메뉴 건너뛰기




Volumn 18, Issue 1, 2017, Pages 105-118

Generated effect modifiers (GEM's) in randomized clinical trials

Author keywords

Biosignature; Moderator; Precision medicine; Treatment decision; Value

Indexed keywords

CLINICAL TRIAL; CONTROLLED CLINICAL TRIAL; CONTROLLED STUDY; DRUG COMBINATION; FEMALE; HUMAN; MALE; PERSONALIZED MEDICINE; PREDICTOR VARIABLE; RANDOMIZED CONTROLLED TRIAL; SIMULATION; STATISTICAL MODEL; METHODOLOGY; OUTCOME ASSESSMENT; RANDOMIZED CONTROLLED TRIAL (TOPIC); STATISTICAL ANALYSIS; STATISTICS AND NUMERICAL DATA;

EID: 85014565736     PISSN: 14654644     EISSN: 14684357     Source Type: Journal    
DOI: 10.1093/biostatistics/kxw035     Document Type: Article
Times cited : (15)

References (27)
  • 1
    • 84955389618 scopus 로고    scopus 로고
    • Treatment decisions based on scalar and functional baseline covariates
    • CIARLEGLIO, A., PETKOVA, E., TARPEY, T. AND OGDEN, R. T. (2015). Treatment decisions based on scalar and functional baseline covariates. Biometrics 71, 884-894.
    • (2015) Biometrics , vol.71 , pp. 884-894
    • Ciarleglio, A.1    Petkova, E.2    Tarpey, T.3    Ogden, R.T.4
  • 2
    • 84868156830 scopus 로고    scopus 로고
    • Survival prediction based on compound covariate under cox proportional hazards models
    • EMURA, T., CHEN, Y.-H. AND CHEN, H.-Y. (2012). Survival prediction based on compound covariate under cox proportional hazards models. PLoS One 7, 247627.
    • (2012) PLoS One , vol.7 , pp. 247627
    • Emura, T.1    Chen, Y.-H.2    Chen, H.-Y.3
  • 3
    • 0032714536 scopus 로고    scopus 로고
    • A multivariate test of interaction for use in clinical trials
    • FOLLMANN, D. A. AND PROSCHAN, M. A. (1999). A multivariate test of interaction for use in clinical trials. Biometrics 55, 1151-1155.
    • (1999) Biometrics , vol.55 , pp. 1151-1155
    • Follmann, D.A.1    Proschan, M.A.2
  • 4
    • 0022072706 scopus 로고
    • Testing for qualitative interactions between treatment effects and patient subsets
    • GAIL, M. AND SIMON, R. (1985). Testing for qualitative interactions between treatment effects and patient subsets. Biometrics 41, 361-372.
    • (1985) Biometrics , vol.41 , pp. 361-372
    • Gail, M.1    Simon, R.2
  • 5
    • 84862908630 scopus 로고    scopus 로고
    • Variable selection for qualitative interactions in presonalized medicine while controlling the family-wise error rate
    • GUNTER, L., ZHU, J. AND MURPHY, S.A. (2011). Variable selection for qualitative interactions in presonalized medicine while controlling the family-wise error rate. Journal of Biopharmaceutical Statistics 21, 1063-1078.
    • (2011) Journal of Biopharmaceutical Statistics , vol.21 , pp. 1063-1078
    • Gunter, L.1    Zhu, J.2    Murphy, S.A.3
  • 6
    • 84927690481 scopus 로고    scopus 로고
    • Combining biomarkers to optimize patient treatment recommendations
    • KANG, C., JANES, H. AND HUANG, Y. (2014). Combining biomarkers to optimize patient treatment recommendations. Biometrics 70, 695-707.
    • (2014) Biometrics , vol.70 , pp. 695-707
    • Kang, C.1    Janes, H.2    Huang, Y.3
  • 7
    • 84877137844 scopus 로고    scopus 로고
    • Discovering, comparing, and combining moderators of treatment on outcome after randomized clinical trials: A parametric approach
    • KRAEMER, H. C. (2013). Discovering, comparing, and combining moderators of treatment on outcome after randomized clinical trials: a parametric approach. Statistics in Medicine 32, 1964-1973.
    • (2013) Statistics in Medicine , vol.32 , pp. 1964-1973
    • Kraemer, H.C.1
  • 8
    • 84941648353 scopus 로고    scopus 로고
    • Tree-based methods for individualized treatment regimes
    • LABER, E. B. AND ZHAO, Y.-Q. (2015). Tree-based methods for individualized treatment regimes. Biometrika 102, 501-514.
    • (2015) Biometrika , vol.102 , pp. 501-514
    • Laber, E.B.1    Zhao, Y.-Q.2
  • 10
    • 84919875390 scopus 로고    scopus 로고
    • Estimation of treatment policies based on functional predictors
    • MCKEAGUE, I.W. AND QIAN, M. (2014). Estimation of treatment policies based on functional predictors. Statistica Sinica 24, 1461-1485.
    • (2014) Statistica Sinica , vol.24 , pp. 1461-1485
    • McKeague, I.W.1    Qian, M.2
  • 12
    • 84870707096 scopus 로고    scopus 로고
    • Performance guarantees for individualized treatment rules
    • QIAN, M. AND MURPHY, S. (2011). Performance guarantees for individualized treatment rules. Annals of Statistics 39, 1180-1210.
    • (2011) Annals of Statistics , vol.39 , pp. 1180-1210
    • Qian, M.1    Murphy, S.2
  • 13
