7232 (Nov. 2008). http://dx.doi.org/10.1038/nature07634
    • (2008) Nature , vol.457 , pp. 7232
    • Ginsberg, J.1
  • 60
    • 84929238448 scopus 로고    scopus 로고
    • A new source of data for public health surveillance: Facebook likes
    • April
    • Steven Gittelman et al. A new source of data for public health surveillance: Facebook likes. Journal of Medical Internet Research 17, 4 (April 2015). http://dx.doi.org/10.2196/jmir.3970
    • (2015) Journal of Medical Internet Research , vol.17 , pp. 4
    • Gittelman, S.1
  • 61
    • 78049334454 scopus 로고    scopus 로고
    • Predicting consumer behavior with Web search
    • Oct.
    • Sharad Goel et al. Predicting consumer behavior with Web search. PNAS 107, 41 (Oct. 2010). http://dx.doi.org/10.1073/pnas.1005962107
    • (2010) PNAS , vol.107 , pp. 41
    • Goel, S.1
  • 62
    • 85011936006 scopus 로고    scopus 로고
    • Dengue surveillance based on a computational model of spatio-temporal locality of Twitter
    • Janaína Gomide et al. 2011. Dengue surveillance based on a computational model of spatio-temporal locality of Twitter. In Web Science Conference (WebSci). http://www.websci11.org/fileadmin/websci/Papers/92-paper.pdf
    • (2011) Web Science Conference (WebSci)
    • Gomide, J.1
  • 63
    • 84938150088 scopus 로고    scopus 로고
    • Early detection of an epidemic erythromelalgia outbreak using Baidu search data
    • July
    • Yuzhou Gu et al. Early detection of an epidemic erythromelalgia outbreak using Baidu search data. Scientific Reports 5 (July 2015). http://dx.doi.org/10.1038/srep12649
    • (2015) Scientific Reports , pp. 5
    • Gu, Y.1
  • 64
    • 84861695285 scopus 로고    scopus 로고
    • Internet suicide searches and the incidence of suicide in young people in Japan
    • Feb.
    • Akihito Hagihara, Shogo Miyazaki, and Takeru Abe. Internet suicide searches and the incidence of suicide in young people in Japan. European Archives of Psychiatry and Clinical Neuroscience 262, 1 (Feb. 2012). http://dx.doi.org/10.1007/s00406-011-0212-8
    • (2012) European Archives of Psychiatry and Clinical Neuroscience , vol.262 , pp. 1
    • Hagihara, A.1    Miyazaki, S.2    Abe, T.3
  • 65
    • 0242378881 scopus 로고
    • Computer experiments in fluid dynamics
    • March
    • Francis H. Harlow and Jacob E. Fromm. Computer experiments in fluid dynamics. Scientific American 212, 3 (March 1965).
    • (1965) Scientific American , vol.212 , pp. 3
    • Harlow, F.H.1    Fromm, J.E.2
  • 66
    • 79951621099 scopus 로고    scopus 로고
    • Google uses web searches to track flu's spread
    • Nov.
    • Miguel Helft. Google uses web searches to track flu's spread. The New York Times (Nov. 2008). http://www.nytimes.com/2008/11/12/technology/internet/12flu.html
    • (2008) The New York Times
    • Helft, M.1
  • 67
    • 84930606330 scopus 로고    scopus 로고
    • Forecasting the 2013-2014 influenza season using Wikipedia
    • May
    • Kyle S. Hickmann et al. Forecasting the 2013-2014 influenza season using Wikipedia. PLOS Computational Biology 11, 5 (May 2015). http://dx. doi.org/10.1371/journal.pcbi.1004239
    • (2015) PLOS Computational Biology , vol.11 , pp. 5
    • Hickmann, K.S.1
  • 68
    • 84877696406 scopus 로고    scopus 로고
    • Prediction of infectious disease spread using Twitter: A case of influenza
    • Hideo Hirose and Liangliang Wang. 2012. Prediction of infectious disease spread using Twitter: A case of influenza. In Parallel Architectures, Algorithms and Programming (PAAP). http://dx.doi.org/10.1109/PAAP.2012.23
    • (2012) Parallel Architectures, Algorithms and Programming (PAAP)
    • Hirose, H.1    Wang, L.2
  • 69
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • Feb.
    • Arthur E. Hoerl and Robert W. Kennard. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12, 1 (Feb. 1970). http://dx.doi.org/10.1080/00401706.1970.10488634
    • (1970) Technometrics , vol.12 , pp. 1
    • Hoerl, A.E.1    Kennard, R.W.2
  • 71
    • 77956027386 scopus 로고    scopus 로고
    • Eye-opening approach to norovirus surveillance
    • Aug.
    • Anette Hulth et al. Eye-opening approach to norovirus surveillance. Emerging Infectious Diseases 16, 8 (Aug. 2010). http://dx.doi.org/10.3201/eid1608.100093
    • (2010) Emerging Infectious Diseases , vol.16 , pp. 8
    • Hulth, A.1
  • 72
    • 79956360352 scopus 로고    scopus 로고
    • Web query-based surveillance in Sweden during the influenza A (H1N1) 2009 pandemic, April 2009 to February 2010
    • Anette Hulth and Gustaf Rydevik. Web query-based surveillance in Sweden during the influenza A (H1N1) 2009 pandemic, April 2009 to February 2010. Euro Surveillance 16, 18 (2011).
    • (2011) Euro Surveillance , vol.16 , pp. 18
    • Hulth, A.1    Rydevik, G.2
  • 73
    • 84862897077 scopus 로고    scopus 로고
    • Web queries as a source for syndromic surveillance
    • Feb.
    • Anette Hulth, Gustaf Rydevik, and Annika Linde. Web queries as a source for syndromic surveillance. PLOS ONE 4, 2 (Feb. 2009). http://dx.doi.org/10. 1371/journal.pone.0004378
    • (2009) PLOS ONE , vol.4 , pp. 2
    • Hulth, A.1    Rydevik, G.2    Linde, A.3
  • 74
    • 85006382601 scopus 로고    scopus 로고
    • Robert Koch Institute. SurvStat@RKI 2.0. (2016). https://survstat.rki.de/Content/Query/Create.aspx
    • (2016) SurvStat@RKI 2.0
  • 76
    • 84949507935 scopus 로고    scopus 로고
    • Action tweets linked to reduced county-level HIV prevalence in the United States: Online messages and structural determinants
    • Dec.
