메뉴 건너뛰기




Volumn 69, Issue 3, 2013, Pages 714-723

Inference for Optimal Dynamic Treatment Regimes Using an Adaptive m-Out-of-n Bootstrap Scheme

Author keywords

Dynamic Treatment Regime; m Out of n Bootstrap; Nonregularity; Q learning

Indexed keywords

LEARNING ALGORITHMS; STATISTICAL METHODS;

EID: 84901199092     PISSN: 0006341X     EISSN: 15410420     Source Type: Journal    
DOI: 10.1111/biom.12052     Document Type: Article
Times cited : (108)

References (42)
  • 1
    • 85153169642 scopus 로고
    • Dynamic programming. Princeton University Press, Princeton.
    • Bellman, R. (1957). Dynamic programming. Princeton University Press, Princeton.
    • (1957)
    • Bellman, R.1
  • 2
    • 0000485156 scopus 로고
    • Some asymptotic theory for the bootstrap
    • and
    • Bickel, P. J. and Freedman, D. A. (1981). Some asymptotic theory for the bootstrap. The Annals of Statistics 9, 1196-1217.
    • (1981) The Annals of Statistics , vol.9 , pp. 1196-1217
    • Bickel, P.1    Freedman, D.2
  • 3
    • 0642310183 scopus 로고    scopus 로고
    • Resampling fewer than n observations: gains, losses and remedies for losses
    • and
    • Bickel P., Gotze F., and van Zwet W. (1997). Resampling fewer than n observations: gains, losses and remedies for losses. Statistica Sinica 7, 1-31.
    • (1997) Statistica Sinica , vol.7 , pp. 1-31
    • Bickel, P.1    Gotze, F.2    van Zwet, W.3
  • 4
    • 53349123556 scopus 로고    scopus 로고
    • On the choice of m in the m out of n bootstrap and confidence bounds for extrema
    • and
    • Bickel, P. and Sakov, A. (2008). On the choice of m in the m out of n bootstrap and confidence bounds for extrema. Statistica Sinica 18, 967-985.
    • (2008) Statistica Sinica , vol.18 , pp. 967-985
    • Bickel, P.1    Sakov, A.2
  • 5
    • 0011661490 scopus 로고
    • Lois limites du bootstrap de certaines fonctionnelles
    • In Annales de l'IHP Probabilités et statistiques, volume 19, pages Elsevier.
    • Bretagnolle, J. (1983). Lois limites du bootstrap de certaines fonctionnelles. In Annales de l'IHP Probabilités et statistiques, volume 19, pages 281-296. Elsevier.
    • (1983) , pp. 281-296
    • Bretagnolle, J.1
  • 7
    • 30744450720 scopus 로고    scopus 로고
    • Iterating the m out of n bootstrap in nonregular smooth function models
    • and
    • Cheung, K. Y., Lee, S. M. S., and Young, G. A. (2005). Iterating the m out of n bootstrap in nonregular smooth function models. Statistica Sinica 15, 945-967.
    • (2005) Statistica Sinica , vol.15 , pp. 945-967
    • Cheung, K.1    Lee, S.M.2    Young, G.3
  • 8
    • 85153168332 scopus 로고    scopus 로고
    • and. Bootstrap methods and their application. Cambridge University Press, Cambridge, UK.
    • Davison, A. C. and Hinkley, D. V. (1997). Bootstrap methods and their application. Cambridge University Press, Cambridge, UK.
    • (1997)
    • Davison, A.1    Hinkley, D.2
  • 9
    • 7744234104 scopus 로고    scopus 로고
    • Placebo-free designs for evaluating new mental health treatments: the use of adaptive treatment strategies
    • and pages
    • Dawson, R. and Lavori, P. (2004). Placebo-free designs for evaluating new mental health treatments: the use of adaptive treatment strategies. Statistics in Medicinepages 3249-3262.
    • (2004) Statistics in Medicine , pp. 3249-3262
    • Dawson, R.1    Lavori, P.2
  • 10
    • 21144474615 scopus 로고
    • On nondifferentiable functions and the bootstrap
    • pages
    • Dümbgen, L. (1993). On nondifferentiable functions and the bootstrap. Probability Theory and Related Fieldspages 125-140.
