메뉴 건너뛰기




Volumn 6, Issue , 2017, Pages 22-30

Statistical analysis plan for stage 1 EMBARC (Establishing Moderators and Biosignatures of Antidepressant Response for Clinical Care) study

(16)  Petkova, Eva a,b   Ogden, R Todd c   Tarpey, Thaddeus a,d   Ciarleglio, Adam a,c   Jiang, Bei e   Su, Zhe a   Carmody, Thomas f   Adams, Philip g,h   Kraemer, Helena C i   Grannemann, Bruce D f   Oquendo, Maria A g,h   Parsey, Ramin j   Weissman, Myrna g,h   McGrath, Patrick J g,h   Fava, Maurizio k   Trivedi, Madhukar H f  


Author keywords

Combining biomarkers; Differential treatment response index; Moderator; Optimizing treatment decisions; Precision medicine

Indexed keywords

ANTIDEPRESSANT AGENT;

EID: 85014508995     PISSN: 24518654     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.conctc.2017.02.007     Document Type: Article
Times cited : (25)

References (53)
  • 1
    • 43449100377 scopus 로고    scopus 로고
    • Diagnostics for multiple imputations
    • [1] Abayomi, K., Gelman, A., Levy, M., Diagnostics for multiple imputations. Appl. Stat. 57 (2008), 273–291.
    • (2008) Appl. Stat. , vol.57 , pp. 273-291
    • Abayomi, K.1    Gelman, A.2    Levy, M.3
  • 3
    • 0003802343 scopus 로고
    • CART: Classification and Regression Trees
    • Wadsworth Belmont, CA
    • [3] Breiman, L., Friedman, J.H., Alshen, R.A., Stone, C.J., CART: Classification and Regression Trees. 1983, Wadsworth, Belmont, CA.
    • (1983)
    • Breiman, L.1    Friedman, J.H.2    Alshen, R.A.3    Stone, C.J.4
  • 4
    • 84872500205 scopus 로고    scopus 로고
    • Candidate genes expression profile associated with antidepressants response in the GENDEP study: differentiating between baseline ‘predictors’ and longitudinal ‘targets’
    • [4] Cattaneo, A., Gennerelli, M., Uher, R., Breen, G., Farmer, A., Aitchison, K., Craig, I., Anacker, C., Zunsztain, P., McGuffin, P., Pariante, C., Candidate genes expression profile associated with antidepressants response in the GENDEP study: differentiating between baseline ‘predictors’ and longitudinal ‘targets’. Neuropsychopharmacology 38 (2013), 377–385.
    • (2013) Neuropsychopharmacology , vol.38 , pp. 377-385
    • Cattaneo, A.1    Gennerelli, M.2    Uher, R.3    Breen, G.4    Farmer, A.5    Aitchison, K.6    Craig, I.7    Anacker, C.8    Zunsztain, P.9    McGuffin, P.10    Pariante, C.11
  • 5
    • 84901199092 scopus 로고    scopus 로고
    • Inference for optimal treatment regimes using adaptive m-Out-of-n bootstrap scheme
    • [5] Chakraborty, B., Laber, E., Zhao, Y., Inference for optimal treatment regimes using adaptive m-Out-of-n bootstrap scheme. Biometrics 69 (2013), 714–723.
    • (2013) Biometrics , vol.69 , pp. 714-723
    • Chakraborty, B.1    Laber, E.2    Zhao, Y.3
  • 6
    • 84870241945 scopus 로고    scopus 로고
    • On Bayesian methods of exploring qualitative interactions for targeted treatment
    • [6] Chen, W., Ghosh, D., Raghunatan, T., Norkin, M., Sargent, D., Bepler, G., On Bayesian methods of exploring qualitative interactions for targeted treatment. Stat. Med. 31 (2012), 3693–3707.