    • Molly E. Ireland et al. Action tweets linked to reduced county-level HIV prevalence in the United States: Online messages and structural determinants. AIDS and Behavior (Dec. 2015). http://dx.doi.org/10.1007/s10461-015-1252-2
    • (2015) AIDS and Behavior
    • Ireland, M.E.1
  • 77
    • 84884315455 scopus 로고    scopus 로고
    • Gonorrhea incidence forecasting research based on Baidu search data
    • Bao Jia-xing et al. 2013. Gonorrhea incidence forecasting research based on Baidu search data. In Management Science and Engineering (ICMSE). http://dx.doi.org/10.1109/ICMSE.2013. 6586259
    • (2013) Management Science and Engineering (ICMSE)
    • Jia-Xing, B.1
  • 78
    • 84891587363 scopus 로고    scopus 로고
    • A comparison of internet search trends and sexually transmitted infection rates using Google Trends
    • Jan.
    • Amy K. Johnson and Supriya D. Mehta. A comparison of internet search trends and sexually transmitted infection rates using Google Trends. Sexually Transmitted Diseases 41, 1 (Jan. 2014). http://dx. doi.org/10.1097/OLQ.0000000000000065
    • (2014) Sexually Transmitted Diseases , vol.41 , pp. 1
    • Johnson, A.K.1    Mehta, S.D.2
  • 79
    • 55849086729 scopus 로고    scopus 로고
    • Analysis of Web access logs for surveillance of influenza
    • Heather A Johnson et al. Analysis of Web access logs for surveillance of influenza. Studies in Health Technology and Informatics 107, 2 (2004). http://www.ncbi.nlm.nih.gov/pubmed/15361003
    • (2004) Studies in Health Technology and Informatics , vol.107 , pp. 2
    • Johnson, H.A.1
  • 80
    • 84956891900 scopus 로고    scopus 로고
    • The detection of emerging trends using Wikipedia traffic data and context networks
    • Dec.
    • Mirko Kämpf et al. The detection of emerging trends using Wikipedia traffic data and context networks. PLOS ONE 10, 12 (Dec. 2015). http://dx.doi.org/10.1371/journal.pone.0141892
    • (2015) PLOS ONE , vol.10 , pp. 12
    • Kämpf, M.1
  • 81
    • 84872867329 scopus 로고    scopus 로고
    • Using Google Trends for influenza surveillance in South China
    • Jan.
    • Min Kang et al. Using Google Trends for influenza surveillance in South China. PLOS ONE 8, 1 (Jan. 2013). http://dx.doi.org/10.1371/journal. pone.0055205
    • (2013) PLOS ONE , vol.8 , pp. 1
    • Kang, M.1
  • 82
    • 84915781440 scopus 로고    scopus 로고
    • Google unveils a glimpse of allergic rhinitis in the real world
    • Jan.
    • M.-G. Kang et al. Google unveils a glimpse of allergic rhinitis in the real world. Allergy 70, 1 (Jan. 2015). http://dx.doi.org/10.1111/all.12528
    • (2015) Allergy , vol.70 , pp. 1
    • Kang, M.-G.1
  • 84
    • 84880826012 scopus 로고    scopus 로고
    • Use of Hangeul Twitter to track and predict human influenza infection
    • July
    • Eui-Ki Kim et al. Use of Hangeul Twitter to track and predict human influenza infection. PLOS ONE 8, 7 (July 2013). http://dx.doi.org/10.1371/journal. pone.0069305
    • (2013) PLOS ONE , vol.8 , pp. 7
    • Kim, E.-K.1
  • 85
    • 84902279001 scopus 로고    scopus 로고
    • Towards early detection of influenza epidemics by using social media analytics
    • Kwang Deok Kim and Liaquat Hossain. 2014. Towards early detection of influenza epidemics by using social media analytics. In DSS 2.0 - Supporting Decision Making with New Technologies. Vol. 261. http://dx.doi.org/10.3233/978-1-61499-399-5-36
    • (2014) DSS 2.0 - Supporting Decision Making with New Technologies , vol.261
    • Kim, K.D.1    Hossain, L.2
  • 87
    • 84945457779 scopus 로고    scopus 로고
    • A model for the determination of pollen count using Google search queries for patients suffering from allergic rhinitis
    • June
    • Volker König and Ralph Mösges. A model for the determination of pollen count using Google search queries for patients suffering from allergic rhinitis. Journal of Allergy 2014 (June 2014). http://dx.doi.org/10.1155/2014/381983
    • (2014) Journal of Allergy 2014
    • König, V.1    Mösges, R.2
  • 88
    • 80054956672 scopus 로고    scopus 로고
    • Accuracy and completeness of drug information in Wikipedia: An assessment
    • Oct.
    • Natalie Kupferberg and Bridget McCrate Protus. Accuracy and completeness of drug information in Wikipedia: An assessment. Journal of the Medical Library Association 99, 4 (Oct. 2011). http://dx.doi.org/10.3163/1536-5050.99.4.010
    • (2011) Journal of the Medical Library Association , vol.99 , pp. 4
    • Kupferberg, N.1    Protus, B.M.2
  • 89
    • 84923276281 scopus 로고    scopus 로고
    • Separating fact from fear: Tracking flu infections on Twitter
    • Alex Lamb, Michael J. Paul, and Mark Dredze. 2013. Separating fact from fear: Tracking flu infections on Twitter. In Human Language Technologies (NAACL-HLT). http://www.aclweb.org/anthology/N/N13/N13-1097.pdf
    • (2013) Human Language Technologies (NAACL-HLT)
    • Lamb, A.1    Paul, M.J.2    Dredze, M.3
  • 90
    • 84938513272 scopus 로고    scopus 로고
    • Advances in nowcasting influenza-like illness rates using search query logs
    • Aug.
