메뉴 건너뛰기




Volumn 9, Issue 12, 2014, Pages

Improving Google Flu trends estimates for the United States through transformation

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; DISEASE SURVEILLANCE; FLU LIKE SYNDROME; GOOGLE FLU TRENDS; HEALTH CARE; INCIDENCE; MASS MEDIUM; MATHEMATICAL ANALYSIS; MATHEMATICAL PHENOMENA; MEDICAL INFORMATICS; PERCENTAGE OF PHYSICIAN VISITS RELATED TO INFLUENZA LIKE ILLNESS; PREDICTION; PROFESSIONAL PRACTICE; PUBLIC HEALTH SERVICE; TRANSFORMATION EQUATION; UNITED STATES; AMBULATORY CARE; DATA MINING; EPIDEMIC; EPIDEMIOLOGICAL MONITORING; HUMAN; INFLUENZA, HUMAN; INTERNET; SEASON; STATISTICS AND NUMERICAL DATA;

EID: 84928750394     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0109209     Document Type: Article
Times cited : (18)

References (26)
  • 3
    • 84938518823 scopus 로고    scopus 로고
    • Accessed 2014 March 20
    • Google Flu Trends (2013) Google Flu Trends United States. Available: http://www.google.org/flutrends/ us/#US. Accessed 2014 March 20.
    • (2013) Google Flu Trends United States
  • 5
    • 84870859794 scopus 로고    scopus 로고
    • Forecasting seasonal outbreaks of influenza
    • Shaman J, Karspeck A (2012) Forecasting seasonal outbreaks of influenza. Proc Natl Acad Sci U S A 109: 20425-20430.
    • (2012) Proc Natl Acad Sci u S a , vol.109 , pp. 20425-20430
    • Shaman, J.1    Karspeck, A.2
  • 7
  • 8
    • 84856717649 scopus 로고    scopus 로고
    • Google Flu Trends: Correlation with emergency department influenza rates and crowding metrics
    • Dugas AF, Hsieh YH, Levin SR, Pines JM, Mareiniss DP, et al. (2012) Google Flu Trends: correlation with emergency department influenza rates and crowding metrics. Clin Infect Dis 54: 463-469.
    • (2012) Clin Infect Dis , vol.54 , pp. 463-469
    • Dugas, A.F.1    Hsieh, Y.H.2    Levin, S.R.3    Pines, J.M.4    Mareiniss, D.P.5
  • 9
    • 84887293587 scopus 로고    scopus 로고
    • Reassessing google flu trends data for detection of seasonal and pandemic influenza: A comparative epidemiological study at three geographic scales
    • Olson DR, Konty KJ, Paladini M, Viboud C, Simonsen L (2013) Reassessing google flu trends data for detection of seasonal and pandemic influenza: a comparative epidemiological study at three geographic scales. PLoS Comput Biol 9: e1003256.
    • (2013) PLoS Comput Biol , vol.9 , pp. e1003256
    • Olson, D.R.1    Konty, K.J.2    Paladini, M.3    Viboud, C.4    Simonsen, L.5
  • 10
    • 80051831902 scopus 로고    scopus 로고
    • Assessing Google flu trends performance in the United States during the 2009 influenza virus A (H1N1) pandemic
    • Cook S, Conrad C, Fowlkes AL, Mohebbi MH (2011) Assessing Google flu trends performance in the United States during the 2009 influenza virus A (H1N1) pandemic. PLoS One 6: e23610.
    • (2011) PLoS One , vol.6 , pp. e23610
    • Cook, S.1    Conrad, C.2    Fowlkes, A.L.3    Mohebbi, M.H.4
  • 11
    • 84878960538 scopus 로고    scopus 로고
    • Influenza activity-United States, 2012-13 season and composition of the 2013-14 influenza vaccine
    • Centers for Disease Control and Prevention (2013) Influenza activity-United States, 2012-13 season and composition of the 2013-14 influenza vaccine. MMWR Morb Mortal Wkly Rep 62: 473-479.
    • (2013) MMWR Morb Mortal Wkly Rep , vol.62 , pp. 473-479
    • Centers for Disease Control and Prevention1
  • 12
    • 84873655668 scopus 로고    scopus 로고
    • When Google got flu wrong
    • Butler D (2013) When Google got flu wrong. Nature 494: 155-156.
    • (2013) Nature , vol.494 , pp. 155-156
    • Butler, D.1
  • 13
    • 84938515299 scopus 로고    scopus 로고
    • Flu Trends updates model to help estimate flu levels in the US
    • 29 Oct Available Accessed 2013 November 21
    • Stefansen C (29 Oct 2013) Flu Trends updates model to help estimate flu levels in the US. The Official google.org blog. Available: http://blog.google.org/2013/10/flu-trends-updates-model-to-help.html. Accessed 2013 November 21.
    • (2013) The Official google.org Blog
    • Stefansen, C.1
  • 14
    • 84896056107 scopus 로고    scopus 로고
    • Big data. The parable of Google Flu: Traps in big data analysis
    • Lazer D, Kennedy R, King G, Vespignani A (2014) Big data. The parable of Google Flu: traps in big data analysis. Science 343: 1203-1205.
    • (2014) Science , vol.343 , pp. 1203-1205
    • Lazer, D.1    Kennedy, R.2    King, G.3    Vespignani, A.4
  • 23
    • 69949111486 scopus 로고    scopus 로고
    • Available Accessed 2014 April 28
    • Google (2014) Google Trends. Available: http://www.google.com/trends. Accessed 2014 April 28.
    • (2014) Google Trends
  • 24
    • 84872867329 scopus 로고    scopus 로고
    • Using Google Trends for influenza surveillance in South China
    • Kang M, Zhong H, He J, Rutherford S, Yang F (2013) Using Google Trends for influenza surveillance in South China. PLoS One 8: e55205.
    • (2013) PLoS One , vol.8 , pp. e55205
    • Kang, M.1    Zhong, H.2    He, J.3    Rutherford, S.4    Yang, F.5
  • 26
    • 84906354517 scopus 로고    scopus 로고
    • What can digital disease detection learn from (an External revision to) Google Flu Trends?
    • In press
    • Santillana M, Zhang DW, Althouse BM, Ayers JW (2014) What Can Digital Disease Detection Learn from (an External Revision to) Google Flu Trends? Am J Prev Med. In press. http://dx.doi.org/10.1016/j. amepre.2014.05.020.
    • (2014) Am J Prev Med
    • Santillana, M.1    Zhang, D.W.2    Althouse, B.M.3    Ayers, J.W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.