메뉴 건너뛰기




Volumn 12, Issue 7, 2017, Pages

Fermentative production of L-pipecolic acid from glucose and alternative carbon sources

Author keywords

Alternative carbon sources; Corynebacterium glutamicum; Fed batch cultivation; L pipecolic acid; Lysine dehydrogenase

Indexed keywords

ENZYME ACTIVITY; GENE EXPRESSION; GENES; GLUCOSE; PRODUCTIVITY;

EID: 85014761256     PISSN: 18606768     EISSN: 18607314     Source Type: Journal    
DOI: 10.1002/biot.201600646     Document Type: Article
Times cited : (54)

References (82)
  • 1
    • 0036490960 scopus 로고    scopus 로고
    • Biotransformation of L-lysine to L-pipecolic acid catalyzed by L-lysine 6-aminotransferase and pyrroline-5-carboxylate reductase
    • Fujii, T., Mukaihara, M., Agematu, H., Tsunekawa, H., Biotransformation of L-lysine to L-pipecolic acid catalyzed by L-lysine 6-aminotransferase and pyrroline-5-carboxylate reductase. Biosci. Biotechnol. Biochem. 2002, 66, 622–627.
    • (2002) Biosci. Biotechnol. Biochem. , vol.66 , pp. 622-627
    • Fujii, T.1    Mukaihara, M.2    Agematu, H.3    Tsunekawa, H.4
  • 2
    • 33646446311 scopus 로고    scopus 로고
    • Pipecolic acid in microbes: Biosynthetic routes and enzymes
    • He, M., Pipecolic acid in microbes: Biosynthetic routes and enzymes. J. Ind. Microbiol. Biotechnol. 2006, 33, 401–407.
    • (2006) J. Ind. Microbiol. Biotechnol. , vol.33 , pp. 401-407
    • He, M.1
  • 3
    • 84888861189 scopus 로고    scopus 로고
    • Significance of the natural occurrence of L- versus D-pipecolic acid: A review
    • Vranova, V., Lojkova, L., Rejsek, K., Formanek, P., Significance of the natural occurrence of L- versus D-pipecolic acid: A review. Chirality 2013, 25, 823–831.
    • (2013) Chirality , vol.25 , pp. 823-831
    • Vranova, V.1    Lojkova, L.2    Rejsek, K.3    Formanek, P.4
  • 4
    • 84957812129 scopus 로고    scopus 로고
    • Pipecolic acid orchestrates plant systemic acquired resistance and defense priming via salicylic acid-dependent and -independent pathways
    • Bernsdorff, F., Döring, A.-C., Gruner, K., Schuck, S. et al., Pipecolic acid orchestrates plant systemic acquired resistance and defense priming via salicylic acid-dependent and -independent pathways. Plant Cell 2016, 28, 102–129.
    • (2016) Plant Cell , vol.28 , pp. 102-129
    • Bernsdorff, F.1    Döring, A.-C.2    Gruner, K.3    Schuck, S.4
  • 5
    • 84873025578 scopus 로고    scopus 로고
    • Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity
    • Návarová, H., Bernsdorff, F., Döring, A.-C., Zeier, J., Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell 2012, 24, 5123–5141.
    • (2012) Plant Cell , vol.24 , pp. 5123-5141
    • Návarová, H.1    Bernsdorff, F.2    Döring, A.-C.3    Zeier, J.4
  • 6
    • 2642591970 scopus 로고    scopus 로고
    • Mutational Biosynthesis of Novel Rapamycins by a Strain of Streptomyces hygroscopicus NRRL 5491 Disrupted in rapL, Encoding a Putative Lysine Cyclodeaminase
    • Khaw, L. E., Böhm, G. A., Metcalfe, S., Staunton, J., Leadlay, P. F., Mutational Biosynthesis of Novel Rapamycins by a Strain of Streptomyces hygroscopicus NRRL 5491 Disrupted in rapL, Encoding a Putative Lysine Cyclodeaminase. J. Bacteriol. 1998, 180, 809–814.
    • (1998) J. Bacteriol. , vol.180 , pp. 809-814
    • Khaw, L.E.1    Böhm, G.A.2    Metcalfe, S.3    Staunton, J.4    Leadlay, P.F.5
  • 7
    • 0025873287 scopus 로고
    • Biosynthesis of the immunosuppressant immunomycin: The enzymology of pipecolate incorporation
    • Nielsen, J. B., Hsu, M. J., Byrne, K. M., Kaplan, L., Biosynthesis of the immunosuppressant immunomycin: The enzymology of pipecolate incorporation. Biochemistry (Mosc.) 1991, 30, 5789–5796.
    • (1991) Biochemistry (Mosc.) , vol.30 , pp. 5789-5796
    • Nielsen, J.B.1    Hsu, M.J.2    Byrne, K.M.3    Kaplan, L.4
  • 8
    • 0032969622 scopus 로고    scopus 로고
    • Asymmetric syntheses of pipecolic acid and derivatives
    • Couty, F., Asymmetric syntheses of pipecolic acid and derivatives. Amino Acids 1999, 16, 297–320.
    • (1999) Amino Acids , vol.16 , pp. 297-320
    • Couty, F.1
  • 9
    • 34247611865 scopus 로고    scopus 로고
    • Biochemical characterisation of recombinant Streptomyces pristinaespiralis L-lysine cyclodeaminase
    • Tsotsou, G. E., Barbirato, F., Biochemical characterisation of recombinant Streptomyces pristinaespiralis L-lysine cyclodeaminase. Biochimie 2007, 89, 591–604.