    • Vasileios Lampos et al. Advances in nowcasting influenza-like illness rates using search query logs. Scientific Reports 5 (Aug. 2015). http://dx.doi.org/10.1038/srep12760
    • (2015) Scientific Reports 5
    • Lampos, V.1
  • 91
    • 84939572831 scopus 로고    scopus 로고
    • Assessing the impact of a health intervention via user-generated Internet content
    • July
    • Vasileios Lampos et al. Assessing the impact of a health intervention via user-generated Internet content. Data Mining and Knowledge Discovery 29, 5 (July 2015). http://dx.doi.org/10.1007/s10618-015-0427-9
    • (2015) Data Mining and Knowledge Discovery , vol.29 , pp. 5
    • Lampos, V.1
  • 92
    • 78349278107 scopus 로고    scopus 로고
    • Tracking the flu pandemic by monitoring the social web
    • Vasileios Lampos and Nello Cristianini. 2010. Tracking the flu pandemic by monitoring the social web. In Cognitive Information Processing (CIP). http://dx.doi.org/10.1109/CIP.2010.5604088
    • (2010) Cognitive Information Processing (CIP)
    • Lampos, V.1    Cristianini, N.2
  • 93
    • 84867410703 scopus 로고    scopus 로고
    • Nowcasting events from the social web with statistical learning
    • Sept.
    • Vasileios Lampos and Nello Cristianini. Nowcasting events from the social web with statistical learning. Transactions on Intelligent Systems and Technology 3, 4 (Sept. 2012). http://dx.doi.org/10.1145/2337542.2337557
    • (2012) Transactions on Intelligent Systems and Technology , vol.3 , pp. 4
    • Lampos, V.1    Cristianini, N.2
  • 95
    • 84896056107 scopus 로고    scopus 로고
    • The parable of Google Flu: Traps in big data analysis
    • 14 March
    • David Lazer et al. The parable of Google Flu: Traps in big data analysis. Science 343, 14 March (2014).
    • (2014) Science , vol.343
    • Lazer, D.1
  • 96
    • 77958156598 scopus 로고    scopus 로고
    • Wikipedia and osteosarcoma: A trustworthy patients' information?
    • Jan.
    • Andreas Leithner et al. Wikipedia and osteosarcoma: A trustworthy patients' information? Journal of the American Medical Informatics Association 17, 4 (Jan. 2010). http://dx.doi.org/10.1136/jamia.2010. 004507
    • (2010) Journal of the American Medical Informatics Association , vol.17 , pp. 4
    • Leithner, A.1
  • 98
    • 84868684575 scopus 로고    scopus 로고
    • Head lice surveillance on a deregulated OTC-sales market: A study using web query data
    • Nov.
    • Johan Lindh et al. Head lice surveillance on a deregulated OTC-sales market: A study using web query data. PLOS ONE 7, 11 (Nov. 2012). http://dx. doi.org/10.1371/journal.pone.0048666
    • (2012) PLOS ONE , vol.7 , pp. 11
    • Lindh, J.1
  • 99
    • 84921821049 scopus 로고    scopus 로고
    • Enhancing financial decision-making using social behavior modeling
    • Ruoqian Liu et al. 2014. Enhancing financial decision-making using social behavior modeling. In Social Network Mining and Analysis (SNAKDD). http://dx.doi.org/10.1145/2659480.2659505
    • (2014) Social Network Mining and Analysis (SNAKDD)
    • Liu, R.1
  • 100
    • 84882978507 scopus 로고    scopus 로고
    • Quality of information on the internet about carpal tunnel syndrome: An update
    • Kevin Lutsky, Joseph Bernstein, and Pedro Beredjiklian. Quality of information on the internet about carpal tunnel syndrome: An update. Orthopedics 36, 8 (2013). http://www.healio.com/orthopedics/journals/ortho/%7Bf97c8407-7483-4d26-9aac-2b860b0e6d2c%7D/quality-of-information-onthe-internet-about-carpal-tunnel-syndromean-update
    • (2013) Orthopedics , vol.36 , pp. 8
    • Lutsky, K.1    Bernstein, J.2    Beredjiklian, P.3
  • 101
    • 84934437194 scopus 로고    scopus 로고
    • Syndromic surveillance of influenza activity in Sweden: An evaluation of three tools
    • Aug.
    • T. Ma et al. Syndromic surveillance of influenza activity in Sweden: an evaluation of three tools. Epidemiology & Infection 143, 11 (Aug. 2015). http://dx.doi.org/10.1017/S0950268814003240
    • (2015) Epidemiology & Infection , vol.143 , pp. 11
    • Ma, T.1
  • 103
    • 84949535001 scopus 로고    scopus 로고
    • Google Flu Trends in Canada: A comparison of digital disease surveillance data with physician consultations and respiratory virus surveillance data, 2010-2014
    • Jan.
    • Leah J. Martin, B. E. Lee, and Yutaka Yasui. Google Flu Trends in Canada: A comparison of digital disease surveillance data with physician consultations and respiratory virus surveillance data, 2010-2014. Epidemiology & Infection 144, 02 (Jan. 2016). http://dx.doi.org/10.1017/S0950268815001478
    • (2016) Epidemiology & Infection , vol.144 , pp. 02
    • Martin, L.J.1    Lee, B.E.2    Yasui, Y.3
  • 104
    • 84928750394 scopus 로고    scopus 로고
    • Improving Google Flu Trends estimates for the United States through transformation
    • Dec.
