메뉴 건너뛰기




Volumn 114, Issue 4, 2017, Pages 862-873

Improved fermentative production of gamma-aminobutyric acid via the putrescine route: Systems metabolic engineering for production from glucose, amino sugars, and xylose

Author keywords

alternative carbon sources; Corynebacterium glutamicum; GABA production; metabolic engineering; putrescine route; transport engineering

Indexed keywords

AMINO ACIDS; AMINO SUGARS; BIODEGRADABLE POLYMERS; CARBOXYLATION; GENES; GLUCOSAMINE; GLUCOSE; METABOLISM; PRODUCTIVITY; PROTEINS;

EID: 84998577581     PISSN: 00063592     EISSN: 10970290     Source Type: Journal    
DOI: 10.1002/bit.26211     Document Type: Article
Times cited : (63)

References (70)
  • 1
    • 33847207787 scopus 로고    scopus 로고
    • Altered metabolic flux due to deletion of odhA causes L-glutamate overproduction in Corynebacterium glutamicum
    • Asakura Y, Kimura E, Usuda Y, Kawahara Y, Matsui K, Osumi T, Nakamatsu T. 2007. Altered metabolic flux due to deletion of odhA causes L-glutamate overproduction in Corynebacterium glutamicum. Appl Environ Microbiol 73:1308–1319.
    • (2007) Appl Environ Microbiol , vol.73 , pp. 1308-1319
    • Asakura, Y.1    Kimura, E.2    Usuda, Y.3    Kawahara, Y.4    Matsui, K.5    Osumi, T.6    Nakamatsu, T.7
  • 2
    • 79952106791 scopus 로고    scopus 로고
    • From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production
    • Becker J, Zelder O, Hafner S, Schroder H, Wittmann C. 2011. From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab Eng 13:159–168.
    • (2011) Metab Eng , vol.13 , pp. 159-168
    • Becker, J.1    Zelder, O.2    Hafner, S.3    Schroder, H.4    Wittmann, C.5
  • 3
    • 79952150274 scopus 로고    scopus 로고
    • Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose
    • Buschke N, Schroder H, Wittmann C. 2011. Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose. Biotechnol J 6:306–317.
    • (2011) Biotechnol J , vol.6 , pp. 306-317
    • Buschke, N.1    Schroder, H.2    Wittmann, C.3
  • 4
    • 84924194524 scopus 로고    scopus 로고
    • Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum by expressing glutamate decarboxylase active in expanded pH range
    • Choi JW, Yim SS, Lee SH, Kang TJ, Park SJ, Jeong KJ. 2015. Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum by expressing glutamate decarboxylase active in expanded pH range. Microb Cell Fact 14:21.
    • (2015) Microb Cell Fact , vol.14 , pp. 21
    • Choi, J.W.1    Yim, S.S.2    Lee, S.H.3    Kang, T.J.4    Park, S.J.5    Jeong, K.J.6
  • 5
    • 84917695076 scopus 로고    scopus 로고
    • L-citrulline production by metabolically engineered Corynebacterium glutamicum from glucose and alternative carbon sources
    • Eberhardt D, Jensen JV, Wendisch VF. 2014. L-citrulline production by metabolically engineered Corynebacterium glutamicum from glucose and alternative carbon sources. AMB Express 4:85.
    • (2014) AMB Express , vol.4 , pp. 85
    • Eberhardt, D.1    Jensen, J.V.2    Wendisch, V.F.3
  • 7
    • 84949907830 scopus 로고    scopus 로고
    • Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid
    • Feng L, Zhang Y, Fu J, Mao Y, Chen T, Zhao X, Wang Z. 2016. Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid. Biotechnol Bioeng 113:1284–1293.
    • (2016) Biotechnol Bioeng , vol.113 , pp. 1284-1293
    • Feng, L.1    Zhang, Y.2    Fu, J.3    Mao, Y.4    Chen, T.5    Zhao, X.6    Wang, Z.7
  • 10
    • 82355173361 scopus 로고    scopus 로고
    • Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum
    • Gopinath V, Meiswinkel TM, Wendisch VF, Nampoothiri KM. 2011. Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum. Appl Microbiol Biotechnol 92:985–996.