    • (1993) Probability Theory and Related Fields , pp. 125-140
    • Dümbgen, L.1
  • 11
    • 0002344794 scopus 로고
    • Bootstrap methods: Another look at the jackknife
    • Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Annals of Statistics 7, 1-26.
    • (1979) Annals of Statistics , vol.7 , pp. 1-26
    • Efron, B.1
  • 12
    • 85153164197 scopus 로고
    • and. An Introduction to the Bootstrap, volume 57. Chapman & Hall/CRC, Boca Raton, Florida.
    • Efron, B. and Tibshirani, R. (1993). An Introduction to the Bootstrap, volume 57. Chapman & Hall/CRC, Boca Raton, Florida.
    • (1993)
    • Efron, B.1    Tibshirani, R.2
  • 15
    • 77956890307 scopus 로고
    • On blocking rules for the bootstrap with dependent data
    • and
    • Hall, P., Horowitz, J., and Jing, B. (1995). On blocking rules for the bootstrap with dependent data. Biometrika 82, 561-574.
    • (1995) Biometrika , vol.82 , pp. 561-574
    • Hall, P.1    Horowitz, J.2    Jing, B.3
  • 16
    • 85153159416 scopus 로고    scopus 로고
    • and. Impossibility results for nondifferentiable functionals. Econometrica forthcoming.
    • Hirano, K. and Porter, J. (2012). Impossibility results for nondifferentiable functionals. Econometrica forthcoming.
    • (2012)
    • Hirano, K.1    Porter, J.2
  • 17
    • 21344450459 scopus 로고    scopus 로고
    • Bootstrapping a sample quantile when the density has a jump
    • and
    • Huang, J., Sen, P., and Shao, J. (1996). Bootstrapping a sample quantile when the density has a jump. Statistica Sinica 6, 299-309.
    • (1996) Statistica Sinica , vol.6 , pp. 299-309
    • Huang, J.1    Sen, P.2    Shao, J.3
  • 18
    • 80054681541 scopus 로고    scopus 로고
    • Adaptive confidence intervals for the test error in classification
    • and
    • Laber, E. and Murphy, S. (2011). Adaptive confidence intervals for the test error in classification. Journal of the American Statistical Association 106, 904-913.
    • (2011) Journal of the American Statistical Association , vol.106 , pp. 904-913
    • Laber, E.1    Murphy, S.2
  • 19
    • 85153144201 scopus 로고    scopus 로고
    • and. Statistical inference in dynamic treatment regimes. arXiv:1006.5831v2 [stat.ME].
    • Laber, E., Qian, M., Lizotte, D., and Murphy, S. (2012). Statistical inference in dynamic treatment regimes. arXiv:1006.5831v2 [stat.ME].
    • (2012)
    • Laber, E.1    Qian, M.2    Lizotte, D.3    Murphy, S.4
  • 20
    • 0034364917 scopus 로고    scopus 로고
    • A design for testing clinical strategies: biased adaptive within-subject randomization
    • and
    • Lavori, P. and Dawson, R. (2000). A design for testing clinical strategies: biased adaptive within-subject randomization. Journal of the Royal Statistical Society, Series A 163, 29-38.
    • (2000) Journal of the Royal Statistical Society, Series A , vol.163 , pp. 29-38
    • Lavori, P.1    Dawson, R.2
  • 21
    • 85047692405 scopus 로고    scopus 로고
    • Dynamic treatment regimes: practical design considerations
    • and
    • Lavori, P. and Dawson, R. (2004). Dynamic treatment regimes: practical design considerations. Clinical Trials 1, 9-20.
    • (2004) Clinical Trials , vol.1 , pp. 9-20
    • Lavori, P.1    Dawson, R.2
  • 22
    • 0033475168 scopus 로고    scopus 로고
    • On a class of m out of n bootstrap confidence intervals
    • Lee, S. (1999). On a class of m out of n bootstrap confidence intervals. Journal of the Royal Statistical Society, Series B 61, 901-911.
    • (1999) Journal of the Royal Statistical Society, Series B , vol.61 , pp. 901-911