    • Leah J. Martin, Biying Xu, and Yutaka Yasui. Improving Google Flu Trends estimates for the United States through transformation. PLOS ONE 9, 12 (Dec. 2014). http://dx.doi.org/10.1371/journal. pone.0109209
    • (2014) PLOS ONE , vol.9 , pp. 12
    • Martin, L.J.1    Xu, B.2    Yasui, Y.3
  • 105
    • 84901331477 scopus 로고    scopus 로고
    • Wikipedia usage estimates prevalence of influenza-like illness in the United States in near real-time
    • April
    • David J. McIver and John S. Brownstein. Wikipedia usage estimates prevalence of influenza-like illness in the United States in near real-time. PLOS Computational Biology 10, 4 (April 2014). http://dx. doi.org/10.1371/journal.pcbi.1003581
    • (2014) PLOS Computational Biology , vol.10 , pp. 4
    • McIver, D.J.1    Brownstein, J.S.2
  • 106
    • 84892833416 scopus 로고    scopus 로고
    • Data structures for statistical computing in Python
    • Wes McKinney. 2010. Data structures for statistical computing in Python. In Python in Science (SCIPY), Vol. 445. http://conference.scipy.org/proceedings/scipy2010/pdfs/mckinney.pdf
    • (2010) Python in Science (SCIPY) , vol.445
    • McKinney, W.1
  • 107
    • 84875793706 scopus 로고    scopus 로고
    • Globalization, climate change, and human health
    • April
    • Anthony J. McMichael. Globalization, climate change, and human health. New England Journal of Medicine 368, 14 (April 2013). http://dx.doi.org/10.1056/NEJMra1109341
    • (2013) New England Journal of Medicine , vol.368 , pp. 14
    • McMichael, A.J.1
  • 108
    • 84882719407 scopus 로고    scopus 로고
    • Early prediction of movie box office success based on Wikipedia activity big data
    • Aug.
    • Márton Mestyán, Taha Yasseri, and János Kertész. Early prediction of movie box office success based on Wikipedia activity big data. PLOS ONE 8, 8 (Aug. 2013). http://dx.doi.org/10.1371/journal. pone.0071226
    • (2013) PLOS ONE , vol.8 , pp. 8
    • Mestyán, M.1    Yasseri, T.2    Kertész, J.3
  • 109
    • 84924172904 scopus 로고    scopus 로고
    • Using internet search queries for infectious disease surveillance: Screening diseases for suitability
    • Gabriel J. Milinovich et al. Using internet search queries for infectious disease surveillance: Screening diseases for suitability. BMC Infectious Diseases 14 (2014). http://dx.doi.org/10.1186/s12879-014-0690-1
    • (2014) BMC Infectious Diseases , pp. 14
    • Milinovich, G.J.1
  • 110
    • 84870290122 scopus 로고    scopus 로고
    • An open-source toolkit for mining Wikipedia
    • Jan.
    • David Milne and Ian H. Witten. An open-source toolkit for mining Wikipedia. Artificial Intelligence 194 (Jan. 2013). http://dx.doi.org/10.1016/j.artint. 2012.06.007
    • (2013) Artificial Intelligence , pp. 194
    • Milne, D.1    Witten, I.H.2
  • 111
    • 85014771664 scopus 로고    scopus 로고
    • Ministry of Health Israel. Weekly epidemiological reports. (2015). http://www.health.gov. il/UnitsOffice/HD/PH/epidemiology/Pages/epidemiology-report.aspx
    • (2015) Weekly Epidemiological Reports
  • 112
    • 84886738892 scopus 로고    scopus 로고
    • Understanding the impact of face mask usage through epidemic simulation of large social networks
    • Vahid Dabbaghian and Vijay Kumar Mago Eds.
    • Susan M. Mniszewski et al. 2014. Understanding the impact of face mask usage through epidemic simulation of large social networks. In Theories and Simulations of Complex Social Systems, Vahid Dabbaghian and Vijay Kumar Mago (Eds.). Number 52. http://link.springer.com/chapter/10.1007/978-3-642-39149-1-8
    • (2014) Theories and Simulations of Complex Social Systems , Issue.52
    • Mniszewski, S.M.1
  • 113
    • 84877763418 scopus 로고    scopus 로고
    • Quantifying Wikipedia usage patterns before stock market moves
    • May
    • Helen Susannah Moat et al. Quantifying Wikipedia usage patterns before stock market moves. Scientific Reports 3 (May 2013). http://dx.doi.org/10.1038/srep01801
    • (2013) Scientific Reports 3
    • Moat, H.S.1
  • 114
    • 85138015894 scopus 로고    scopus 로고
    • Anticipating stock market movements with Google and Wikipedia
    • Davron Matrasulov and H. Eugene Stanley Eds
    • Helen Susannah Moat et al. 2014. Anticipating stock market movements with Google and Wikipedia. In Nonlinear Phenomena in Complex Systems: From Nano to Macro Scale, Davron Matrasulov and H. Eugene Stanley (Eds.). http://dx.doi.org/10.1007/978-94-017-8704-8-4
    • (2014) Nonlinear Phenomena in Complex Systems: From Nano to Macro Scale
    • Moat, H.S.1
  • 115
    • 84910107444 scopus 로고    scopus 로고
    • A case study of the New York City 2012-2013 influenza season with daily geocoded Twitter data from temporal and spatiotemporal perspectives
    • Oct.
    • Ruchit Nagar et al. A case study of the New York City 2012-2013 influenza season with daily geocoded Twitter data from temporal and spatiotemporal perspectives. Journal of Medical Internet Research 16, 10 (Oct. 2014). http://dx.doi.org/10.2196/jmir.3416
    • (2014) Journal of Medical Internet Research , vol.16 , pp. 10
    • Nagar, R.1
  • 116
    • 84887933657 scopus 로고    scopus 로고
    • The complex relationship of realspace events and messages in cyberspace: Case study of influenza and pertussis using tweets
    • Oct.
    • Anna C. Nagel et al. The complex relationship of realspace events and messages in cyberspace: Case study of influenza and pertussis using tweets. Journal of Medical Internet Research 15, 10 (Oct. 2013). http://dx.doi.org/10.2196/jmir.2705
    • (2013) Journal of Medical Internet Research , vol.15 , pp. 10
    • Nagel, A.C.1
  • 117
    • 77956887506 scopus 로고
    • A note on a general definition of the coefficient of determination
    • N. J. D. Nagelkerke. A note on a general definition of the coefficient of determination. Biometrika 78, 3 (1991). http://dx.doi.org/10.2307/2337038
    • (1991) Biometrika , vol.78 , pp. 3
    • Nagelkerke, N.J.D.1
  • 118
    • 85014745648 scopus 로고    scopus 로고
    • The use of Twitter to predict the level of influenza activity in the United States
    • Kok W. Ng. 2014. The use of Twitter to predict the level of influenza activity in the United States. M. S. Naval Postgraduate School. http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html& identifier=ADA620696
    • (2014) M. S. Naval Postgraduate School
    • Ng, K.W.1
  • 119
    • 84886738403 scopus 로고    scopus 로고
    • Using search queries for malaria surveillance, Thailand
    • Nov.