    • (2011) Appl Microbiol Biotechnol , vol.92 , pp. 985-996
    • Gopinath, V.1    Meiswinkel, T.M.2    Wendisch, V.F.3    Nampoothiri, K.M.4
  • 11
    • 0020959710 scopus 로고
    • Studies on transformation of Escherichia coli with plasmids
    • Hanahan D. 1983. Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580.
    • (1983) J Mol Biol , vol.166 , pp. 557-580
    • Hanahan, D.1
  • 12
    • 0028765935 scopus 로고
    • Degradation of several polyamides in soils
    • Hashimoto K, Hamano T, Okada M. 1994. Degradation of several polyamides in soils. J Appl Polym Sci 54:1579–1583.
    • (1994) J Appl Polym Sci , vol.54 , pp. 1579-1583
    • Hashimoto, K.1    Hamano, T.2    Okada, M.3
  • 13
    • 78651092648 scopus 로고    scopus 로고
    • Identification of the membrane protein SucE and its role in succinate transport in Corynebacterium glutamicum
    • Huhn S, Jolkver E, Kramer R, Marin K. 2011. Identification of the membrane protein SucE and its role in succinate transport in Corynebacterium glutamicum. Appl Microbiol Biotechnol 89:327–335.
    • (2011) Appl Microbiol Biotechnol , vol.89 , pp. 327-335
    • Huhn, S.1    Jolkver, E.2    Kramer, R.3    Marin, K.4
  • 14
    • 48649098350 scopus 로고    scopus 로고
    • Effect of increased glutamate availability on L-ornithine production in Corynebacterium glutamicum
    • Hwang JH, Hwang GH, Cho JY. 2008. Effect of increased glutamate availability on L-ornithine production in Corynebacterium glutamicum. J Microbiol Biotechnol 18:704–710.
    • (2008) J Microbiol Biotechnol , vol.18 , pp. 704-710
    • Hwang, J.H.1    Hwang, G.H.2    Cho, J.Y.3
  • 15
    • 33644697115 scopus 로고    scopus 로고
    • The CGL2612 protein from Corynebacterium glutamicum is a drug resistance-related transcriptional repressor: Structural and functional analysis of a newly identified transcription factor from genomic DNA analysis
    • Itou H, Okada U, Suzuki H, Yao M, Wachi M, Watanabe N, Tanaka I. 2005. The CGL2612 protein from Corynebacterium glutamicum is a drug resistance-related transcriptional repressor: Structural and functional analysis of a newly identified transcription factor from genomic DNA analysis. J Biol Chem 280:38711–38719.
    • (2005) J Biol Chem , vol.280 , pp. 38711-38719
    • Itou, H.1    Okada, U.2    Suzuki, H.3    Yao, M.4    Wachi, M.5    Watanabe, N.6    Tanaka, I.7
  • 17
    • 84942521860 scopus 로고    scopus 로고
    • Modular pathway engineering of Corynebacterium glutamicum for production of the glutamate-derived compounds ornithine, proline, putrescine, citrulline, and arginine
    • Jensen JV, Eberhardt D, Wendisch VF. 2015. Modular pathway engineering of Corynebacterium glutamicum for production of the glutamate-derived compounds ornithine, proline, putrescine, citrulline, and arginine. J Biotechnol 214:85–94.
    • (2015) J Biotechnol , vol.214 , pp. 85-94
    • Jensen, J.V.1    Eberhardt, D.2    Wendisch, V.F.3
  • 18
    • 84879426388 scopus 로고    scopus 로고
    • Ornithine cyclodeaminase-based proline production by Corynebacterium glutamicum
    • Jensen JV, Wendisch VF. 2013. Ornithine cyclodeaminase-based proline production by Corynebacterium glutamicum. Microb Cell Fact 12:63.
    • (2013) Microb Cell Fact , vol.12 , pp. 63
    • Jensen, J.V.1    Wendisch, V.F.2
  • 19
    • 77952889404 scopus 로고    scopus 로고
    • Engineering of sugar metabolism of Corynebacterium glutamicum for production of amino acid L-alanine under oxygen deprivation
    • Jojima T, Fujii M, Mori E, Inui M, Yukawa H. 2010. Engineering of sugar metabolism of Corynebacterium glutamicum for production of amino acid L-alanine under oxygen deprivation. Appl Microbiol Biotechnol 87:159–165.
