메뉴 건너뛰기




Volumn 3, Issue 1, 2016, Pages

Correlation between uptodate searches and reported cases of middle east respiratory syndrome during outbreaks in Saudi Arabia

Author keywords

Digital disease detection; Epidemic intelligence; Middle East respiratory syndrome (MERS); Middle East respiratory syndrome coronavirus (MERS CoV); UpToDate

Indexed keywords

ARTICLE; CONTROLLED STUDY; CORRELATIONAL STUDY; DECISION SUPPORT SYSTEM; EPIDEMIC; HUMAN; MAJOR CLINICAL STUDY; MIDDLE EAST RESPIRATORY SYNDROME; PRIORITY JOURNAL; RESPIRATORY TRACT DISEASE; SAUDI ARABIA;

EID: 85000347823     PISSN: None     EISSN: 23288957     Source Type: Journal    
DOI: 10.1093/ofid/ofw043     Document Type: Article
Times cited : (6)

References (17)
  • 2
    • 60549098239 scopus 로고    scopus 로고
    • Detecting influenza epidemics using search engine query data
    • Ginsberg J, Mohebbi MH, Patel RS, et al. Detecting influenza epidemics using search engine query data. Nature 2009; 457:1012-4.
    • (2009) Nature , vol.457 , pp. 1012-1014
    • Ginsberg, J.1    Mohebbi, M.H.2    Patel, R.S.3
  • 3
    • 84918787542 scopus 로고    scopus 로고
    • Using clinicians' search query data to monitor influenza epidemics
    • Santillana M, Nsoesie EO, Mekaru SR, et al. Using clinicians' search query data to monitor influenza epidemics. Clin Infect Dis 2014; 59:1446-50.
    • (2014) Clin Infect Dis , vol.59 , pp. 1446-1450
    • Santillana, M.1    Nsoesie, E.O.2    Mekaru, S.R.3
  • 4
    • 84944542091 scopus 로고    scopus 로고
    • Use of internet search queries to enhance surveillance of foodborne illness
    • Bahk GJ, Kim YS, Park MS. Use of internet search queries to enhance surveillance of foodborne illness. Emerg Infect Dis 2015; 21:1906-12.
    • (2015) Emerg Infect Dis , vol.21 , pp. 1906-1912
    • Bahk, G.J.1    Kim, Y.S.2    Park, M.S.3
  • 5
    • 84892509071 scopus 로고    scopus 로고
    • Internet-based surveillance systems for monitoring emerging infectious diseases
    • Milinovich GJ, Williams GM, Clements AC, Hu W. Internet-based surveillance systems for monitoring emerging infectious diseases. Lancet Infect Dis 2014; 14:160-8.
    • (2014) Lancet Infect Dis , vol.14 , pp. 160-168
    • Milinovich, G.J.1    Williams, G.M.2    Clements, A.C.3    Hu, W.4
  • 6
    • 84937468602 scopus 로고    scopus 로고
    • Drivers of emerging infectious disease events as a framework for digital detection
    • Olson SH, Benedum CM, Mekaru SR, et al. Drivers of emerging infectious disease events as a framework for digital detection. Emerg Infect Dis 2015; 21:1285-92.
    • (2015) Emerg Infect Dis , vol.21 , pp. 1285-1292
    • Olson, S.H.1    Benedum, C.M.2    Mekaru, S.R.3
  • 7
    • 84971255224 scopus 로고    scopus 로고
    • Analyzing search behavior of healthcare professionals for drug safety surveillance
    • Odgers DJ, Harpaz R, Callahan A, et al. Analyzing search behavior of healthcare professionals for drug safety surveillance. Pac Symp Biocomput 2015; 306-17.
    • (2015) Pac Symp Biocomput , pp. 306-317
    • Odgers, D.J.1    Harpaz, R.2    Callahan, A.3
  • 8
    • 84940656019 scopus 로고    scopus 로고
    • Analyzing information seeking and drugsafety alert response by health care professionals as new methods for surveillance
    • Callahan A, Pernek I, Stiglic G, et al. Analyzing information seeking and drugsafety alert response by health care professionals as new methods for surveillance. J Med Internet Res 2015; 17:e204.