    • (2007) Biochimie , vol.89 , pp. 591-604
    • Tsotsou, G.E.1    Barbirato, F.2
  • 10
    • 84982920103 scopus 로고    scopus 로고
    • Heterologous production of L-pipecolic acid in Corynebacterium glutamicum
    • Wagner, N., Steinkämper, A., Biener, R., Schwartz, D., Heterologous production of L-pipecolic acid in Corynebacterium glutamicum. J. Biotechnol. 2010, 150 Suppl., 400.
    • (2010) J. Biotechnol. , vol.150
    • Wagner, N.1    Steinkämper, A.2    Biener, R.3    Schwartz, D.4
  • 11
    • 0015217762 scopus 로고
    • Metabolism of basic amino acids in Pseudomonas putida. Catabolism of lysine by cyclic and acyclic intermediates
    • Miller, D. L., Rodwell, V. W., Metabolism of basic amino acids in Pseudomonas putida. Catabolism of lysine by cyclic and acyclic intermediates. J. Biol. Chem. 1971, 246, 2758–2764.
    • (1971) J. Biol. Chem. , vol.246 , pp. 2758-2764
    • Miller, D.L.1    Rodwell, V.W.2
  • 12
    • 0024676699 scopus 로고
    • Properties of L-lysine epsilon-dehydrogenase from Agrobacterium tumefaciens
    • Misono, H., Hashimoto, H., Uehigashi, H., Nagata, S., Nagasaki, S., Properties of L-lysine epsilon-dehydrogenase from Agrobacterium tumefaciens. J. Biochem. 1989, 105, 1002–1008.
    • (1989) J. Biochem. , vol.105 , pp. 1002-1008
    • Misono, H.1    Hashimoto, H.2    Uehigashi, H.3    Nagata, S.4    Nagasaki, S.5
  • 13
    • 84888199832 scopus 로고    scopus 로고
    • Genome-wide analysis of lysine catabolism in bacteria reveals new connections with osmotic stress resistance
    • Neshich, I. A. P., Kiyota, E., Arruda, P., Genome-wide analysis of lysine catabolism in bacteria reveals new connections with osmotic stress resistance. ISME J. 2013, 7, 2400–2410.
    • (2013) ISME J. , vol.7 , pp. 2400-2410
    • Neshich, I.A.P.1    Kiyota, E.2    Arruda, P.3
  • 14
    • 0025118253 scopus 로고
    • Pipecolic acid biosynthesis in Rhizoctonia leguminicola. I. The lysine saccharopine, delta 1-piperideine-6-carboxylic acid pathway
    • Wickwire, B. M., Harris, C. M., Harris, T. M., Broquist, H. P., Pipecolic acid biosynthesis in Rhizoctonia leguminicola. I. The lysine saccharopine, delta 1-piperideine-6-carboxylic acid pathway. J. Biol. Chem. 1990, 265, 14742–14747.
    • (1990) J. Biol. Chem. , vol.265 , pp. 14742-14747
    • Wickwire, B.M.1    Harris, C.M.2    Harris, T.M.3    Broquist, H.P.4
  • 15
    • 84976260230 scopus 로고    scopus 로고
    • Engineering Corynebacterium glutamicum for fast production of L-lysine and L-pipecolic acid
    • Pérez-García, F., Peters-Wendisch, P., Wendisch, V. F., Engineering Corynebacterium glutamicum for fast production of L-lysine and L-pipecolic acid. Appl. Microbiol. Biotechnol. 2016, 100, 8075–8090.
    • (2016) Appl. Microbiol. Biotechnol. , vol.100 , pp. 8075-8090
    • Pérez-García, F.1    Peters-Wendisch, P.2    Wendisch, V.F.3
  • 17
    • 84966708853 scopus 로고    scopus 로고
    • Recent advances in amino acid production by microbial cells
    • Hirasawa, T., Shimizu, H., Recent advances in amino acid production by microbial cells. Curr. Opin. Biotechnol. 2016, 42, 133–146.
    • (2016) Curr. Opin. Biotechnol. , vol.42 , pp. 133-146
    • Hirasawa, T.1    Shimizu, H.2
  • 18
    • 84884542512 scopus 로고    scopus 로고
    • Current topics in the biotechnological production of essential amino acids, functional amino acids, and dipeptides
    • Mitsuhashi, S., Current topics in the biotechnological production of essential amino acids, functional amino acids, and dipeptides. Curr. Opin. Biotechnol. 2014, 26, 38–44.
    • (2014) Curr. Opin. Biotechnol. , vol.26 , pp. 38-44
    • Mitsuhashi, S.1
  • 19
    • 0034130090 scopus 로고    scopus 로고
    • Environmentally directed mutations and their impact on industrial biotransformation and fermentation processes
    • Zelder, O., Hauer, B., Environmentally directed mutations and their impact on industrial biotransformation and fermentation processes. Curr. Opin. Microbiol. 2000, 3, 248–251.
    • (2000) Curr. Opin. Microbiol. , vol.3 , pp. 248-251
    • Zelder, O.1    Hauer, B.2
  • 20
    • 84861434998 scopus 로고    scopus 로고
    • A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level
    • Binder, S., Schendzielorz, G., Stäbler, N., Krumbach, K. et al., A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biol. 2012, 13, R40.