    • (2010) Appl Microbiol Biotechnol , vol.87 , pp. 159-165
    • Jojima, T.1    Fujii, M.2    Mori, E.3    Inui, M.4    Yukawa, H.5
  • 20
    • 84992084086 scopus 로고    scopus 로고
    • A new metabolic route for the production of gamma-aminobutyric acid by Corynebacterium glutamicum from glucose
    • Jorge JM, Leggewie C, Wendisch VF. 2016. A new metabolic route for the production of gamma-aminobutyric acid by Corynebacterium glutamicum from glucose. Amino Acids 48:2519–2531.
    • (2016) Amino Acids , vol.48 , pp. 2519-–2531
    • Jorge, J.M.1    Leggewie, C.2    Wendisch, V.F.3
  • 22
    • 0031178552 scopus 로고    scopus 로고
    • Relationship between the glutamate production and the activity of 2-oxoglutarate dehydrogenase in Brevibacterium lactofermentum
    • Kawahara Y, Takahashi-Fuke K, Shimizu E, Nakamatsu T, Nakamori S. 1997. Relationship between the glutamate production and the activity of 2-oxoglutarate dehydrogenase in Brevibacterium lactofermentum. Biosci Biotechnol Biochem 61:1109–1112.
    • (1997) Biosci Biotechnol Biochem , vol.61 , pp. 1109-1112
    • Kawahara, Y.1    Takahashi-Fuke, K.2    Shimizu, E.3    Nakamatsu, T.4    Nakamori, S.5
  • 23
    • 26844539601 scopus 로고    scopus 로고
    • Synthesis, thermal and mechanical properties and biodegradation of branched polyamide 4
    • Kawasaki N, Nakayama A, Yamano N, Takeda S, Kawata Y, Yamamoto N, Aiba S. 2005. Synthesis, thermal and mechanical properties and biodegradation of branched polyamide 4. Polymer 46:9987–9993.
    • (2005) Polymer , vol.46 , pp. 9987-9993
    • Kawasaki, N.1    Nakayama, A.2    Yamano, N.3    Takeda, S.4    Kawata, Y.5    Yamamoto, N.6    Aiba, S.7
  • 24
    • 0027164654 scopus 로고
    • Isoleucine synthesis in Corynebacterium glutamicum: Molecular analysis of the ilvB-ilvN-ilvC operon
    • Keilhauer C, Eggeling L, Sahm H. 1993. Isoleucine synthesis in Corynebacterium glutamicum: Molecular analysis of the ilvB-ilvN-ilvC operon. J Bacteriol 175:5595–5603.
    • (1993) J Bacteriol , vol.175 , pp. 5595-5603
    • Keilhauer, C.1    Eggeling, L.2    Sahm, H.3
  • 25
    • 84987620027 scopus 로고    scopus 로고
    • L-lysine production
    • In, Eggeling L, Bott M, editors., Boca Raton, FL, CRC Press
    • Kelle R, Hermann T, Bathe B. 2005. L-lysine production. In: Eggeling L, Bott M, editors. Handbook of Corynebacterium glutamicum. Boca Raton, FL: CRC Press. p 465–488.
    • (2005) Handbook of Corynebacterium glutamicum , pp. 465-488
    • Kelle, R.1    Hermann, T.2    Bathe, B.3
  • 26
    • 84924186710 scopus 로고    scopus 로고
    • Increased L-ornithine production in Corynebacterium glutamicum by overexpression of a gene encoding a putative aminotransferase
    • Kim DJ, Hwang GH, Um JN, Cho JY. 2015a. Increased L-ornithine production in Corynebacterium glutamicum by overexpression of a gene encoding a putative aminotransferase. J Mol Microbiol Biotechnol 25:45–50.
    • (2015) J Mol Microbiol Biotechnol , vol.25 , pp. 45-50
    • Kim, D.J.1    Hwang, G.H.2    Um, J.N.3    Cho, J.Y.4
  • 27
    • 77950629342 scopus 로고    scopus 로고
    • Requirement of de novo synthesis of the OdhI protein in penicillin-induced glutamate production by Corynebacterium glutamicum
    • Kim J, Fukuda H, Hirasawa T, Nagahisa K, Nagai K, Wachi M, Shimizu H. 2010. Requirement of de novo synthesis of the OdhI protein in penicillin-induced glutamate production by Corynebacterium glutamicum. Appl Microbiol Biotechnol 86:911–920.