    • (2012) Stat. Med. , vol.31 , pp. 3693-3707
    • Chen, W.1    Ghosh, D.2    Raghunatan, T.3    Norkin, M.4    Sargent, D.5    Bepler, G.6
  • 7
    • 84955389618 scopus 로고    scopus 로고
    • Treatment decisions based on scalar and functional baseline covariates
    • [7] Ciarleglio, A., Petkova, E., Tarpey, T., Ogden, R.T., Treatment decisions based on scalar and functional baseline covariates. Biometrics 71 (2015), 884–894.
    • (2015) Biometrics , vol.71 , pp. 884-894
    • Ciarleglio, A.1    Petkova, E.2    Tarpey, T.3    Ogden, R.T.4
  • 8
    • 84973352143 scopus 로고    scopus 로고
    • Flexible functional regression methods for estimating individualized treatment regimes
    • [8] Ciarleglio, A., Petkova, E., Tarpey, T., Ogden, R.T., Flexible functional regression methods for estimating individualized treatment regimes. STAT 5 (2016), 185–199.
    • (2016) STAT , vol.5 , pp. 185-199
    • Ciarleglio, A.1    Petkova, E.2    Tarpey, T.3    Ogden, R.T.4
  • 9
    • 85014518819 scopus 로고    scopus 로고
    • Variable selection for treatment decision rules with scalar and functional predictors
    • [9] Ciarleglio, A., Petkova, E., Tarpey, T., Ogden, R.T., Variable selection for treatment decision rules with scalar and functional predictors. Stat. Med. (In revision), 2017.
    • (2017) Stat. Med. (In revision)
    • Ciarleglio, A.1    Petkova, E.2    Tarpey, T.3    Ogden, R.T.4
  • 10
    • 85012099607 scopus 로고    scopus 로고
    • Patient characteristics as a moderator of PTSD treatment outcome: combining symptom burden and strengths
    • [10] Cloitre, M., Petkova, E., Su, Z., Weiss, B., Patient characteristics as a moderator of PTSD treatment outcome: combining symptom burden and strengths. Br. J. Psychiat. Open 2 (2016), 101–106.
    • (2016) Br. J. Psychiat. Open , vol.2 , pp. 101-106
    • Cloitre, M.1    Petkova, E.2    Su, Z.3    Weiss, B.4
  • 11
    • 34249753618 scopus 로고
    • Support-vector networks
    • [11] Cortes, C., Vapnik, V., Support-vector networks. Mach. Learn. 20 (1995), 273–297.
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 12
    • 53849086824 scopus 로고    scopus 로고
    • Sure independence screening for ultra-high dimensional feature space
    • [12] Fan, J., Lv, J., Sure independence screening for ultra-high dimensional feature space. J. of the R. Stat. Soc. Ser. B 70 (2008), 849–911.
    • (2008) J. of the R. Stat. Soc. Ser. B , vol.70 , pp. 849-911
    • Fan, J.1    Lv, J.2
  • 14
    • 84862908630 scopus 로고    scopus 로고
    • Variable selection for qualitative interactions in pres- onalized medicine while controlling the family-wise error rate
    • [14] Gunter, L., Zhu, J., Murphy, S., Variable selection for qualitative interactions in pres- onalized medicine while controlling the family-wise error rate. J. Biopharm. Stat. 21 (2011), 1063–1078.
    • (2011) J. Biopharm. Stat. , vol.21 , pp. 1063-1078
    • Gunter, L.1    Zhu, J.2    Murphy, S.3
  • 15
    • 84989328975 scopus 로고    scopus 로고
    • RNA expression profiling in depressed patients suggests retinoid-related orphan receptor alpha as a biomarker for antidepressant response
    • [15] Hennings, J., Uhr, M., Klengel, T., Webber, P., Pütz, B., Czamara, D., Ising, M., Holsboer, F., Lucae, S., RNA expression profiling in depressed patients suggests retinoid-related orphan receptor alpha as a biomarker for antidepressant response. Translat. Psychiat., 5, 2015, e538.