    • Alex J. Ocampo, Rumi Chunara, and John S. Brownstein. Using search queries for malaria surveillance, Thailand. Malaria Journal 12, 1 (Nov. 2013). http://dx.doi.org/10.1186/1475-2875-12-390
    • (2013) Malaria Journal , vol.12 , pp. 1
    • Ocampo, A.J.1    Chunara, R.2    Brownstein, J.S.3
  • 120
    • 84887293587 scopus 로고    scopus 로고
    • Reassessing Google Flu Trends data for detection of seasonal and pandemic influenza: A comparative epidemiological study at three geographic scales
    • Oct.
    • Donald R. Olson et al. Reassessing Google Flu Trends data for detection of seasonal and pandemic influenza: A comparative epidemiological study at three geographic scales. PLOS Computational Biology 9, 10 (Oct. 2013). http://dx.doi.org/10.1371/journal.pcbi.1003256
    • (2013) PLOS Computational Biology , vol.9 , pp. 10
    • Olson, D.R.1
  • 121
    • 84893074514 scopus 로고    scopus 로고
    • Bieber no more: First story detection using Twitter and Wikipedia
    • Miles Osborne et al. 2012. Bieber no more: First story detection using Twitter and Wikipedia. In SIGIR Workshop on Time-aware Information Access (TAIA). http://www.dcs.gla.ac.uk/~craigm/publications/osborneTAIA2012.pdf
    • (2012) SIGIR Workshop on Time-aware Information Access (TAIA)
    • Osborne, M.1
  • 122
    • 84981736758 scopus 로고    scopus 로고
    • Screening for pancreatic adenocarcinoma using signals from web search logs: Feasibility study and results
    • June
    • John Paparrizos, Ryen W. White, and Eric Horvitz. Screening for pancreatic adenocarcinoma using signals from web search logs: Feasibility study and results. Journal of Oncology Practice (June 2016). http://dx.doi.org/10.1200/JOP.2015.010504
    • (2016) Journal of Oncology Practice
    • Paparrizos, J.1    White, R.W.2    Horvitz, E.3
  • 123
    • 85085133306 scopus 로고    scopus 로고
    • You are what you tweet: Analyzing Twitter for public health
    • Michael J. Paul and Mark Dredze. 2011. You are what you tweet: Analyzing Twitter for public health. In Weblogs and Social Media (ICWSM).
    • (2011) Weblogs and Social Media (ICWSM)
    • Paul, M.J.1    Dredze, M.2
  • 124
    • 84937499054 scopus 로고    scopus 로고
    • Twitter improves influenza forecasting
    • Oct.
    • Michael J. Paul, Mark Dredze, and David Broniatowski. Twitter improves influenza forecasting. PLOS Currents (Oct. 2014). http://dx.doi.org/10.1371/currents. outbreaks.90b9ed0f59bae4ccaa683a39865d9117
    • (2014) PLOS Currents
    • Paul, M.J.1    Dredze, M.2    Broniatowski, D.3
  • 125
    • 80555140075 scopus 로고    scopus 로고
    • Scikit-learn: Machine learning in Python
    • Oct.
    • Fabian Pedregosa et al. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12, Oct. (2011). http://jmlr.org/papers/v12/pedregosa11a.html
    • (2011) Journal of Machine Learning Research , pp. 12
    • Pedregosa, F.1
  • 126
    • 68049106300 scopus 로고    scopus 로고
    • More diseases tracked by using Google Trends
    • Aug.
    • Camille Pelat et al. More diseases tracked by using Google Trends. Emerging Infectious Diseases 15, 8 (Aug. 2009). http://dx.doi.org/10.3201/eid1508.090299
    • (2009) Emerging Infectious Diseases , vol.15 , pp. 8
    • Pelat, C.1
  • 128
    • 34247481878 scopus 로고    scopus 로고
    • IPython: A system for interactive scientific computing
    • Fernando Pérez and Brian E. Granger. IPython: A system for interactive scientific computing. Computing in Science & Engineering 9, 3 (2007). http://dx.doi.org/10.1109/MCSE.2007.53
    • (2007) Computing in Science & Engineering , vol.9 , pp. 3
    • Pérez, F.1    Granger, B.E.2
  • 129
    • 84964452166 scopus 로고    scopus 로고
    • Zika virus
    • April
    • Lyle R. Petersen et al. Zika virus. New England Journal of Medicine 374, 16 (April 2016). http://dx.doi.org/10.1056/NEJMra1602113
    • (2016) New England Journal of Medicine , vol.374 , pp. 16
    • Petersen, L.R.1
  • 130
    • 84940440468 scopus 로고    scopus 로고
    • Seasonal trends in tinnitus symptomatology: Evidence from Internet search engine query data
    • Sept.
    • David T. Plante and David G. Ingram. Seasonal trends in tinnitus symptomatology: Evidence from Internet search engine query data. European Archives of Oto-Rhino-Laryngology 272, 10 (Sept. 2014). http://dx.doi.org/10.1007/s00405-014-3287-9
    • (2014) European Archives of Oto-rhino-laryngology , vol.272 , pp. 10
    • Plante, D.T.1    Ingram, D.G.2
  • 131
    • 55849100040 scopus 로고    scopus 로고
    • Using internet searches for influenza surveillance
    • Jan.
    • Philip M. Polgreen et al. Using internet searches for influenza surveillance. Clinical Infectious Diseases 47, 11 (Jan. 2008). http://dx.doi.org/10.1086/593098
    • (2008) Clinical Infectious Diseases , vol.47 , pp. 11
    • Polgreen, P.M.1
  • 132
    • 84922376391 scopus 로고    scopus 로고
    • Adaptive nowcasting of influenza outbreaks using Google searches
    • Oct.