    • (2010) Appl Microbiol Biotechnol , vol.86 , pp. 911-920
    • Kim, J.1    Fukuda, H.2    Hirasawa, T.3    Nagahisa, K.4    Nagai, K.5    Wachi, M.6    Shimizu, H.7
  • 28
    • 84920074788 scopus 로고    scopus 로고
    • Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine
    • Kim SY, Lee J, Lee SY. 2015b. Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine. Biotechnol Bioeng 112:416–421.
    • (2015) Biotechnol Bioeng , vol.112 , pp. 416-421
    • Kim, S.Y.1    Lee, J.2    Lee, S.Y.3
  • 29
    • 80052022244 scopus 로고    scopus 로고
    • Metabolic engineering of cellular transport for overproduction of the platform chemical 1,5-diaminopentane in Corynebacterium glutamicum
    • Kind S, Kreye S, Wittmann C. 2011. Metabolic engineering of cellular transport for overproduction of the platform chemical 1,5-diaminopentane in Corynebacterium glutamicum. Metab Eng 13:617–627.
    • (2011) Metab Eng , vol.13 , pp. 617-627
    • Kind, S.1    Kreye, S.2    Wittmann, C.3
  • 30
    • 84905366023 scopus 로고    scopus 로고
    • From zero to hero—Production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum
    • Kind S, Neubauer S, Becker J, Yamamoto M, Volkert M, Abendroth G, Zelder O, Wittmann C. 2014. From zero to hero—Production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum. Metab Eng 25:113–123.
    • (2014) Metab Eng , vol.25 , pp. 113-123
    • Kind, S.1    Neubauer, S.2    Becker, J.3    Yamamoto, M.4    Volkert, M.5    Abendroth, G.6    Zelder, O.7    Wittmann, C.8
  • 31
    • 78449276921 scopus 로고    scopus 로고
    • Lactic acid bacterial cell factories for gamma-aminobutyric acid
    • Li H, Cao Y. 2010. Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids 39:1107–1116.
    • (2010) Amino Acids , vol.39 , pp. 1107-1116
    • Li, H.1    Cao, Y.2
  • 32
    • 84976291671 scopus 로고    scopus 로고
    • Roles of export genes cgmA and lysE for the production of L-arginine and L-citrulline by Corynebacterium glutamicum
    • Lubitz D, Jorge JM, Perez-Garcia F, Taniguchi H, Wendisch VF. 2016. Roles of export genes cgmA and lysE for the production of L-arginine and L-citrulline by Corynebacterium glutamicum. Appl Microbiol Biotechnol 100:8465–8474.
    • (2016) Appl Microbiol Biotechnol , vol.100 , pp. 8465-–8474
    • Lubitz, D.1    Jorge, J.M.2    Perez-Garcia, F.3    Taniguchi, H.4    Wendisch, V.F.5
  • 33
    • 84991694310 scopus 로고    scopus 로고
    • Ciprofloxacin triggered glutamate production by Corynebacterium glutamicum
    • Lubitz D, Wendisch VF. 2016. Ciprofloxacin triggered glutamate production by Corynebacterium glutamicum. BMC Microbiol 16:235.
    • (2016) BMC Microbiol , vol.16 , pp. 235
    • Lubitz, D.1    Wendisch, V.F.2
  • 34
    • 70350467290 scopus 로고    scopus 로고
    • Amino acid transport systems in biotechnologically relevant bacteria
    • In, Wendisch V, editor., vol, Heidelberg, Springer, Microbiology Monograph
    • Marin K, Krämer R. 2007. Amino acid transport systems in biotechnologically relevant bacteria. In: Wendisch V, editor. Amino acid biosynthesis—Pathways, regulation and metabolic engineering, vol 4. Heidelberg: Springer, Microbiology Monographs.
    • (2007) Amino acid biosynthesis—Pathways, regulation and metabolic engineering , vol.4
    • Marin, K.1    Krämer, R.2
  • 36
    • 84873979633 scopus 로고    scopus 로고
    • Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine
    • Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF. 2013. Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine. Microb Biotechnol 6:131–140.