    • (2015) Translat. Psychiat. , vol.5 , pp. e538
    • Hennings, J.1    Uhr, M.2    Klengel, T.3    Webber, P.4    Pütz, B.5    Czamara, D.6    Ising, M.7    Holsboer, F.8    Lucae, S.9
  • 16
    • 84908134157 scopus 로고    scopus 로고
    • Diffusion ten- sor imaging predictors of treatment outcomes in major depressive disorder
    • [16] Korgaonkar, M., Williams, L., Song, Y., Usherwood, T., Grieve, S., Diffusion ten- sor imaging predictors of treatment outcomes in major depressive disorder. Br. J. Psychiat. 205 (2014), 321–328.
    • (2014) Br. J. Psychiat. , vol.205 , pp. 321-328
    • Korgaonkar, M.1    Williams, L.2    Song, Y.3    Usherwood, T.4    Grieve, S.5
  • 17
    • 84877137844 scopus 로고    scopus 로고
    • Discovering, comparing, and combining moderators of treatment on outcome after randomized clinical trials: a parametric approach
    • [17] Kraemer, H.C., Discovering, comparing, and combining moderators of treatment on outcome after randomized clinical trials: a parametric approach. Stat. Med. 32 (2013), 1964–1973.
    • (2013) Stat. Med. , vol.32 , pp. 1964-1973
    • Kraemer, H.C.1
  • 18
    • 54049133277 scopus 로고    scopus 로고
    • The molecular neurobiology of depression
    • [18] Krishnan, V., Nestler, E., The molecular neurobiology of depression. Nature 455 (2008), 894–902.
    • (2008) Nature , vol.455 , pp. 894-902
    • Krishnan, V.1    Nestler, E.2
  • 19
    • 84961287970 scopus 로고    scopus 로고
    • Dynamic treatment regimes: technical challenges and applications
    • [19] Laber, E., Lizotte, D., Qian, M., Pelham, W., Murphy, S., Dynamic treatment regimes: technical challenges and applications. Electronic J. Stat. 8 (2014), 1225–1272.
    • (2014) Electronic J. Stat. , vol.8 , pp. 1225-1272
    • Laber, E.1    Lizotte, D.2    Qian, M.3    Pelham, W.4    Murphy, S.5
  • 20
    • 84941648353 scopus 로고    scopus 로고
    • Tree-based methods for individualized treatment regimes
    • [20] Laber, E., Zhao, Y.-Q., Tree-based methods for individualized treatment regimes. Biometrika 102 (2015), 501–514.
    • (2015) Biometrika , vol.102 , pp. 501-514
    • Laber, E.1    Zhao, Y.-Q.2
  • 22
    • 33751072926 scopus 로고    scopus 로고
    • Detecting qualitative interactions in clinical trials: an extension of range test
    • [22] Li, J., Chan, I., Detecting qualitative interactions in clinical trials: an extension of range test. J. Biopharm. Stat. 16 (2006), 831–841.
    • (2006) J. Biopharm. Stat. , vol.16 , pp. 831-841
    • Li, J.1    Chan, I.2
  • 24
    • 84886467569 scopus 로고    scopus 로고
    • Variable selection for optimal treatment decision
    • [24] Lu, W., Zhang, H., Zeng, D., Variable selection for optimal treatment decision. Stat. Meth. Med. Res. 22 (2011), 493–504.
    • (2011) Stat. Meth. Med. Res. , vol.22 , pp. 493-504
    • Lu, W.1    Zhang, H.2    Zeng, D.3
  • 25
    • 84920714113 scopus 로고    scopus 로고
    • Pretreatment brain states identifying likely nonresponse to standard treatments for depression
    • [25] McGrath, C., Kelley, M., Dunlop, B., Holtzheimer, P., Craighead, W., Mayberg, H., Pretreatment brain states identifying likely nonresponse to standard treatments for depression. Biol. Psychiat. 76 (2014), 527–535.