    • (2012) Genome Biol. , vol.13 , pp. R40
    • Binder, S.1    Schendzielorz, G.2    Stäbler, N.3    Krumbach, K.4
  • 21
    • 84880200801 scopus 로고    scopus 로고
    • Recombineering in Corynebacterium glutamicum combined with optical nanosensors: A general strategy for fast producer strain generation
    • Binder, S., Siedler, S., Marienhagen, J., Bott, M. et al., Recombineering in Corynebacterium glutamicum combined with optical nanosensors: A general strategy for fast producer strain generation. Nucleic Acids Res. 2013, 41, 6360–6369.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 6360-6369
    • Binder, S.1    Siedler, S.2    Marienhagen, J.3    Bott, M.4
  • 22
    • 84923868543 scopus 로고    scopus 로고
    • Advanced biotechnology: Metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products
    • Becker, J., Wittmann, C., Advanced biotechnology: Metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products. Angew. Chem. Int. Ed Engl. 2015, 54, 3328–3350.
    • (2015) Angew. Chem. Int. Ed Engl. , vol.54 , pp. 3328-3350
    • Becker, J.1    Wittmann, C.2
  • 23
    • 34047254473 scopus 로고    scopus 로고
    • Systems biology for industrial strains and fermentation processes--example: Amino acids
    • Takors, R., Bathe, B., Rieping, M., Hans, S. et al., Systems biology for industrial strains and fermentation processes--example: Amino acids. J. Biotechnol. 2007, 129, 181–190.
    • (2007) J. Biotechnol. , vol.129 , pp. 181-190
    • Takors, R.1    Bathe, B.2    Rieping, M.3    Hans, S.4
  • 24
    • 33745013345 scopus 로고    scopus 로고
    • A genome-based approach to create a minimally mutated Corynebacterium glutamicum strain for efficient L-lysine production
    • Ikeda, M., Ohnishi, J., Hayashi, M., Mitsuhashi, S., A genome-based approach to create a minimally mutated Corynebacterium glutamicum strain for efficient L-lysine production. J. Ind. Microbiol. Biotechnol. 2006, 33, 610–615.
    • (2006) J. Ind. Microbiol. Biotechnol. , vol.33 , pp. 610-615
    • Ikeda, M.1    Ohnishi, J.2    Hayashi, M.3    Mitsuhashi, S.4
  • 25
    • 84922663277 scopus 로고    scopus 로고
    • Chassis organism from Corynebacterium glutamicum – a top-down approach to identify and delete irrelevant gene clusters
    • Unthan, S., Baumgart, M., Radek, A., Herbst, M. et al., Chassis organism from Corynebacterium glutamicum – a top-down approach to identify and delete irrelevant gene clusters. Biotechnol. J. 2015, 10, 290–301.
    • (2015) Biotechnol. J. , vol.10 , pp. 290-301
    • Unthan, S.1    Baumgart, M.2    Radek, A.3    Herbst, M.4
  • 26
    • 84973136613 scopus 로고    scopus 로고
    • Corynebacterium glutamicum Metabolic Engineering with CRISPR Interference (CRISPRi)
    • Cleto, S., Jensen, J. V., Wendisch, V. F., Lu, T. K., Corynebacterium glutamicum Metabolic Engineering with CRISPR Interference (CRISPRi). ACS Synth. Biol. 2016, 5, 375–385.
    • (2016) ACS Synth. Biol. , vol.5 , pp. 375-385
    • Cleto, S.1    Jensen, J.V.2    Wendisch, V.F.3    Lu, T.K.4
  • 27
    • 77952889716 scopus 로고    scopus 로고
    • Carbohydrate metabolism in Corynebacterium glutamicum and applications for the metabolic engineering of L-lysine production strains
    • Blombach, B., Seibold, G. M., Carbohydrate metabolism in Corynebacterium glutamicum and applications for the metabolic engineering of L-lysine production strains. Appl. Microbiol. Biotechnol. 2010, 86, 1313–1322.
    • (2010) Appl. Microbiol. Biotechnol. , vol.86 , pp. 1313-1322
    • Blombach, B.1    Seibold, G.M.2
  • 28
    • 85022142832 scopus 로고    scopus 로고
    • Corynebacteria: Genomics and Molecular Biology
    • Burkovski, A., Corynebacteria: Genomics and Molecular Biology, Horizon Scientific Press 2008.
    • (2008) Horizon Scientific Press
    • Burkovski, A.1
  • 29
    • 63449129066 scopus 로고    scopus 로고
    • Identification and characterization of a bacterial transport system for the uptake of pyruvate, propionate, and acetate in Corynebacterium glutamicum
    • Jolkver, E., Emer, D., Ballan, S., Krämer, R. et al., Identification and characterization of a bacterial transport system for the uptake of pyruvate, propionate, and acetate in Corynebacterium glutamicum. J. Bacteriol. 2009, 191, 940–948.
    • (2009) J. Bacteriol. , vol.191 , pp. 940-948
    • Jolkver, E.1    Emer, D.2    Ballan, S.3    Krämer, R.4
  • 30
    • 0031967783 scopus 로고    scopus 로고
    • Pyruvate carboxylase from Corynebacterium glutamicum: Characterization, expression and inactivation of the pyc gene
    • Peters-Wendisch, P. G., Kreutzer, C., Kalinowski, J., Pátek, M. et al., Pyruvate carboxylase from Corynebacterium glutamicum: Characterization, expression and inactivation of the pyc gene. Microbiol. Read. Engl. 1998, 144, 915–927.