    • (2013) Microb Biotechnol , vol.6 , pp. 131-140
    • Meiswinkel, T.M.1    Gopinath, V.2    Lindner, S.N.3    Nampoothiri, K.M.4    Wendisch, V.F.5
  • 37
    • 34547211797 scopus 로고    scopus 로고
    • Mutations of the Corynebacterium glutamicum NCgl1221 gene, encoding a mechanosensitive channel homolog, induce L-glutamic acid production
    • Nakamura J, Hirano S, Ito H, Wachi M. 2007. Mutations of the Corynebacterium glutamicum NCgl1221 gene, encoding a mechanosensitive channel homolog, induce L-glutamic acid production. Appl Environ Microbiol 73:4491–4498.
    • (2007) Appl Environ Microbiol , vol.73 , pp. 4491-4498
    • Nakamura, J.1    Hirano, S.2    Ito, H.3    Wachi, M.4
  • 38
    • 85008054223 scopus 로고
    • Effect of penicillin on amino acid fermentation
    • Nara T, Kinoshita S, Samejima H. 1964. Effect of penicillin on amino acid fermentation. Agric Biol Chem 28:120–122.
    • (1964) Agric Biol Chem , vol.28 , pp. 120-–122
    • Nara, T.1    Kinoshita, S.2    Samejima, H.3
  • 39
    • 8644278779 scopus 로고    scopus 로고
    • Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis
    • Netzer R, Krause M, Rittmann D, Peters-Wendisch PG, Eggeling L, Wendisch VF, Sahm H. 2004. Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis. Arch Microbiol 182:354–363.
    • (2004) Arch Microbiol , vol.182 , pp. 354-363
    • Netzer, R.1    Krause, M.2    Rittmann, D.3    Peters-Wendisch, P.G.4    Eggeling, L.5    Wendisch, V.F.6    Sahm, H.7
  • 40
    • 85016910499 scopus 로고    scopus 로고
    • Fermentative production of the diamine putrescine: System metabolic engineering of Corynebacterium glutamicum
    • Nguyen AQ, Schneider J, Reddy GK, Wendisch VF. 2015a. Fermentative production of the diamine putrescine: System metabolic engineering of Corynebacterium glutamicum. Metabolites 5:211–231.
    • (2015) Metabolites , vol.5 , pp. 211-231
    • Nguyen, A.Q.1    Schneider, J.2    Reddy, G.K.3    Wendisch, V.F.4
  • 41
    • 84964267383 scopus 로고    scopus 로고
    • Elimination of polyamine N-acetylation and regulatory engineering improved putrescine production by Corynebacterium glutamicum
    • Nguyen AQ, Schneider J, Wendisch VF. 2015b. Elimination of polyamine N-acetylation and regulatory engineering improved putrescine production by Corynebacterium glutamicum. J Biotechnol 201:75–85.
    • (2015) J Biotechnol , vol.201 , pp. 75-85
    • Nguyen, A.Q.1    Schneider, J.2    Wendisch, V.F.3
  • 42
    • 0035041240 scopus 로고    scopus 로고
    • Molecular analysis of the cytochrome bc1-aa3 branch of the Corynebacterium glutamicum respiratory chain containing an unusual diheme cytochrome c1
    • Niebisch A, Bott M. 2001. Molecular analysis of the cytochrome bc1-aa3 branch of the Corynebacterium glutamicum respiratory chain containing an unusual diheme cytochrome c1. Arch Microbiol 175:282–294.
    • (2001) Arch Microbiol , vol.175 , pp. 282-294
    • Niebisch, A.1    Bott, M.2
  • 43
    • 84897119619 scopus 로고    scopus 로고
    • Disruption of pknG enhances production of gamma-aminobutyric acid by Corynebacterium glutamicum expressing glutamate decarboxylase
    • Okai N, Takahashi C, Hatada K, Ogino C, Kondo A. 2014. Disruption of pknG enhances production of gamma-aminobutyric acid by Corynebacterium glutamicum expressing glutamate decarboxylase. AMB Express 4:20.
    • (2014) AMB Express , vol.4 , pp. 20
    • Okai, N.1    Takahashi, C.2    Hatada, K.3    Ogino, C.4    Kondo, A.5
  • 44
    • 84907362164 scopus 로고    scopus 로고
    • Metabolic engineering of Corynebacterium glutamicum for L-arginine production
    • Park SH, Kim HU, Kim TY, Park JS, Kim SS, Lee SY. 2014. Metabolic engineering of Corynebacterium glutamicum for L-arginine production. Nat Commun 5:4618.