    • 33845913126 scopus 로고    scopus 로고
    • Optimal structured nested models for optimal sequential decisions
    • P. J. Heagerty and D. Y. Lina (editors), NewYork: Springer
    • ROBINS, J. M. (2004). Optimal structured nested models for optimal sequential decisions. In: P. J. Heagerty and D. Y. Lina (editors), Proceedings of the Second Seattle Symposium on Biostatistics. NewYork: Springer, pp. 189-326.
    • (2004) Proceedings of the Second Seattle Symposium on Biostatistics , pp. 189-326
    • Robins, J.M.1
  • 14
    • 53849122359 scopus 로고    scopus 로고
    • Estimation and extrapolation of optimal treatment and testing strategies
    • ROBINS, J., ORELLANA, L. AND ROTNIZKY, A. (2008). Estimation and extrapolation of optimal treatment and testing strategies. Statistics in Medicine 27, 4678-4721.
    • (2008) Statistics in Medicine , vol.27 , pp. 4678-4721
    • Robins, J.1    Orellana, L.2    Rotnizky, A.3
  • 16
    • 84939213760 scopus 로고    scopus 로고
    • On sparse representation for optimal individualized treatment selection with penalized outcome weighted learning
    • SONG, R., KOSOROK, M., ZENG, D., ZHAO, Y., LABER, E. B. AND YUAN, M. (2015). On sparse representation for optimal individualized treatment selection with penalized outcome weighted learning. Stat 4, 59-68.
    • (2015) Stat , vol.4 , pp. 59-68
    • Song, R.1    Kosorok, M.2    Zeng, D.3    Zhao, Y.4    Laber, E.B.5    Yuan, M.6
  • 17
    • 10944237674 scopus 로고    scopus 로고
    • Evaluating markers for selecting a patient's treatment
    • SONG, X. AND PEPE, M. S. (2004). Evaluating markers for selecting a patient's treatment. Biometrics 60, 874-883.
    • (2004) Biometrics , vol.60 , pp. 874-883
    • Song, X.1    Pepe, M.S.2
  • 18
    • 78650650451 scopus 로고    scopus 로고
    • Adaptive index models for market-based risk stratification
    • TIAN, L. AND TIBSHIRANI, R. J. (2011). Adaptive index models for market-based risk stratification. Biostatistics 12, 68-86.
    • (2011) Biostatistics , vol.12 , pp. 68-86
    • Tian, L.1    Tibshirani, R.J.2
  • 19
    • 0001388529 scopus 로고
    • Use of many covariates in clinical trials
    • TUKEY, J.W. (1991). Use of many covariates in clinical trials. International Statistical Review 59, 123-137.
    • (1991) International Statistical Review , vol.59 , pp. 123-137
    • Tukey, J.W.1
  • 20
    • 0027304920 scopus 로고
    • Tightening the clinical trial
    • TUKEY, J.W. (1993). Tightening the clinical trial. Controlled Clinical Trials 14, 266-285.
    • (1993) Controlled Clinical Trials , vol.14 , pp. 266-285
    • Tukey, J.W.1
  • 21
    • 84929286591 scopus 로고    scopus 로고
    • Detecting treatment-covariate interactions using permutation methods
    • WANG, R., SCHOENFELD, D. A., HOEPPNER, B. AND EVINS, A. E. (2015). Detecting treatment-covariate interactions using permutation methods. Statistics in Medicine 34, 2035-2047.
    • (2015) Statistics in Medicine , vol.34 , pp. 2035-2047
    • Wang, R.1    Schoenfeld, D.A.2    Hoeppner, B.3    Evins, A.E.4
  • 22
    • 84875604882 scopus 로고    scopus 로고
    • Detecting moderator effects using subgroup analyses
    • WANG, R. AND WARE, J. H. (2013). Detecting moderator effects using subgroup analyses. Prevention Science 14, 111-120.
    • (2013) Prevention Science , vol.14 , pp. 111-120
    • Wang, R.1    Ware, J.H.2
  • 23
    • 0031326688 scopus 로고    scopus 로고
    • Testing for absence of qualitative interactions between risk factors and treatment effect
    • WELLEK, S. (1997). Testing for absence of qualitative interactions between risk factors and treatment effect. Biometrical Journal 39, 809-821.
    • (1997) Biometrical Journal , vol.39 , pp. 809-821
    • Wellek, S.1
  • 24
    • 84906088229 scopus 로고    scopus 로고
    • Estimating optimal treatment regimes from classification perspective
    • ZHANG, B., TSIATIS, A. A., DAVIDIAN, M., ZHANG, M. AND LABER, E. (2012a). Estimating optimal treatment regimes from classification perspective. Stat 1, 103-114.
    • (2012) Stat , vol.1 , pp. 103-114
    • Zhang, B.1    Tsiatis, A.A.2    Davidian, M.3    Zhang, M.4    Laber, E.5
  • 25
    • 84871667403 scopus 로고    scopus 로고
    • Arobust method for estimating optimal treatment regimes
    • ZHANG, B., TSIATIS, A. A., LABER, E. B. AND DAVIDIAN, M. (2012b). Arobust method for estimating optimal treatment regimes. Biometrics 68, 1010-1018.
    • (2012) Biometrics , vol.68 , pp. 1010-1018
    • Zhang, B.1    Tsiatis, A.A.2    Laber, E.B.3    Davidian, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.