    • (1998) Microbiol. Read. Engl. , vol.144 , pp. 915-927
    • Peters-Wendisch, P.G.1    Kreutzer, C.2    Kalinowski, J.3    Pátek, M.4
  • 31
    • 79952572494 scopus 로고    scopus 로고
    • Identification of mannose uptake and catabolism genes in Corynebacterium glutamicum and genetic engineering for simultaneous utilization of mannose and glucose
    • Sasaki, M., Teramoto, H., Inui, M., Yukawa, H., Identification of mannose uptake and catabolism genes in Corynebacterium glutamicum and genetic engineering for simultaneous utilization of mannose and glucose. Appl. Microbiol. Biotechnol. 2010, 89, 1905–1916.
    • (2010) Appl. Microbiol. Biotechnol. , vol.89 , pp. 1905-1916
    • Sasaki, M.1    Teramoto, H.2    Inui, M.3    Yukawa, H.4
  • 32
    • 82355173361 scopus 로고    scopus 로고
    • Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum
    • Gopinath, V., Meiswinkel, T. M., Wendisch, V. F., Nampoothiri, K. M., Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 2011, 92, 985–996.
    • (2011) Appl. Microbiol. Biotechnol. , vol.92 , pp. 985-996
    • Gopinath, V.1    Meiswinkel, T.M.2    Wendisch, V.F.3    Nampoothiri, K.M.4
  • 33
    • 84903817399 scopus 로고    scopus 로고
    • Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine
    • Matano, C., Uhde, A., Youn, J.-W., Maeda, T. et al., Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine. Appl. Microbiol. Biotechnol. 2014, 98, 5633–5643.
    • (2014) Appl. Microbiol. Biotechnol. , vol.98 , pp. 5633-5643
    • Matano, C.1    Uhde, A.2    Youn, J.-W.3    Maeda, T.4
  • 34
    • 54949135760 scopus 로고    scopus 로고
    • Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum
    • Rittmann, D., Lindner, S. N., Wendisch, V. F., Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum. Appl. Environ. Microbiol. 2008, 74, 6216–6222.
    • (2008) Appl. Environ. Microbiol. , vol.74 , pp. 6216-6222
    • Rittmann, D.1    Lindner, S.N.2    Wendisch, V.F.3
  • 35
    • 79958698899 scopus 로고    scopus 로고
    • Production of the amino acids l-glutamate, l-lysine, l-ornithine and l-arginine from arabinose by recombinant Corynebacterium glutamicum
    • Schneider, J., Niermann, K., Wendisch, V. F., Production of the amino acids l-glutamate, l-lysine, l-ornithine and l-arginine from arabinose by recombinant Corynebacterium glutamicum. J. Biotechnol. 2011, 154, 191–198.
    • (2011) J. Biotechnol. , vol.154 , pp. 191-198
    • Schneider, J.1    Niermann, K.2    Wendisch, V.F.3
  • 36
    • 33745210153 scopus 로고    scopus 로고
    • Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: Growth and lysine production
    • Seibold, G., Auchter, M., Berens, S., Kalinowski, J., Eikmanns, B. J., Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: Growth and lysine production. J. Biotechnol. 2006, 124, 381–391.
    • (2006) J. Biotechnol. , vol.124 , pp. 381-391
    • Seibold, G.1    Auchter, M.2    Berens, S.3    Kalinowski, J.4    Eikmanns, B.J.5
  • 37
    • 84874368092 scopus 로고    scopus 로고
    • Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum. Appl
    • Uhde, A., Youn, J.-W., Maeda, T., Clermont, L. et al., Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 2013, 97, 1679–1687.
    • (2013) Microbiol. Biotechnol. , vol.97 , pp. 1679-1687
    • Uhde, A.1    Youn, J.-W.2    Maeda, T.3    Clermont, L.4
  • 38
    • 84891435015 scopus 로고    scopus 로고
    • Direct production of organic acids from starch by cell surface-engineered Corynebacterium glutamicum in anaerobic conditions
    • Tsuge, Y., Tateno, T., Sasaki, K., Hasunuma, T. et al., Direct production of organic acids from starch by cell surface-engineered Corynebacterium glutamicum in anaerobic conditions. AMB Express 2013, 3, 72.
    • (2013) AMB Express , vol.3 , pp. 72
    • Tsuge, Y.1    Tateno, T.2    Sasaki, K.3    Hasunuma, T.4
  • 39
    • 84938950996 scopus 로고    scopus 로고
    • Engineering microbial cell factories: Metabolic engineering of Corynebacterium glutamicum with a focus on non-natural products
    • Heider, S. A. E., Wendisch, V. F., Engineering microbial cell factories: Metabolic engineering of Corynebacterium glutamicum with a focus on non-natural products. Biotechnol. J. 2015, 10, 1170–1184.
    • (2015) Biotechnol. J. , vol.10 , pp. 1170-1184
    • Heider, S.A.E.1    Wendisch, V.F.2
  • 40
    • 84902096405 scopus 로고    scopus 로고
    • Microbial production of amino acids and derived chemicals: Synthetic biology approaches to strain development
    • Wendisch, V. F., Microbial production of amino acids and derived chemicals: Synthetic biology approaches to strain development. Curr. Opin. Biotechnol. 2014, 30, 51–58.
    • (2014) Curr. Opin. Biotechnol. , vol.30 , pp. 51-58
    • Wendisch, V.F.1
  • 41
    • 84905366023 scopus 로고    scopus 로고
    • From zero to hero - production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum
    • Kind, S., Neubauer, S., Becker, J., Yamamoto, M. et al., From zero to hero - production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum. Metab. Eng. 2014, 25, 113–123.