    • (2014) Nat Commun , vol.5 , pp. 4618
    • Park, S.H.1    Kim, H.U.2    Kim, T.Y.3    Park, J.S.4    Kim, S.S.5    Lee, S.Y.6
  • 47
    • 34347397789 scopus 로고    scopus 로고
    • Characterization of citrate utilization in Corynebacterium glutamicum by transcriptome and proteome analysis
    • Polen T, Schluesener D, Poetsch A, Bott M, Wendisch VF. 2007. Characterization of citrate utilization in Corynebacterium glutamicum by transcriptome and proteome analysis. FEMS Microbiol Lett 273:109–119.
    • (2007) FEMS Microbiol Lett , vol.273 , pp. 109-119
    • Polen, T.1    Schluesener, D.2    Poetsch, A.3    Bott, M.4    Wendisch, V.F.5
  • 48
    • 70350508288 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the production of putrescine: A four carbon diamine
    • Qian ZG, Xia XX, Lee SY. 2009. Metabolic engineering of Escherichia coli for the production of putrescine: A four carbon diamine. Biotechnol Bioeng 104:651–662.
    • (2009) Biotechnol Bioeng , vol.104 , pp. 651-662
    • Qian, Z.G.1    Xia, X.X.2    Lee, S.Y.3
  • 49
    • 84939824310 scopus 로고    scopus 로고
    • 5-Aminolevulinic acid production in engineered Corynebacterium glutamicum via C5 biosynthesis pathway
    • Ramzi AB, Hyeon JE, Kim SW, Park C, Han SO. 2015. 5-Aminolevulinic acid production in engineered Corynebacterium glutamicum via C5 biosynthesis pathway. Enzyme Microb Technol 81:1–7.
    • (2015) Enzyme Microb Technol , vol.81 , pp. 1-7
    • Ramzi, A.B.1    Hyeon, J.E.2    Kim, S.W.3    Park, C.4    Han, S.O.5
  • 50
    • 84899477995 scopus 로고    scopus 로고
    • Characterization of 3-phosphoglycerate kinase from Corynebacterium glutamicum and its impact on amino acid production
    • Reddy GK, Wendisch VF. 2014. Characterization of 3-phosphoglycerate kinase from Corynebacterium glutamicum and its impact on amino acid production. BMC Microbiol 14:54.
    • (2014) BMC Microbiol , vol.14 , pp. 54
    • Reddy, G.K.1    Wendisch, V.F.2
  • 52
    • 0028289983 scopus 로고
    • Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: Selection of defined deletions in the chromosome of Corynebacterium glutamicum
    • Schafer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Puhler A. 1994. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: Selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73.
    • (1994) Gene , vol.145 , pp. 69-73
    • Schafer, A.1    Tauch, A.2    Jager, W.3    Kalinowski, J.4    Thierbach, G.5    Puhler, A.6
  • 53
    • 84862002824 scopus 로고    scopus 로고
    • Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system
    • Schneider J, Eberhardt D, Wendisch VF. 2012. Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system. Appl Microbiol Biotechnol 95:169–178.
    • (2012) Appl Microbiol Biotechnol , vol.95 , pp. 169-178
    • Schneider, J.1    Eberhardt, D.2    Wendisch, V.F.3
  • 54
    • 79958698899 scopus 로고    scopus 로고
    • Production of the amino acids L-glutamate, L-lysine, L-ornithine and L-arginine from arabinose by recombinant Corynebacterium glutamicum
    • Schneider J, Niermann K, Wendisch VF. 2011. Production of the amino acids L-glutamate, L-lysine, L-ornithine and L-arginine from arabinose by recombinant Corynebacterium glutamicum. J Biotechnol 154:191–198.
    • (2011) J Biotechnol , vol.154 , pp. 191-198
    • Schneider, J.1    Niermann, K.2    Wendisch, V.F.3
  • 55
    • 79952108763 scopus 로고    scopus 로고
    • Putrescine production by engineered Corynebacterium glutamicum
    • Schneider J, Wendisch VF. 2010. Putrescine production by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 88:859–868.
