메뉴 건너뛰기




Volumn 4, Issue 1, 2015, Pages 59-68

On sparse representation for optimal individualized treatment selection with penalized outcome weighted learning

Author keywords

Penalization; Personalized medicine; Support vector machine

Indexed keywords


EID: 84939213760     PISSN: None     EISSN: 20491573     Source Type: Journal    
DOI: 10.1002/sta4.78     Document Type: Article
Times cited : (52)

References (39)
  • 1
    • 0037132607 scopus 로고    scopus 로고
    • Major outcomes in moderately hypercholesterolemic, hypertensive patients randomized to pravastatin vs usual care: the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT-LLT)
    • The ALLHAT Officers and Coordinators
    • The ALLHAT Officers and Coordinators (2002), 'Major outcomes in moderately hypercholesterolemic, hypertensive patients randomized to pravastatin vs usual care: the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT-LLT)', JAMA: the Journal of the American Medical Association 288(23), 2998-3007.
    • (2002) JAMA: the Journal of the American Medical Association , vol.288 , Issue.23 , pp. 2998-3007
  • 2
    • 77249154576 scopus 로고    scopus 로고
    • A comparison of variable selection approaches for dynamic treatment regimes
    • Biernot P, Moodie EEM (2010), 'A comparison of variable selection approaches for dynamic treatment regimes', The International Journal of Biostatistics 6(1), Article 6. DOI:10.2202/1557-4679.1178.
    • (2010) The International Journal of Biostatistics , vol.6 , Issue.1
    • Biernot, P.1    Moodie, E.E.M.2
  • 3
    • 77954420461 scopus 로고    scopus 로고
    • Inference for non-regular parameters in optimal dynamic treatment regimes
    • Chakraborty B, Murphy S, Strecher V (2010), 'Inference for non-regular parameters in optimal dynamic treatment regimes', Statistical Methods in Medical Research 19, (3), 317-343.
    • (2010) Statistical Methods in Medical Research , vol.19 , Issue.3 , pp. 317-343
    • Chakraborty, B.1    Murphy, S.2    Strecher, V.3
  • 4
    • 70450231563 scopus 로고    scopus 로고
    • Bayesian variable selection with joint modeling of categorical and survival outcomes: an application to individualizing chemotherapy treatment in advanced colorectal cancer
    • Chen W, Ghosh D, Raghunathan TE, Sargent DJ (2009), 'Bayesian variable selection with joint modeling of categorical and survival outcomes: an application to individualizing chemotherapy treatment in advanced colorectal cancer', Biometrics 65(4), 1030-1040.
    • (2009) Biometrics , vol.65 , Issue.4 , pp. 1030-1040
    • Chen, W.1    Ghosh, D.2    Raghunathan, T.E.3    Sargent, D.J.4
  • 5
    • 34249753618 scopus 로고
    • Support-vector networks
    • In
    • Cortes C, Vapnik V (1995), 'Support-vector networks, ' In Machine Learning, 20, 273-297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 7
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan J, Li R (2001), 'Variable selection via nonconcave penalized likelihood and its oracle properties', Journal of the American Statistical Association 96(456), 1348-1360.
    • (2001) Journal of the American Statistical Association , vol.96 , Issue.456 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 8
    • 0022072706 scopus 로고
    • Testing for qualitative interactions between treatment effects and patient subsets
    • Gail M, Simon R (1985), 'Testing for qualitative interactions between treatment effects and patient subsets', Biometrics 41, 2), 361-372.
    • (1985) Biometrics , vol.41 , Issue.2 , pp. 361-372
    • Gail, M.1    Simon, R.2
  • 9
    • 78649719355 scopus 로고    scopus 로고