    • (2014) Metab. Eng. , vol.25 , pp. 113-123
    • Kind, S.1    Neubauer, S.2    Becker, J.3    Yamamoto, M.4
  • 43
    • 84939261206 scopus 로고    scopus 로고
    • Construction of Synthetic Promoter-Based Expression Cassettes for the Production of Cadaverine in Recombinant Corynebacterium glutamicum
    • Oh, Y. H., Choi, J. W., Kim, E. Y., Song, B. K. et al., Construction of Synthetic Promoter-Based Expression Cassettes for the Production of Cadaverine in Recombinant Corynebacterium glutamicum. Appl. Biochem. Biotechnol. 2015, 176, 2065–2075.
    • (2015) Appl. Biochem. Biotechnol. , vol.176 , pp. 2065-2075
    • Oh, Y.H.1    Choi, J.W.2    Kim, E.Y.3    Song, B.K.4
  • 44
    • 84877579559 scopus 로고    scopus 로고
    • Systems metabolic engineering for the production of bio-nylon precursor
    • Shimizu, H., Systems metabolic engineering for the production of bio-nylon precursor. Biotechnol. J. 2013, 8, 513–514.
    • (2013) Biotechnol. J. , vol.8 , pp. 513-514
    • Shimizu, H.1
  • 45
    • 84872156620 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals
    • Park, S. J., Kim, E. Y., Noh, W., Park, H. M. et al., Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals. Metab. Eng. 2013, 16, 42–47.
    • (2013) Metab. Eng. , vol.16 , pp. 42-47
    • Park, S.J.1    Kim, E.Y.2    Noh, W.3    Park, H.M.4
  • 46
    • 84987600813 scopus 로고    scopus 로고
    • Systems metabolic engineering of Corynebacterium glutamicum for the production of the carbon-5 platform chemicals 5-aminovalerate and glutarate
    • Rohles, C. M., Gießelmann, G., Kohlstedt, M., Wittmann, C., Becker, J., Systems metabolic engineering of Corynebacterium glutamicum for the production of the carbon-5 platform chemicals 5-aminovalerate and glutarate. Microb. Cell Fact. 2016, 15, 154.
    • (2016) Microb. Cell Fact. , vol.15 , pp. 154
    • Rohles, C.M.1    Gießelmann, G.2    Kohlstedt, M.3    Wittmann, C.4    Becker, J.5
  • 47
    • 0020959710 scopus 로고
    • Studies on transformation of Escherichia coli with plasmids
    • Hanahan, D., Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 1983, 166, 557–580.
    • (1983) J. Mol. Biol. , vol.166 , pp. 557-580
    • Hanahan, D.1
  • 49
    • 0035079744 scopus 로고    scopus 로고
    • Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum
    • Peters-Wendisch, P. G., Schiel, B., Wendisch, V. F., Katsoulidis, E. et al., Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. J. Mol. Microbiol. Biotechnol. 2001, 3, 295–300.
    • (2001) J. Mol. Microbiol. Biotechnol. , vol.3 , pp. 295-300
    • Peters-Wendisch, P.G.1    Schiel, B.2    Wendisch, V.F.3    Katsoulidis, E.4
  • 50
    • 26844512792 scopus 로고    scopus 로고
    • Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production
    • Stansen, C., Uy, D., Delaunay, S., Eggeling, L. et al., Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Appl. Environ. Microbiol. 2005, 71, 5920–5928.
    • (2005) Appl. Environ. Microbiol. , vol.71 , pp. 5920-5928
    • Stansen, C.1    Uy, D.2    Delaunay, S.3    Eggeling, L.4
  • 51
    • 0041429497 scopus 로고    scopus 로고
    • Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum
    • Kirchner, O., Tauch, A., Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum. J. Biotechnol. 2003, 104, 287–299.
    • (2003) J. Biotechnol. , vol.104 , pp. 287-299
    • Kirchner, O.1    Tauch, A.2
  • 53
    • 79957471219 scopus 로고    scopus 로고
    • Enzymatic assembly of overlapping DNA fragments
    • Gibson, D. G., Enzymatic assembly of overlapping DNA fragments. Methods Enzymol. 2011, 498, 349–361.
    • (2011) Methods Enzymol. , vol.498 , pp. 349-361
    • Gibson, D.G.1
  • 54
    • 0141921885 scopus 로고    scopus 로고
    • Fructose-1,6-bisphosphatase from Corynebacterium glutamicum: Expression and deletion of the fbp gene and biochemical characterization of the enzyme
    • Rittmann, D., Schaffer, S., Wendisch, V. F., Sahm, H., Fructose-1,6-bisphosphatase from Corynebacterium glutamicum: Expression and deletion of the fbp gene and biochemical characterization of the enzyme. Arch. Microbiol. 2003 180, 285–292.
    • (2003) Arch. Microbiol. , vol.180 , pp. 285-292
    • Rittmann, D.1    Schaffer, S.2    Wendisch, V.F.3    Sahm, H.4
  • 55
    • 0029818343 scopus 로고    scopus 로고
    • A new type of transporter with a new type of cellular function: L-lysine export from Corynebacterium glutamicum
    • Vrljic, M., Sahm, H., Eggeling, L., A new type of transporter with a new type of cellular function: L-lysine export from Corynebacterium glutamicum. Mol. Microbiol. 1996, 22, 815–826.