    • Tobias Preis and Helen Susannah Moat. Adaptive nowcasting of influenza outbreaks using Google searches. Royal Society Open Science 1, 2 (Oct. 2014). http://dx.doi.org/10.1098/rsos.140095
    • (2014) Royal Society Open Science , vol.1 , pp. 2
    • Preis, T.1    Moat, H.S.2
  • 133
    • 77950510574 scopus 로고    scopus 로고
    • Creating, destroying, and restoring value in Wikipedia
    • Reid Priedhorsky et al. 2007. Creating, destroying, and restoring value in Wikipedia. In Supporting Group Work (GROUP). http://dx.doi.org/10.1145/1316624.1316663
    • (2007) Supporting Group Work (GROUP)
    • Priedhorsky, R.1
  • 135
    • 84855410024 scopus 로고    scopus 로고
    • Patient-oriented cancer information on the internet: A comparison of Wikipedia and a professionally maintained database
    • Jan.
    • Malolan S. Rajagopalan et al. Patient-oriented cancer information on the internet: A comparison of Wikipedia and a professionally maintained database. Journal of Oncology Practice 7, 5 (Jan. 2011). http://dx.doi.org/10.1200/JOP.2010.000209
    • (2011) Journal of Oncology Practice , vol.7 , pp. 5
    • Rajagopalan, M.S.1
  • 136
    • 84938253669 scopus 로고    scopus 로고
    • Predicting asthma-related emergency department visits using big data
    • July
    • Sudha Ram et al. Predicting asthma-related emergency department visits using big data. IEEE Journal of Biomedical and Health Informatics 19, 4 (July 2015). http://dx.doi.org/10.1109/JBHI.2015. 2404829
    • (2015) IEEE Journal of Biomedical and Health Informatics , vol.19 , pp. 4
    • Ram, S.1
  • 138
    • 84856499683 scopus 로고    scopus 로고
    • Using prediction markets and Twitter to predict a swine flu pandemic
    • Joshua Ritterman, Miles Osborne, and Ewan Klein. 2009. Using prediction markets and Twitter to predict a swine flu pandemic. In Workshop on Mining Social Media. http://homepages.inf.ed.ac.uk/miles/papers/swine09.pdf
    • (2009) Workshop on Mining Social Media
    • Ritterman, J.1    Osborne, M.2    Klein, E.3
  • 139
    • 84922226137 scopus 로고    scopus 로고
    • Modeling the impact of interventions on an epidemic of Ebola in Sierra Leone and Liberia
    • Caitlin M. Rivers et al. Modeling the impact of interventions on an epidemic of Ebola in Sierra Leone and Liberia. PLOS Currents (2014). http://dx.doi.org/10.1371/currents. outbreaks.4d41fe5d6c05e9df30ddce33c66d084c
    • (2014) PLOS Currents
    • Rivers, C.M.1
  • 141
    • 84918787542 scopus 로고    scopus 로고
    • Using clinicians' search query data to monitor influenza epidemics
    • Nov.
    • Mauricio Santillana et al. Using clinicians' search query data to monitor influenza epidemics. Clinical Infectious Diseases 59, 10 (Nov. 2014). http://dx.doi.org/10.1093/cid/ciu647
    • (2014) Clinical Infectious Diseases , vol.59 , pp. 10
    • Santillana, M.1
  • 142
    • 84906354517 scopus 로고    scopus 로고
    • What can digital disease detection learn from (an external revision to) Google Flu Trends?
    • Sept.
    • Mauricio Santillana et al. What can digital disease detection learn from (an external revision to) Google Flu Trends? American Journal of Preventive Medicine 47, 3 (Sept. 2014). http://dx.doi.org/10.1016/j. amepre.2014.05.020
    • (2014) American Journal of Preventive Medicine , vol.47 , pp. 3
    • Santillana, M.1
  • 143
    • 84946026274 scopus 로고    scopus 로고
    • Combining search, social media, and traditional data sources to improve influenza surveillance
    • Oct.
    • Mauricio Santillana et al. Combining search, social media, and traditional data sources to improve influenza surveillance. PLOS Computational Biology 11, 10 (Oct. 2015). http://dx.doi.org/10.1371/journal. pcbi.1004513
    • (2015) PLOS Computational Biology , vol.11 , pp. 10
    • Santillana, M.1
  • 145
    • 84908609788 scopus 로고    scopus 로고
    • WikiBrain: Democratizing computation on Wikipedia
    • Shilad Sen et al. 2014. WikiBrain: Democratizing computation on Wikipedia. In OpenSym. http://dx.doi.org/10.1145/2641580.2641615
    • (2014) OpenSym
    • Sen, S.1
  • 146
    • 84965185252 scopus 로고    scopus 로고
    • Cumulative query method for influenza surveillance using search engine data
    • Dec.
    • Dong-Woo Seo et al. Cumulative query method for influenza surveillance using search engine data. Journal of Medical Internet Research 16, 12 (Dec. 2014). http://dx.doi.org/10.2196/jmir.3680
    • (2014) Journal of Medical Internet Research , vol.16 , pp. 12
    • Seo, D.-W.1
  • 147
    • 84870859794 scopus 로고    scopus 로고
    • Forecasting seasonal outbreaks of influenza
    • Nov.
    • Jeffrey Shaman and Alicia Karspeck. Forecasting seasonal outbreaks of influenza. Proceedings of the National Academy of Sciences 109, 50 (Nov. 2012). http://dx.doi.org/10.1073/pnas.1208772109
    • (2012) Proceedings of the National Academy of Sciences , vol.109 , pp. 50
    • Shaman, J.1    Karspeck, A.2
  • 149
    • 79955757514 scopus 로고    scopus 로고
    • The use of Twitter to track levels of disease activity and public concern in the U. S. during the influenza A H1N1 pandemic
    • May
    • Alessio Signorini, Alberto Maria Segre, and Philip M. Polgreen. The use of Twitter to track levels of disease activity and public concern in the U. S. during the influenza A H1N1 pandemic. PLOS ONE 6, 5 (May 2011). http://dx.doi.org/10.1371/journal. pone.0019467
    • (2011) PLOS ONE , vol.6 , pp. 5
    • Signorini, A.1    Segre, A.M.2    Polgreen, P.M.3
  • 151
    • 84905252466 scopus 로고    scopus 로고
    • Predicting flu epidemics using Twitter and historical data
    • Dominik Slezak et al. Eds.