    • Variable selection for qualitative interactions
    • 2011
    • Gunter L, Zhu J, Murphy SA, 'Variable selection for qualitative interactions', Statistical Methodology 8(2011), 1), 42-55.
    • Statistical Methodology , vol.8 , Issue.1 , pp. 42-55
    • Gunter, L.1    Zhu, J.2    Murphy, S.A.3
  • 13
    • 0036192067 scopus 로고    scopus 로고
    • Estimation of survival distributions of treatment policies in two-stage randomization designs in clinical trials
    • Lunceford JK, Davidian M, Tsiatis AA (2002), 'Estimation of survival distributions of treatment policies in two-stage randomization designs in clinical trials', Biometrics 58, 1), 48-57.
    • (2002) Biometrics , vol.58 , Issue.1 , pp. 48-57
    • Lunceford, J.K.1    Davidian, M.2    Tsiatis, A.A.3
  • 14
    • 33947624563 scopus 로고    scopus 로고
    • Demystifying optimal dynamic treatment regimes
    • Moodie EE, Richardson TS, Stephens DA (2007), 'Demystifying optimal dynamic treatment regimes', Biometrics 63, (2), 447-455.
    • (2007) Biometrics , vol.63 , Issue.2 , pp. 447-455
    • Moodie, E.E.1    Richardson, T.S.2    Stephens, D.A.3
  • 17
    • 19144362679 scopus 로고    scopus 로고
    • An experimental design for the development of adaptive treatment strategies
    • 10
    • Murphy SA, 'An experimental design for the development of adaptive treatment strategies', Statistics in Medicine 24(2005), 10), 1455-1481.
    • Statistics in Medicine , vol.24 , Issue.2005 , pp. 1455-1481
    • Murphy, S.A.1
  • 20
    • 0027198279 scopus 로고
    • A comparison of the power of two tests for qualitative interactions
    • Piantadosi S, Gail MH (1993), 'A comparison of the power of two tests for qualitative interactions', Statistics in Medicine 12, (13), 1239-1248.
    • (1993) Statistics in Medicine , vol.12 , Issue.13 , pp. 1239-1248
    • Piantadosi, S.1    Gail, M.H.2
  • 21
    • 84870707096 scopus 로고    scopus 로고
    • Performance guarantees for individualized treatment rules
    • 2
    • Qian M, Murphy SA, 'Performance guarantees for individualized treatment rules', Annals of Statistics 39(2011), 2), 1180-1210.
    • Annals of Statistics , vol.39 , Issue.2011 , pp. 1180-1210
    • Qian, M.1    Murphy, S.A.2
  • 24
    • 84990041926 scopus 로고    scopus 로고
    • Penalized Q-learning for dynamic treatment regimes
    • Song R, Wang W, Zeng D, Kosorok MR, 'Penalized Q-learning for dynamic treatment regimes', Statistica Sinica (2014). DOI: 10.5705/ss.2012.364.
    • Statistica Sinica , Issue.2014
    • Song, R.1    Wang, W.2    Zeng, D.3    Kosorok, M.R.4
  • 26
    • 0034732660 scopus 로고    scopus 로고
    • Evaluating multiple treatment courses in clinical trials
    • Thall PF, Millikan RE, Sung HG (2000), 'Evaluating multiple treatment courses in clinical trials', Statistics in Medicine 19, (8), 1011-1028.
    • (2000) Statistics in Medicine , vol.19 , Issue.8 , pp. 1011-1028
    • Thall, P.F.1    Millikan, R.E.2    Sung, H.G.3
  • 27
    • 0036489042 scopus 로고    scopus 로고
    • Selecting therapeutic strategies based on efficacy and death in multicourse clinical trials
    • Thall PF, Sung HG, Estey EH (2002), 'Selecting therapeutic strategies based on efficacy and death in multicourse clinical trials', Journal of the American Statistical Association 97, (457), 29-39.
    • (2002) Journal of the American Statistical Association , vol.97 , Issue.457 , pp. 29-39
    • Thall, P.F.1    Sung, H.G.2    Estey, E.H.3
  • 28
    • 35648935906 scopus 로고    scopus 로고
    • Bayesian and frequentist two-stage treatment strategies based on sequential failure times subject to interval censoring