    • (1996) Mol. Microbiol. , vol.22 , pp. 815-826
    • Vrljic, M.1    Sahm, H.2    Eggeling, L.3
  • 56
    • 34247863848 scopus 로고    scopus 로고
    • The DeoR-type regulator SugR represses expression of ptsG in Corynebacterium glutamicum
    • Engels, V., Wendisch, V. F., The DeoR-type regulator SugR represses expression of ptsG in Corynebacterium glutamicum. J. Bacteriol. 2007, 189, 2955–2966.
    • (2007) J. Bacteriol. , vol.189 , pp. 2955-2966
    • Engels, V.1    Wendisch, V.F.2
  • 57
    • 84999828451 scopus 로고    scopus 로고
    • Transcriptome and multivariable data analysis of Corynebacterium glutamicum under different dissolved oxygen conditions in bioreactors
    • Sun, Y., Guo, W., Wang, F., Peng, F. et al., Transcriptome and multivariable data analysis of Corynebacterium glutamicum under different dissolved oxygen conditions in bioreactors. PloS One 2016, 11, e0167156.
    • (2016) PloS One , vol.11
    • Sun, Y.1    Guo, W.2    Wang, F.3    Peng, F.4
  • 58
    • 34249088019 scopus 로고    scopus 로고
    • Sampling for metabolome analysis of microorganisms
    • Bolten, C. J., Kiefer, P., Letisse, F., Portais, J.-C. et al., Sampling for metabolome analysis of microorganisms. Anal. Chem. 2007, 79, 3843–3849.
    • (2007) Anal. Chem. , vol.79 , pp. 3843-3849
    • Bolten, C.J.1    Kiefer, P.2    Letisse, F.3    Portais, J.-C.4
  • 59
    • 79952108763 scopus 로고    scopus 로고
    • Putrescine production by engineered Corynebacterium glutamicum
    • Schneider, J., Wendisch, V. F., Putrescine production by engineered Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 2010, 88, 859–868.
    • (2010) Appl. Microbiol. Biotechnol. , vol.88 , pp. 859-868
    • Schneider, J.1    Wendisch, V.F.2
  • 60
    • 84918519693 scopus 로고    scopus 로고
    • Engineering biotin prototrophic Corynebacterium glutamicum strains for amino acid, diamine and carotenoid production
    • Peters-Wendisch, P., Götker, S., Heider, S. a. E., Komati Reddy, G. et al., Engineering biotin prototrophic Corynebacterium glutamicum strains for amino acid, diamine and carotenoid production. J. Biotechnol. 2014, 192, 346–354.
    • (2014) J. Biotechnol. , vol.192 , pp. 346-354
    • Peters-Wendisch, P.1    Götker, S.2    Heider, S.A.E.3    Komati Reddy, G.4
  • 61
    • 79952106791 scopus 로고    scopus 로고
    • From zero to hero--design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production
    • Becker, J., Zelder, O., Häfner, S., Schröder, H., Wittmann, C., From zero to hero--design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab. Eng. 2011, 13, 159–168.
    • (2011) Metab. Eng. , vol.13 , pp. 159-168
    • Becker, J.1    Zelder, O.2    Häfner, S.3    Schröder, H.4    Wittmann, C.5
  • 62
    • 84883455148 scopus 로고    scopus 로고
    • Thick juice-based production of amino acids and putrescine by Corynebacterium glutamicum
    • Meiswinkel, T., Thick juice-based production of amino acids and putrescine by Corynebacterium glutamicum. J. Biotechnol. Biomater. 2014, 04, 254–258.
    • (2014) J. Biotechnol. Biomater. , vol.4 , pp. 254-258
    • Meiswinkel, T.1
  • 63
    • 84976291671 scopus 로고    scopus 로고
    • Roles of export genes cgmA and lysE for the production of L-arginine and L-citrulline by Corynebacterium glutamicum
    • Lubitz, D., Jorge, J. M. P., Pérez-García, F., Taniguchi, H., Wendisch, V. F., Roles of export genes cgmA and lysE for the production of L-arginine and L-citrulline by Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 2016, 100, 8465–8474.
    • (2016) Appl. Microbiol. Biotechnol. , vol.100 , pp. 8465-8474
    • Lubitz, D.1    Jorge, J.M.P.2    Pérez-García, F.3    Taniguchi, H.4    Wendisch, V.F.5
  • 64
    • 84979256573 scopus 로고    scopus 로고
    • Production of the marine carotenoid astaxanthin by metabolically engineered Corynebacterium glutamicum
    • Henke, N. A., Heider, S. A. E., Peters-Wendisch, P., Wendisch, V. F., Production of the marine carotenoid astaxanthin by metabolically engineered Corynebacterium glutamicum. Mar. Drugs 2016, 14, E124.
    • (2016) Mar. Drugs , vol.14
    • Henke, N.A.1    Heider, S.A.E.2    Peters-Wendisch, P.3    Wendisch, V.F.4
  • 65
    • 84883455148 scopus 로고    scopus 로고
    • Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum
    • Meiswinkel, T. M., Rittmann, D., Lindner, S. N., Wendisch, V. F., Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum. Bioresour. Technol. 2013, 145, 254–258.
    • (2013) Bioresour. Technol. , vol.145 , pp. 254-258
    • Meiswinkel, T.M.1    Rittmann, D.2    Lindner, S.N.3    Wendisch, V.F.4
  • 66
    • 84873979633 scopus 로고    scopus 로고
    • Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine
    • Meiswinkel, T. M., Gopinath, V., Lindner, S. N., Nampoothiri, K. M., Wendisch, V. F., Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine. Microb. Biotechnol. 2013, 6, 131–140.