    • Giovanni Stilo et al. 2014. Predicting flu epidemics using Twitter and historical data. In Brain Informatics and Health, Dominik Slezak et al. (Eds.). Number 8609. http://dx.doi.org/10.1007/978-3-319-09891-3-16
    • (2014) Brain Informatics and Health , Issue.8609
    • Stilo, G.1
  • 152
    • 36349019259 scopus 로고    scopus 로고
    • WikiRelate! Computing semantic relatedness using Wikipedia
    • Michael Strube and Simone Paolo Ponzetto. 2006. WikiRelate! Computing semantic relatedness using Wikipedia. In AAAI, Vol. 6. http://www.aaai.org/Papers/AAAI/2006/AAAI06-223.pdf
    • (2006) AAAI , vol.6
    • Strube, M.1    Ponzetto, S.P.2
  • 153
    • 84857080755 scopus 로고    scopus 로고
    • Public Anxiety and Information Seeking Following the H1N1 Outbreak: Blogs, Newspaper Articles, and Wikipedia Visits
    • Yla Tausczik et al. Public Anxiety and Information Seeking Following the H1N1 Outbreak: Blogs, Newspaper Articles, and Wikipedia Visits. Health Communication 27, 2 (2012). http://dx.doi.org/10.1080/10410236.2011.571759
    • (2012) Health Communication , vol.27 , pp. 2
    • Tausczik, Y.1
  • 154
    • 84975245970 scopus 로고    scopus 로고
    • Aug.
    • Flu Trends Team. The next chapter for Flu Trends. (Aug. 2015). http://googleresearch.blogspot.com/2015/08/the-next-chapter-for-flu-trends.html
    • (2015) The Next Chapter for Flu Trends
  • 156
    • 84875626302 scopus 로고    scopus 로고
    • An evaluation of Wikipedia as a resource for patient education in nephrology
    • Garry R. Thomas et al. An evaluation of Wikipedia as a resource for patient education in nephrology. Seminars in Dialysis 26, 2 (2013). http://dx.doi.org/10.1111/sdi.12059
    • (2013) Seminars in Dialysis , vol.26 , pp. 2
    • Thomas, G.R.1
  • 157
    • 84909991578 scopus 로고    scopus 로고
    • Emergency department and 'Google Flu Trends' data as syndromic surveillance indicators for seasonal influenza
    • Nov.
    • L. H. Thompson et al. Emergency department and 'Google Flu Trends' data as syndromic surveillance indicators for seasonal influenza. Epidemiology & Infection 142, 11 (Nov. 2014). http://dx.doi.org/10.1017/S0950268813003464
    • (2014) Epidemiology & Infection , vol.142 , pp. 11
    • Thompson, L.H.1
  • 158
    • 85000347823 scopus 로고    scopus 로고
    • Correlation between UpToDate searches and reported cases of Middle East respiratory syndrome during outbreaks in Saudi Arabia
    • Jan.
    • Anna R. Thorner et al. Correlation between UpToDate searches and reported cases of Middle East respiratory syndrome during outbreaks in Saudi Arabia. Open Forum Infectious Diseases 3, 1 (Jan. 2016). http://dx.doi.org/10.1093/ofid/ofw043
    • (2016) Open Forum Infectious Diseases , vol.3 , pp. 1
    • Thorner, A.R.1
  • 159
    • 0001287271 scopus 로고    scopus 로고
    • Regression Shrinkage and Selection via the Lasso
    • Jan.
    • Robert Tibshirani. Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society: Series B 58, 1 (Jan. 1996). http://dx.doi.org/10.2307/2346178
    • (1996) Journal of the Royal Statistical Society: Series B , vol.58 , pp. 1
    • Tibshirani, R.1
  • 160
    • 84893026700 scopus 로고    scopus 로고
    • An approach for using wikipedia to measure the flow of trends across countries
    • Ramine Tinati, Thanassis Tiropanis, and Lesie Carr. 2013. An Approach for Using Wikipedia to Measure the Flow of Trends Across Countries. In World Wide Web (WWW) Companion. http://dl.acm.org/citation. cfm?id=2487788.2488177
    • (2013) World Wide Web (WWW) Companion
    • Tinati, R.1    Tiropanis, T.2    Carr, L.3
  • 161
    • 84893536124 scopus 로고    scopus 로고
    • Cross language prediction of vandalism on Wikipedia using article views and revisions
    • Jian Pei et al. Eds.
    • Khoi-Nguyen Tran and Peter Christen. 2013. Cross language prediction of vandalism on Wikipedia using article views and revisions. In Advances in Knowledge Discovery and Data Mining, Jian Pei et al. (Eds.). Number 7819. http://link.springer.com/chapter/10.1007/978-3-642-37456-2-23
    • (2013) Advances in Knowledge Discovery and Data Mining , Issue.7819
    • Tran, K.-N.1    Christen, P.2
  • 162
    • 85014769330 scopus 로고    scopus 로고
    • Determination of geographic variance in stroke prevalence using Internet search engine analytics
    • June
    • Brian P. Walcott et al. Determination of geographic variance in stroke prevalence using Internet search engine analytics. Journal of Neurosurgery 115, 6 (June 2011). http://dx.doi.org/10.3171/2011.2. FOCUS1124
    • (2011) Journal of Neurosurgery , vol.115 , pp. 6
    • Walcott, B.P.1
  • 163
    • 84954139698 scopus 로고    scopus 로고
    • Dynamic Poisson autoregression for influenza-like-illness case count prediction
    • Zheng Wang et al. 2015. Dynamic Poisson autoregression for influenza-like-illness case count prediction. In ACM Knowledge Discovery and Data Mining (KDD). http://dx.doi.org/10.1145/2783258.2783291
    • (2015) ACM Knowledge Discovery and Data Mining (KDD)
    • Wang, Z.1
  • 164
    • 85035336336 scopus 로고    scopus 로고
    • Wikipedia and stock return: Wikipedia usage pattern helps to predict the individual stock movement
    • Pengyu Wei and Ning Wang. 2016. Wikipedia and stock return: Wikipedia usage pattern helps to predict the individual stock movement. In World Wide Web (WWW) Companion. http://dx.doi.org/10.1145/2872518.2890089
    • (2016) World Wide Web (WWW) Companion
    • Wei, P.1    Wang, N.2
  • 165
    • 84922244896 scopus 로고    scopus 로고
    • Correlating regional aeroallergen effects on internet search activity
    • Feb.