    • Thall PF, Wooten LH, Logothetis CJ, Millikan RE, Tannir NM (2007), 'Bayesian and frequentist two-stage treatment strategies based on sequential failure times subject to interval censoring', Statistics in Medicine 26, (26), 4687-4702.
    • (2007) Statistics in Medicine , vol.26 , Issue.26 , pp. 4687-4702
    • Thall, P.F.1    Wooten, L.H.2    Logothetis, C.J.3    Millikan, R.E.4    Tannir, N.M.5
  • 29
    • 33644973742 scopus 로고    scopus 로고
    • Semiparametric efficient estimation of survival distributions in two-stage randomisation designs in clinical trials with censored data
    • Wahed A, Tsiatis A (2006), 'Semiparametric efficient estimation of survival distributions in two-stage randomisation designs in clinical trials with censored data', Biometrika 93, (1), 163-177.
    • (2006) Biometrika , vol.93 , Issue.1 , pp. 163-177
    • Wahed, A.1    Tsiatis, A.2
  • 30
    • 1642358199 scopus 로고    scopus 로고
    • Optimal estimator for the survival distribution and related quantities for treatment policies in two-stage randomised designs in clinical trials
    • Wahed AS, Tsiatis AA (2004), 'Optimal estimator for the survival distribution and related quantities for treatment policies in two-stage randomised designs in clinical trials', Biometrics 60, (5), 124-133.
    • (2004) Biometrics , vol.60 , Issue.5 , pp. 124-133
    • Wahed, A.S.1    Tsiatis, A.A.2
  • 31
    • 84939198647 scopus 로고
    • Learning from delayed rewards', Ph.D. Thesis, University of Cambridge, England.
    • Watkins CJ (1989), 'Learning from delayed rewards', Ph.D. Thesis, University of Cambridge, England.
    • (1989)
    • Watkins, C.J.1
  • 33
    • 72849134248 scopus 로고    scopus 로고
    • Structured variable selection in support vector machines
    • Wu S, Zou H, Yuan M (2008), 'Structured variable selection in support vector machines', Electronic Journal of Statistics 2, 103-117.
    • (2008) Electronic Journal of Statistics , vol.2 , pp. 103-117
    • Wu, S.1    Zou, H.2    Yuan, M.3
  • 34
    • 1442326307 scopus 로고    scopus 로고
    • Test for qualitative interaction in equivalence trials when the number of centres is large
    • Yan X (2004), 'Test for qualitative interaction in equivalence trials when the number of centres is large', Statistics in Medicine 23, (5), 711-722.
    • (2004) Statistics in Medicine , vol.23 , Issue.5 , pp. 711-722
    • Yan, X.1
  • 35
    • 84871667403 scopus 로고    scopus 로고
    • A robust method for estimating optimal treatment regimes
    • Zhang B, Tsiatis AA, Laber EB, Davidian M (2012), 'A robust method for estimating optimal treatment regimes', Biometrics 68, (4), 1010-1018.
    • (2012) Biometrics , vol.68 , Issue.4 , pp. 1010-1018
    • Zhang, B.1    Tsiatis, A.A.2    Laber, E.B.3    Davidian, M.4
  • 37
    • 83655181241 scopus 로고    scopus 로고
    • Reinforcement learning strategies for clinical trials in nonsmall cell lung cancer
    • Zhao Y, Zeng D, Socinski MA, Kosorok MR (2011), 'Reinforcement learning strategies for clinical trials in nonsmall cell lung cancer', Biometrics 67, (4), 1422-1433.
    • (2011) Biometrics , vol.67 , Issue.4 , pp. 1422-1433
    • Zhao, Y.1    Zeng, D.2    Socinski, M.A.3    Kosorok, M.R.4
  • 39
    • 51049104549 scopus 로고    scopus 로고
    • One-step sparse estimates in nonconcave penalized likelihood models
    • Zou H, Li R (2008), 'One-step sparse estimates in nonconcave penalized likelihood models', The Annals of Statistics 36, 1509-1533.
    • (2008) The Annals of Statistics , vol.36 , pp. 1509-1533
    • Zou, H.1    Li, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.