    • (2015) J Med Internet Res , vol.17 , pp. e204
    • Callahan, A.1    Pernek, I.2    Stiglic, G.3
  • 9
    • 84882655680 scopus 로고    scopus 로고
    • Middle East respiratory syndrome coronavirus (M.E.R.S-CoV) -Thailand
    • Available at. Accessed 3 February 2016.
    • World Health Organization. Middle East respiratory syndrome coronavirus (MERS-CoV) -Thailand. Available at: http://www.who.int/csr/don/29-january-2016-mers-thailand/en/. Accessed 3 February 2016.
  • 10
    • 84941413167 scopus 로고    scopus 로고
    • Middle East respiratory syndrome
    • Zumla A, Hui DS, Perlman S. Middle East respiratory syndrome. Lancet 2015; 386:995-1007.
    • (2015) Lancet , vol.386 , pp. 995-1007
    • Zumla, A.1    Hui, D.S.2    Perlman, S.3
  • 11
    • 84923796636 scopus 로고    scopus 로고
    • 2014 MERS-CoV outbreak in Jeddah-a link to health care facilities
    • Oboho IK, Tomczyk SM, Al-Asmari AM, et al. 2014 MERS-CoV outbreak in Jeddah-a link to health care facilities. N Engl J Med 2015; 372:846-54.
    • (2015) N Engl J Med , vol.372 , pp. 846-854
    • Oboho, I.K.1    Tomczyk, S.M.2    Al-Asmari, A.M.3
  • 12
    • 84944521075 scopus 로고    scopus 로고
    • Molecular epidemiology of hospital outbreak of Middle East respiratory syndrome, Riyadh, Saudi Arabia, 2014
    • Fagbo SF, Skakni L, Chu DK, et al. Molecular epidemiology of hospital outbreak of Middle East respiratory syndrome, Riyadh, Saudi Arabia, 2014. Emerg Infect Dis 2015; 21:1981-8.
    • (2015) Emerg Infect Dis , vol.21 , pp. 1981-1988
    • Fagbo, S.F.1    Skakni, L.2    Chu, D.K.3
  • 13
    • 84855210506 scopus 로고    scopus 로고
    • Regional office for the Eastern Mediterranean. MERSCoV situation update -30 November 2015
    • Available at: Accessed 4 February 2016.
    • World Health Organization. Regional office for the Eastern Mediterranean. MERSCoV situation update -30 November 2015. Available at: http://www.emro.who.int/ images/stories/csr/documents/MERS-CoV_30_November.pdf. Accessed 4 February 2016.
  • 14
    • 84873655668 scopus 로고    scopus 로고
    • When Google got flu wrong
    • Butler D. When Google got flu wrong. Nature 2013; 494:155-6.
    • (2013) Nature , vol.494 , pp. 155-156
    • Butler, D.1
  • 15
    • 84896056107 scopus 로고    scopus 로고
    • Big data. The parable of Google Flu: traps in big data analysis
    • Lazer D, Kennedy R, King G, Vespignani A. Big data. The parable of Google Flu: traps in big data analysis. Science 2014; 343:1203-5.
    • (2014) Science , vol.343 , pp. 1203-1205
    • Lazer, D.1    Kennedy, R.2    King, G.3    Vespignani, A.4
  • 16
    • 84928750394 scopus 로고    scopus 로고
    • Improving Google Flu Trends estimates for the United States through transformation
    • Martin LJ, Xu B, Yasui Y. Improving Google Flu Trends estimates for the United States through transformation. PLoS One 2014; 9:e109209.
    • (2014) PLoS One , vol.9
    • Martin, L.J.1    Xu, B.2    Yasui, Y.3
  • 17
    • 84887293587 scopus 로고    scopus 로고
    • Reassessing Google Flu Trends data for detection of seasonal and pandemic influenza: a comparative epidemiological study at three geographic scales
    • Olson DR, Konty KJ, Paladini M, et al. Reassessing Google Flu Trends data for detection of seasonal and pandemic influenza: a comparative epidemiological study at three geographic scales. PLoS Comput Biol 2013; 9: e1003256.
    • (2013) PLoS Comput Biol , vol.9
    • Olson, D.R.1    Konty, K.J.2    Paladini, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.