    • (2010) Appl Microbiol Biotechnol , vol.88 , pp. 859-868
    • Schneider, J.1    Wendisch, V.F.2
  • 56
    • 84886289603 scopus 로고    scopus 로고
    • Enhancement of gamma-aminobutyric acid production in recombinant Corynebacterium glutamicum by co-expressing two glutamate decarboxylase genes from Lactobacillus brevis
    • Shi F, Jiang J, Li Y, Li Y, Xie Y. 2013. Enhancement of gamma-aminobutyric acid production in recombinant Corynebacterium glutamicum by co-expressing two glutamate decarboxylase genes from Lactobacillus brevis. J Ind Microbiol Biotechnol 40:1285–1296.
    • (2013) J Ind Microbiol Biotechnol , vol.40 , pp. 1285-1296
    • Shi, F.1    Jiang, J.2    Li, Y.3    Li, Y.4    Xie, Y.5
  • 57
    • 84863100643 scopus 로고    scopus 로고
    • Robust production of gamma-amino butyric acid using recombinant Corynebacterium glutamicum expressing glutamate decarboxylase from Escherichia coli
    • Takahashi C, Shirakawa J, Tsuchidate T, Okai N, Hatada K, Nakayama H, Tateno T, Ogino C, Kondo A. 2012. Robust production of gamma-amino butyric acid using recombinant Corynebacterium glutamicum expressing glutamate decarboxylase from Escherichia coli. Enzyme Microb Technol 51:171–176.
    • (2012) Enzyme Microb Technol , vol.51 , pp. 171-176
    • Takahashi, C.1    Shirakawa, J.2    Tsuchidate, T.3    Okai, N.4    Hatada, K.5    Nakayama, H.6    Tateno, T.7    Ogino, C.8    Kondo, A.9
  • 58
    • 84982843299 scopus 로고    scopus 로고
    • Transcription of sialic acid catabolism genes in Corynebacterium glutamicum is subject to catabolite repression and control by the transcriptional repressor NanR
    • Uhde A, Bruhl N, Goldbeck O, Matano C, Gurow O, Ruckert C, Marin K, Wendisch VF, Kramer R, Seibold GM. 2016. Transcription of sialic acid catabolism genes in Corynebacterium glutamicum is subject to catabolite repression and control by the transcriptional repressor NanR. J Bacteriol 198:2204–2218.
    • (2016) J Bacteriol , vol.198 , pp. 2204-–2218
    • Uhde, A.1    Bruhl, N.2    Goldbeck, O.3    Matano, C.4    Gurow, O.5    Ruckert, C.6    Marin, K.7    Wendisch, V.F.8    Kramer, R.9    Seibold, G.M.10
  • 60
    • 0032741016 scopus 로고    scopus 로고
    • A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA
    • van der Rest ME, Lange C, Molenaar D. 1999. A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol 52:541–545.
    • (1999) Appl Microbiol Biotechnol , vol.52 , pp. 541-545
    • van der Rest, M.E.1    Lange, C.2    Molenaar, D.3
  • 61
    • 84930373448 scopus 로고    scopus 로고
    • Deletion of odhA or pyc improves production of gamma-aminobutyric acid and its precursor L-glutamate in recombinant Corynebacterium glutamicum
    • Wang N, Ni Y, Shi F. 2015. Deletion of odhA or pyc improves production of gamma-aminobutyric acid and its precursor L-glutamate in recombinant Corynebacterium glutamicum. Biotechnol Lett 37:1473–1481.
    • (2015) Biotechnol Lett , vol.37 , pp. 1473-1481
    • Wang, N.1    Ni, Y.2    Shi, F.3
  • 62
    • 0041429503 scopus 로고    scopus 로고
    • Genome-wide expression analysis in Corynebacterium glutamicum using DNA microarrays
    • Wendisch VF. 2003. Genome-wide expression analysis in Corynebacterium glutamicum using DNA microarrays. J Biotechnol 104:273–285.
    • (2003) J Biotechnol , vol.104 , pp. 273-285
    • Wendisch, V.F.1
  • 63
    • 84902096405 scopus 로고    scopus 로고
    • Microbial production of amino acids and derived chemicals: Synthetic biology approaches to strain development
    • Wendisch VF. 2014. Microbial production of amino acids and derived chemicals: Synthetic biology approaches to strain development. Curr Opin Biotechnol 30:51–58.