    • Thomas J. Willson et al. Correlating regional aeroallergen effects on internet search activity. Otolaryngology - Head and Neck Surgery 152, 2 (Feb. 2015). http://dx.doi.org/10.1177/0194599814560149
    • (2015) Otolaryngology - Head and Neck Surgery , vol.152 , pp. 2
    • Willson, T.J.1
  • 166
    • 65349193872 scopus 로고    scopus 로고
    • Early detection of disease outbreaks using the Internet
    • April
    • Kumanan Wilson and John S. Brownstein. Early detection of disease outbreaks using the Internet. Canadian Medical Association Journal 180, 8 (April 2009). http://dx.doi.org/10.1503/cmaj.1090215
    • (2009) Canadian Medical Association Journal , vol.180 , pp. 8
    • Wilson, K.1    Brownstein, J.S.2
  • 167
    • 84868643449 scopus 로고    scopus 로고
    • Predicting epidemic tendency through search behavior analysis
    • Danqing Xu et al. 2011. Predicting epidemic tendency through search behavior analysis. In International Joint Conference on Artificial Intelligence (IJCAI). http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-393
    • (2011) International Joint Conference on Artificial Intelligence (IJCAI)
    • Xu, D.1
  • 168
    • 78149323071 scopus 로고    scopus 로고
    • A neural netwok based approach to detect influenza epidemics using search engine query data
    • Wei Xu, Zhen-Wen Han, and Jian Ma. 2010. A neural netwok based approach to detect influenza epidemics using search engine query data. In Machine Learning and Cybernetics (ICMLC), Vol. 3. http://dx.doi.org/10.1109/ICMLC.2010.5580851
    • (2010) Machine Learning and Cybernetics (ICMLC) , vol.3
    • Xu, W.1    Han, Z.-W.2    Ma, J.3
  • 169
    • 79958102365 scopus 로고    scopus 로고
    • Association of Internet search trends with suicide death in Taipei City, Taiwan, 2004-2009
    • July
    • Albert C. Yang et al. Association of Internet search trends with suicide death in Taipei City, Taiwan, 2004-2009. Journal of Affective Disorders 132, 1-2 (July 2011). http://dx.doi.org/10.1016/j.jad. 2011.01.019
    • (2011) Journal of Affective Disorders , vol.132 , pp. 1-2
    • Yang, A.C.1
  • 170
    • 84924132651 scopus 로고    scopus 로고
    • Inference of seasonal and pandemic influenza transmission dynamics
    • March
    • Wan Yang, Marc Lipsitch, and Jeffrey Shaman. Inference of seasonal and pandemic influenza transmission dynamics. Proceedings of the National Academy of Sciences 112, 9 (March 2015). http://dx.doi.org/10.1073/pnas.1415012112
    • (2015) Proceedings of the National Academy of Sciences , vol.112 , pp. 9
    • Yang, W.1    Lipsitch, M.2    Shaman, J.3
  • 173
    • 84878474470 scopus 로고    scopus 로고
    • Monitoring influenza epidemics in China with search query from Baidu
    • May
    • Qingyu Yuan et al. Monitoring influenza epidemics in China with search query from Baidu. PLOS ONE 8, 5 (May 2013). http://dx.doi.org/10.1371/journal.pone.0064323
    • (2013) PLOS ONE , vol.8 , pp. 5
    • Yuan, Q.1
  • 176
    • 84966487101 scopus 로고    scopus 로고
    • Extracting signals from social media for chronic disease surveillance
    • Wenli Zhang et al. 2016. Extracting signals from social media for chronic disease surveillance. In ACM Digital Health (DH). http://dx.doi.org/10.1145/2896338.2897728
    • (2016) ACM Digital Health (DH)
    • Zhang, W.1
  • 177
    • 84887967703 scopus 로고    scopus 로고
    • Internet search patterns of human immunodeficiency virus and the digital divide in the Russian Federation: Infoveillance study
    • Nov.
    • Andrey Zheluk et al. Internet search patterns of human immunodeficiency virus and the digital divide in the Russian Federation: Infoveillance study. Journal of Medical Internet Research 15, 11 (Nov. 2013). http://dx.doi.org/10.2196/jmir.2936
    • (2013) Journal of Medical Internet Research , vol.15 , pp. 11
    • Zheluk, A.1
  • 178
    • 84872591090 scopus 로고    scopus 로고
    • Monitoring epidemic alert levels by analyzing internet search volume
    • Xichuan Zhou et al. Monitoring epidemic alert levels by analyzing internet search volume. IEEE Transactions on Biomedical Engineering 60, 2 (2013). http://dx.doi.org/10.1109/TBME.2012.2228264
    • (2013) IEEE Transactions on Biomedical Engineering , vol.60 , pp. 2
    • Zhou, X.1
  • 180
    • 77951693078 scopus 로고    scopus 로고
    • Notifiable infectious disease surveillance with data collected by search engine
    • April
    • Xi-chuan Zhou and Hai-bin Shen. Notifiable infectious disease surveillance with data collected by search engine. Journal of Zhejiang University SCIENCE C 11, 4 (April 2010). http://dx.doi.org/10.1631/jzus. C0910371
    • (2010) Journal of Zhejiang University SCIENCE C , vol.11 , pp. 4
    • Zhou, X.1    Shen, H.2
  • 181
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B 67, 2 (2005). http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x
    • (2005) Journal of the Royal Statistical Society: Series B , vol.67 , pp. 2
    • Zou, H.1    Hastie, T.2
  • 182
    • 84966633350 scopus 로고    scopus 로고
    • Prediction of influenza epidemics at the province level in China using search query from "Haosou"
    • Yuanqiang Zou et al. 2015. Prediction of influenza epidemics at the province level in China using search query from "Haosou". In IEEE Fuzzy Systems and Knowledge Discovery (FSKD). http://dx.doi.org/10.1109/FSKD.2015.7382157
    • (2015) IEEE Fuzzy Systems and Knowledge Discovery (FSKD)
    • Zou, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.