    • (2014) Biol. Psychiat. , vol.76 , pp. 527-535
    • McGrath, C.1    Kelley, M.2    Dunlop, B.3    Holtzheimer, P.4    Craighead, W.5    Mayberg, H.6
  • 26
    • 84866049850 scopus 로고    scopus 로고
    • Vocal acoustic biomarkers of depres- sion severity and treatment response
    • [26] Mundt, J., Vogel, A., Feltner, D., Lenderking, W., Vocal acoustic biomarkers of depres- sion severity and treatment response. Biol. Psychiat. 72 (2012), 580–587.
    • (2012) Biol. Psychiat. , vol.72 , pp. 580-587
    • Mundt, J.1    Vogel, A.2    Feltner, D.3    Lenderking, W.4
  • 27
    • 0038107066 scopus 로고    scopus 로고
    • Optimal dynamic treatment regimes (with discussion)
    • [27] Murphy, S., Optimal dynamic treatment regimes (with discussion). J. R. Stat. Soc. Ser. B 58 (2003), 331–366.
    • (2003) J. R. Stat. Soc. Ser. B , vol.58 , pp. 331-366
    • Murphy, S.1
  • 28
    • 84945454316 scopus 로고    scopus 로고
    • Partitioning of functional data for understanding heterogeneity in psychiatric conditions
    • [28] Petkova, E., Tarpey, T., Partitioning of functional data for understanding heterogeneity in psychiatric conditions. Stat. Interface 2 (2009), 413–424.
    • (2009) Stat. Interface , vol.2 , pp. 413-424
    • Petkova, E.1    Tarpey, T.2
  • 29
    • 85014572345 scopus 로고    scopus 로고
    • Deriving a scalar measure from a longitudinal trajectory with applications to placebo response
    • (Submitted for publication)
    • [29] Petkova, E., Tarpey, T., Ciarleglio, A., Ogden, R.T., Deriving a scalar measure from a longitudinal trajectory with applications to placebo response. Stat. Med., 2016 (Submitted for publication).
    • (2016) Stat. Med.
    • Petkova, E.1    Tarpey, T.2    Ciarleglio, A.3    Ogden, R.T.4
  • 30
    • 85014565736 scopus 로고    scopus 로고
    • Generated effect modifiers (GEMs) in randomized clinical trials
    • [30] Petkova, E., Tarpey, T., Ogden, R., Su, Z., Generated effect modifiers (GEMs) in randomized clinical trials. Biostatistics 18:1 (2017), 105–118.
    • (2017) Biostatistics , vol.18 , Issue.1 , pp. 105-118
    • Petkova, E.1    Tarpey, T.2    Ogden, R.3    Su, Z.4
  • 31
    • 84870707096 scopus 로고    scopus 로고
    • Performance guarantees for individualized treatment rules
    • [31] Qian, M., Murphy, S., Performance guarantees for individualized treatment rules. Ann. Stat. 39 (2011), 1180–1210.
    • (2011) Ann. Stat. , vol.39 , pp. 1180-1210
    • Qian, M.1    Murphy, S.2
  • 32
    • 0004130505 scopus 로고    scopus 로고
    • Functional Data Analysis
    • second ed. Springer New York
    • [32] Ramsay, J.O., Silverman, B.W., Functional Data Analysis. second ed., 2005, Springer, New York.
    • (2005)
    • Ramsay, J.O.1    Silverman, B.W.2
  • 33
    • 33845913126 scopus 로고    scopus 로고
    • Optimal structured nested models for optimal sequential decisions
    • D. Lin P.J. Heagerty Springer New York
    • [33] Robins, J., Optimal structured nested models for optimal sequential decisions. Lin, D., Heagerty, P.J., (eds.) Proceedings of the Second Seattle Symposium on Biostatistics, 2004, Springer, New York, 189–326.
    • (2004) Proceedings of the Second Seattle Symposium on Biostatistics , pp. 189-326
    • Robins, J.1
  • 34
    • 58149417330 scopus 로고
    • Estimating causal effects of treatments in randomized and nonrandomized studies
    • [34] Rubin, D., Estimating causal effects of treatments in randomized and nonrandomized studies. J. Edu. Psychol. 66 (1974), 688–701.