    • (2014) Curr Opin Biotechnol , vol.30 , pp. 51-58
    • Wendisch, V.F.1
  • 64
    • 84881087796 scopus 로고    scopus 로고
    • The effect of a LysE exporter overexpression on L-arginine production in Corynebacterium crenatum
    • Xu M, Rao Z, Yang J, Dou W, Xu Z. 2013. The effect of a LysE exporter overexpression on L-arginine production in Corynebacterium crenatum. Curr Microbiol 67:271–278.
    • (2013) Curr Microbiol , vol.67 , pp. 271-278
    • Xu, M.1    Rao, Z.2    Yang, J.3    Dou, W.4    Xu, Z.5
  • 65
    • 57749179540 scopus 로고    scopus 로고
    • Mechanism and characterization of polyamide 4 degradation by Pseudomonas sp
    • Yamano N, Nakayama A, Kawasaki N, Yamamoto N, Aiba S. 2008. Mechanism and characterization of polyamide 4 degradation by Pseudomonas sp. J Polym Environ 16:141–146.
    • (2008) J Polym Environ , vol.16 , pp. 141-146
    • Yamano, N.1    Nakayama, A.2    Kawasaki, N.3    Yamamoto, N.4    Aiba, S.5
  • 66
    • 84965175479 scopus 로고    scopus 로고
    • A new strategy for production of 5-aminolevulinic acid in recombinant Corynebacterium glutamicum with high yield
    • Yang P, Liu W, Cheng X, Wang J, Wang Q, Qi Q. 2016. A new strategy for production of 5-aminolevulinic acid in recombinant Corynebacterium glutamicum with high yield. Appl Environ Microbiol 82:2709–2717.
    • (2016) Appl Environ Microbiol , vol.82 , pp. 2709-2717
    • Yang, P.1    Liu, W.2    Cheng, X.3    Wang, J.4    Wang, Q.5    Qi, Q.6
  • 67
    • 67449113538 scopus 로고    scopus 로고
    • Double deletion of dtsR1 and pyc induce efficient L: -Glutamate overproduction in Corynebacterium glutamicum
    • Yao W, Deng X, Zhong H, Liu M, Zheng P, Sun Z, Zhang Y. 2009. Double deletion of dtsR1 and pyc induce efficient L: -Glutamate overproduction in Corynebacterium glutamicum. J Ind Microbiol Biotechnol 36:911–921.
    • (2009) J Ind Microbiol Biotechnol , vol.36 , pp. 911-921
    • Yao, W.1    Deng, X.2    Zhong, H.3    Liu, M.4    Zheng, P.5    Sun, Z.6    Zhang, Y.7
  • 68
    • 52649129267 scopus 로고    scopus 로고
    • Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum
    • Youn JW, Jolkver E, Kramer R, Marin K, Wendisch VF. 2008. Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum. J Bacteriol 190:6458–6466.
    • (2008) J Bacteriol , vol.190 , pp. 6458-6466
    • Youn, J.W.1    Jolkver, E.2    Kramer, R.3    Marin, K.4    Wendisch, V.F.5
  • 69
    • 68949140875 scopus 로고    scopus 로고
    • Characterization of the dicarboxylate transporter DctA in Corynebacterium glutamicum
    • Youn JW, Jolkver E, Kramer R, Marin K, Wendisch VF. 2009. Characterization of the dicarboxylate transporter DctA in Corynebacterium glutamicum. J Bacteriol 191:5480–5488.
    • (2009) J Bacteriol , vol.191 , pp. 5480-5488
    • Youn, J.W.1    Jolkver, E.2    Kramer, R.3    Marin, K.4    Wendisch, V.F.5
  • 70
    • 84861147453 scopus 로고    scopus 로고
    • Identification and characterization of gamma-aminobutyric acid uptake system GabPCg (NCgl0464) in Corynebacterium glutamicum
    • Zhao Z, Ding JY, Ma WH, Zhou NY, Liu SJ. 2012. Identification and characterization of gamma-aminobutyric acid uptake system GabPCg (NCgl0464) in Corynebacterium glutamicum. Appl Environ Microbiol 78:2596–2601.
    • (2012) Appl Environ Microbiol , vol.78 , pp. 2596-2601
    • Zhao, Z.1    Ding, J.Y.2    Ma, W.H.3    Zhou, N.Y.4    Liu, S.J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.