    • (2013) Microb. Biotechnol. , vol.6 , pp. 131-140
    • Meiswinkel, T.M.1    Gopinath, V.2    Lindner, S.N.3    Nampoothiri, K.M.4    Wendisch, V.F.5
  • 67
    • 84876762221 scopus 로고    scopus 로고
    • Engineering Escherichia coli for renewable production of the 5-carbon polyamide building-blocks 5-aminovalerate and glutarate
    • Adkins, J., Jordan, J., Nielsen, D. R., Engineering Escherichia coli for renewable production of the 5-carbon polyamide building-blocks 5-aminovalerate and glutarate. Biotechnol. Bioeng. 2013, 110, 1726–1734.
    • (2013) Biotechnol. Bioeng. , vol.110 , pp. 1726-1734
    • Adkins, J.1    Jordan, J.2    Nielsen, D.R.3
  • 68
    • 84930505481 scopus 로고    scopus 로고
    • Enhanced conversion of L-lysine to L-pipecolic acid using a recombinant Escherichia coli containing lysine cyclodeaminase as whole-cell biocatalyst
    • Ying, H., Wang, J., Wang, Z., Feng, J., Chen, K., Li, Y., Ouyang, P., Enhanced conversion of L-lysine to L-pipecolic acid using a recombinant Escherichia coli containing lysine cyclodeaminase as whole-cell biocatalyst. J. Mol. Catal. B Enzym. 2015, 117, 75–80.
    • (2015) J. Mol. Catal. B Enzym. , vol.117 , pp. 75-80
    • Ying, H.1    Wang, J.2    Wang, Z.3    Feng, J.4    Chen, K.5    Li, Y.6    Ouyang, P.7
  • 69
    • 0036789272 scopus 로고    scopus 로고
    • Molecular evolution of the lysine biosynthetic pathways
    • Velasco, A. M., Leguina, J. I., Lazcano, A., Molecular evolution of the lysine biosynthetic pathways. J. Mol. Evol. 2002, 55, 445–459.
    • (2002) J. Mol. Evol. , vol.55 , pp. 445-459
    • Velasco, A.M.1    Leguina, J.I.2    Lazcano, A.3
  • 70
    • 84887542598 scopus 로고    scopus 로고
    • Systems metabolic engineering of Corynebacterium glutamicum for production of the chemical chaperone ectoine
    • Becker, J., Schäfer, R., Kohlstedt, M., Harder, B. J. et al., Systems metabolic engineering of Corynebacterium glutamicum for production of the chemical chaperone ectoine. Microb. Cell Factories 2013, 12, 110.
    • (2013) Microb. Cell Factories , vol.12 , pp. 110
    • Becker, J.1    Schäfer, R.2    Kohlstedt, M.3    Harder, B.J.4
  • 71
    • 84998577581 scopus 로고    scopus 로고
    • Improved fermentative production of gamma-aminobutyric acid via the putrescine route: Systems metabolic engineering for production from glucose, amino sugars and xylose
    • Jorge, J. M. P., Nguyen, A. Q. D., Pérez-García, F., Kind, S. et al., Improved fermentative production of gamma-aminobutyric acid via the putrescine route: Systems metabolic engineering for production from glucose, amino sugars and xylose. Biotechnol. Bioeng. 2016, doi: 10.1002/bit.26211.
    • (2016) Biotechnol. Bioeng.
    • Jorge, J.M.P.1    Nguyen, A.Q.D.2    Pérez-García, F.3    Kind, S.4
  • 72
    • 0031763549 scopus 로고    scopus 로고
    • Corynebacterium glutamicum is equipped with four secondary carriers for compatible solutes: Identification, sequencing, and characterization of the proline/ectoine uptake system, ProP, and the ectoine/proline/glycine betaine carrier, EctP
    • Peter, H., Weil, B., Burkovski, A., Krämer, R. et al., Corynebacterium glutamicum is equipped with four secondary carriers for compatible solutes: Identification, sequencing, and characterization of the proline/ectoine uptake system, ProP, and the ectoine/proline/glycine betaine carrier, EctP. J. Bacteriol. 1998, 180, 6005–6012.
    • (1998) J. Bacteriol. , vol.180 , pp. 6005-6012
    • Peter, H.1    Weil, B.2    Burkovski, A.3    Krämer, R.4
  • 73
    • 34548043711 scopus 로고    scopus 로고
    • Characterization of compatible solute transporter multiplicity in Corynebacterium glutamicum
    • Weinand, M., Krämer, R., Morbach, S., Characterization of compatible solute transporter multiplicity in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 2007, 76, 701–708.
    • (2007) Appl. Microbiol. Biotechnol. , vol.76 , pp. 701-708
    • Weinand, M.1    Krämer, R.2    Morbach, S.3
  • 74
    • 84911430684 scopus 로고    scopus 로고
    • Optimization of the IPP precursor supply for the production of lycopene, decaprenoxanthin and astaxanthin by Corynebacterium glutamicum
    • Heider, S. A. E., Wolf, N., Hofemeier, A., Peters-Wendisch, P., Wendisch, V. F., Optimization of the IPP precursor supply for the production of lycopene, decaprenoxanthin and astaxanthin by Corynebacterium glutamicum. Front. Bioeng. Biotechnol. 2014, 2, 28.