    • (1974) J. Edu. Psychol. , vol.66 , pp. 688-701
    • Rubin, D.1
  • 36
    • 0003398574 scopus 로고    scopus 로고
    • Analysis of Incomplete Multivariate Data
    • Chapmen and Hall New York
    • [36] Schafer, J.L., Analysis of Incomplete Multivariate Data. 1997, Chapmen and Hall, New York.
    • (1997)
    • Schafer, J.L.1
  • 37
    • 0032960273 scopus 로고    scopus 로고
    • Multiple imputation: a primer
    • [37] Schafer, J.L., Multiple imputation: a primer. Stat. Meth. Med. Res. 8 (1999), 3–15.
    • (1999) Stat. Meth. Med. Res. , vol.8 , pp. 3-15
    • Schafer, J.L.1
  • 38
    • 84939213760 scopus 로고    scopus 로고
    • On sparse representation for optimal individualized treatment selection with penalized outcome weighted learning
    • [38] Song, R., Kosorok, M., Zeng, D., Zhao, Y., Laber, E.B., Yuan, M., On sparse representation for optimal individualized treatment selection with penalized outcome weighted learning. STAT 4 (2015), 59–68.
    • (2015) STAT , vol.4 , pp. 59-68
    • Song, R.1    Kosorok, M.2    Zeng, D.3    Zhao, Y.4    Laber, E.B.5    Yuan, M.6
  • 39
    • 10944237674 scopus 로고    scopus 로고
    • Evaluating markers for selecting a patient's treatment
    • [39] Song, X., Pepe, M., Evaluating markers for selecting a patient's treatment. Biometrics 60 (2004), 874–883.
    • (2004) Biometrics , vol.60 , pp. 874-883
    • Song, X.1    Pepe, M.2
  • 40
    • 84863414529 scopus 로고    scopus 로고
    • Multiple imputation with diagnostics (mi) in R: opening windows into the black box
    • [40] Su, Y.-S., Gelman, A., Hill, J., Yajima, M., Multiple imputation with diagnostics (mi) in R: opening windows into the black box. J. Stat. Softw. 45:1 (2011), 1–31.
    • (2011) J. Stat. Softw. , vol.45 , Issue.1 , pp. 1-31
    • Su, Y.-S.1    Gelman, A.2    Hill, J.3    Yajima, M.4
  • 41
    • 78649419887 scopus 로고    scopus 로고
    • Optimal partitioning for linear mixed effects models: applications to identifying placebo responders
    • [41] Tarpey, T., Petkova, E., Lu, Y., Govindarajulu, U., Optimal partitioning for linear mixed effects models: applications to identifying placebo responders. J. American Statistical Association 105 (2010), 968–977.
    • (2010) J. American Statistical Association , vol.105 , pp. 968-977
    • Tarpey, T.1    Petkova, E.2    Lu, Y.3    Govindarajulu, U.4
  • 42
    • 1142265326 scopus 로고    scopus 로고
    • Profiling placebo responders by self-consistent partitioning of functional data
    • [42] Tarpey, T., Petkova, E., Ogden, R.T., Profiling placebo responders by self-consistent partitioning of functional data. J. Am. Stat. Assoc. 98 (2003), 850–858.
    • (2003) J. Am. Stat. Assoc. , vol.98 , pp. 850-858
    • Tarpey, T.1    Petkova, E.2    Ogden, R.T.3
  • 43
    • 84957081994 scopus 로고    scopus 로고
    • A new approach to stratified psychiatry via convexity-based clustering with applications towards moderator analysis
    • [43] Tarpey, T., Petkova, E., Zhu, L., A new approach to stratified psychiatry via convexity-based clustering with applications towards moderator analysis. Stat Interface 9 (2016), 255–266.
    • (2016) Stat Interface , vol.9 , pp. 255-266
    • Tarpey, T.1    Petkova, E.2    Zhu, L.3
  • 44
    • 84919797419 scopus 로고    scopus 로고
    • A simple method for estimating interactions between a treatment and a large number of covariates
    • [44] Tian, L., Alizadeh, A., Gentles, A., Tibshirani, R., A simple method for estimating interactions between a treatment and a large number of covariates. J. Am. Stat. Assoc. 109 (2014), 1517–1532.