    • (2014) Front. Bioeng. Biotechnol. , vol.2 , pp. 28
    • Heider, S.A.E.1    Wolf, N.2    Hofemeier, A.3    Peters-Wendisch, P.4    Wendisch, V.F.5
  • 75
    • 84945891778 scopus 로고    scopus 로고
    • Engineering Corynebacterium glutamicum for the production of 2,3-butanediol
    • Radoš, D., Carvalho, A. L., Wieschalka, S., Neves, A. R. et al., Engineering Corynebacterium glutamicum for the production of 2,3-butanediol. Microb. Cell Fact. 2014, 14, 171.
    • (2014) Microb. Cell Fact. , vol.14 , pp. 171
    • Radoš, D.1    Carvalho, A.L.2    Wieschalka, S.3    Neves, A.R.4
  • 76
    • 0020649604 scopus 로고
    • The tac promoter: A functional hybrid derived from the trp and lac promoters
    • De Boer, H. A., Comstock, L. J., Vasser, M., The tac promoter: A functional hybrid derived from the trp and lac promoters. Proc. Natl. Acad. Sci. USA 1983, 80, 21–25.
    • (1983) Proc. Natl. Acad. Sci. USA , vol.80 , pp. 21-25
    • De Boer, H.A.1    Comstock, L.J.2    Vasser, M.3
  • 77
    • 84868319444 scopus 로고    scopus 로고
    • Design and testing of a synthetic biology framework for genetic engineering of Corynebacterium glutamicum
    • Ravasi, P., Peiru, S., Gramajo, H., Menzella, H. G., Design and testing of a synthetic biology framework for genetic engineering of Corynebacterium glutamicum. Microb. Cell Fact. 2012, 11, 147.
    • (2012) Microb. Cell Fact. , vol.11 , pp. 147
    • Ravasi, P.1    Peiru, S.2    Gramajo, H.3    Menzella, H.G.4
  • 78
    • 0034719260 scopus 로고    scopus 로고
    • Enantioselective syntheses of 2-alkyl- and 2,6-dialkylpiperidine alkaloids: Preparations of the hydrochlorides of (–)-coniine, (–)-solenopsin A, and (–)-dihydropinidine
    • Wilkinson, T. J., Stehle, N. W., Beak, P., Enantioselective syntheses of 2-alkyl- and 2,6-dialkylpiperidine alkaloids: Preparations of the hydrochlorides of (–)-coniine, (–)-solenopsin A, and (–)-dihydropinidine. Org. Lett. 2000, 2, 155–158.
    • (2000) Org. Lett. , vol.2 , pp. 155-158
    • Wilkinson, T.J.1    Stehle, N.W.2    Beak, P.3
  • 79
    • 0030790662 scopus 로고    scopus 로고
    • Preparation of (S)-piperazine-2-carboxylic acid, (R)-piperazine-2-carboxylic acid, and (S)-piperidine-2-carboxylic acid by kinetic resolution of the corresponding racemic carboxamides with stereoselective amidases in whole bacterial cells
    • Eichhorn, E., Roduit, J.-P., Shaw, N., Heinzmann, K. et al., Preparation of (S)-piperazine-2-carboxylic acid, (R)-piperazine-2-carboxylic acid, and (S)-piperidine-2-carboxylic acid by kinetic resolution of the corresponding racemic carboxamides with stereoselective amidases in whole bacterial cells. Tetrahedron Asymmetry 1997, 8, 2533–2536.
    • (1997) Tetrahedron Asymmetry , vol.8 , pp. 2533-2536
    • Eichhorn, E.1    Roduit, J.-P.2    Shaw, N.3    Heinzmann, K.4
  • 80
    • 33645392725 scopus 로고    scopus 로고
    • Biosynthesis of pipecolic acid by RapL, a lysine cyclodeaminase encoded in the rapamycin gene cluster
    • Gatto, G. J., Boyne, M. T., Kelleher, N. L., Walsh, C. T., Biosynthesis of pipecolic acid by RapL, a lysine cyclodeaminase encoded in the rapamycin gene cluster. J. Am. Chem. Soc. 2006, 128, 3838–3847.
    • (2006) J. Am. Chem. Soc. , vol.128 , pp. 3838-3847
    • Gatto, G.J.1    Boyne, M.T.2    Kelleher, N.L.3    Walsh, C.T.4
  • 81
    • 33749004252 scopus 로고    scopus 로고
    • Enzymatic synthesis of L-pipecolic acid by Delta1-piperideine-2-carboxylate reductase from Pseudomonas putida
    • Muramatsu, H., Mihara, H., Yasuda, M., Ueda, M. et al., Enzymatic synthesis of L-pipecolic acid by Delta1-piperideine-2-carboxylate reductase from Pseudomonas putida. Biosci. Biotechnol. Biochem. 2006, 70, 2296–2298.
    • (2006) Biosci. Biotechnol. Biochem. , vol.70 , pp. 2296-2298
    • Muramatsu, H.1    Mihara, H.2    Yasuda, M.3    Ueda, M.4
  • 82
    • 84917695076 scopus 로고    scopus 로고
    • L-citrulline production by metabolically engineered Corynebacterium glutamicum from glucose and alternative carbon sources
    • Eberhardt, D., Jensen, J. V. K., Wendisch, V. F., L-citrulline production by metabolically engineered Corynebacterium glutamicum from glucose and alternative carbon sources. AMB Express 2014, 4, 85.
    • (2014) AMB Express , vol.4 , pp. 85
    • Eberhardt, D.1    Jensen, J.V.K.2    Wendisch, V.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.