    • (2014) J. Am. Stat. Assoc. , vol.109 , pp. 1517-1532
    • Tian, L.1    Alizadeh, A.2    Gentles, A.3    Tibshirani, R.4
  • 45
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the LASSO
    • [45] Tibshirani, R., Regression shrinkage and selection via the LASSO. J. R. Stat. Soc. Ser. B 58 (1996), 267–288.
    • (1996) J. R. Stat. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 48
    • 84914132272 scopus 로고    scopus 로고
    • An inflammatory biomarker as a differential predictor of outcome of depression treatment with escitalopram and nortriptyline
    • [48] Uher, R., Tansey, K., Dew, T., Maier, W., Mors, O., Hauser, J., Dernovsek, M., Heingsburg, N., Souery, D., A.F, McGuffin, P., An inflammatory biomarker as a differential predictor of outcome of depression treatment with escitalopram and nortriptyline. Am. J. Psychiat. 171 (2014), 1278–1286.
    • (2014) Am. J. Psychiat. , vol.171 , pp. 1278-1286
    • Uher, R.1    Tansey, K.2    Dew, T.3    Maier, W.4    Mors, O.5    Hauser, J.6    Dernovsek, M.7    Heingsburg, N.8    Souery, D.9    McGuffin, P.10
  • 49
    • 84875604882 scopus 로고    scopus 로고
    • Detecting moderator effects using subgroup analyses
    • [49] Wang, R., Ware, J., Detecting moderator effects using subgroup analyses. Prev. Sci. 14 (2013), 111–120.
    • (2013) Prev. Sci. , vol.14 , pp. 111-120
    • Wang, R.1    Ware, J.2
  • 50
    • 0031326688 scopus 로고    scopus 로고
    • Testing for absence of qualitative interactions between risk factors and treatment effect
    • [50] Wellek, S., Testing for absence of qualitative interactions between risk factors and treatment effect. Biometric. J. 39 (1997), 809–821.
    • (1997) Biometric. J. , vol.39 , pp. 809-821
    • Wellek, S.1
  • 51
    • 84856215475 scopus 로고    scopus 로고
    • Resting leukocyte telomerase activity is elevated in major depression and predicts treatment response
    • [51] Wolkowitz, O.M., Mellon, S.H., Epel, E.S., Lin, J., Reus, V.I., Dhabhar, F.S., Blackburn, E.H., Resting leukocyte telomerase activity is elevated in major depression and predicts treatment response. Mol. Psychiat. 17 (2012), 164–172.
    • (2012) Mol. Psychiat. , vol.17 , pp. 164-172
    • Wolkowitz, O.M.1    Mellon, S.H.2    Epel, E.S.3    Lin, J.4    Reus, V.I.5    Dhabhar, F.S.6    Blackburn, E.H.7
  • 52
    • 84906088229 scopus 로고    scopus 로고
    • Estimating optimal treatment regimes from classification perspective
    • [52] Zhang, B., Tsiatis, A.A., Davidian, M., Zhang, M., Laber, E., Estimating optimal treatment regimes from classification perspective. STAT 1 (2012), 103–114.
    • (2012) STAT , vol.1 , pp. 103-114
    • Zhang, B.1    Tsiatis, A.A.2    Davidian, M.3    Zhang, M.4    Laber, E.5
  • 53
    • 84870657864 scopus 로고    scopus 로고
    • Estimating individualized treatment rules using outcome weighted learning
    • [53] Zhao, Y., Zeng, D., Rush, A.J., Kosorok, M.P., Estimating individualized treatment rules using outcome weighted learning. J. Am. Stat. Assoc. 107 (2012), 1106–1118.
    • (2012) J. Am. Stat. Assoc. , vol.107 , pp. 1106-1118
    • Zhao, Y.1    Zeng, D.2    Rush, A.J.3    Kosorok, M.P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.