    • Lee, S.1
  • 23
    • 77949537979 scopus 로고    scopus 로고
    • Estimating optimal dynamic regimes: correcting bias under the null
    • and
    • Moodie, E. and Richardson, T. (2010). Estimating optimal dynamic regimes: correcting bias under the null. Scandinavian Journal of Statistics 37, 126-146.
    • (2010) Scandinavian Journal of Statistics , vol.37 , pp. 126-146
    • Moodie, E.1    Richardson, T.2
  • 25
    • 19144362679 scopus 로고    scopus 로고
    • An experimental design for the development of adaptive treatment strategies
    • Murphy, S. (2005a). An experimental design for the development of adaptive treatment strategies. Statistics in Medicine 24, 1455-1481.
    • (2005) Statistics in Medicine , vol.24 , pp. 1455-1481
    • Murphy, S.1
  • 26
    • 23244437791 scopus 로고    scopus 로고
    • A generalization error for q-learning
    • Murphy, S. A. (2005b). A generalization error for q-learning. Journal of Machine Learning Research 6, 1073-1097.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1073-1097
    • Murphy, S.1
  • 27
    • 34047273906 scopus 로고    scopus 로고
    • Constructing evidence-based treatment strategies using methods from computer science
    • and
    • Pineau, J., Bellernare, M., Rush, A., Ghizaru, A., and Murphy, S. (2007). Constructing evidence-based treatment strategies using methods from computer science. Drug and Alcohol Dependence 88, S52-S60.
    • (2007) Drug and Alcohol Dependence , vol.88
    • Pineau, J.1    Bellernare, M.2    Rush, A.3    Ghizaru, A.4    Murphy, S.5
  • 28
    • 85153162052 scopus 로고    scopus 로고
    • and. Subsampling. Springer Verlag, New York.
    • Politis, D., Romano, J., and Wolf, M. (1999). Subsampling. Springer Verlag, New York.
    • (1999)
    • Politis, D.1    Romano, J.2    Wolf, M.3
  • 29
    • 85153163829 scopus 로고    scopus 로고
    • Confidence sets based on sparse estimators are necessarily large. Arxiv preprint arXiv:0711.1036.
    • Pötscher, B. (2007). Confidence sets based on sparse estimators are necessarily large. Arxiv preprint arXiv:0711.1036.
    • (2007)
    • Pötscher, B.1
  • 30
    • 85153160268 scopus 로고    scopus 로고
    • and. Confidence sets based on penalized maximum likelihood estimators. Mpra paper, University Library of Munich, Germany.
    • Pötscher, B. M. and Schneider, U. (2008). Confidence sets based on penalized maximum likelihood estimators. Mpra paper, University Library of Munich, Germany.
    • (2008)
    • Pötscher, B.1    Schneider, U.2
  • 31
    • 85153156923 scopus 로고    scopus 로고
    • Optimal structural nested models for optimal sequential decisions. In Lin, D. Y. and Heagerty, P., editors, Proceedings of the Second Seattle Symposium on Biostatistics 189-326, New York, Springer.
    • Robins J. M. (2004). Optimal structural nested models for optimal sequential decisions. In Lin, D. Y. and Heagerty, P., editors, Proceedings of the Second Seattle Symposium on Biostatistics, pp. 189-326, New York, Springer.
    • (2004)
    • Robins, J.M.1
  • 34
    • 85153155580 scopus 로고    scopus 로고
    • and. Q- and a-learning methods for estimating optimal dynamic treatment regimes. Arxiv preprint arXiv:1202.4177.
    • Schulte, P.J., Tsiatis, A.A., Laber, E.B., and Davidian, M. (2012). Q- and a-learning methods for estimating optimal dynamic treatment regimes. Arxiv preprint arXiv:1202.4177.
    • (2012)
    • Schulte, P.J.1    Tsiatis, A.A.2    Laber, E.B.3    Davidian, M.4
  • 36
    • 0001514453 scopus 로고
    • A general theory for jackknife variance estimation
    • Shao, J. and Wu, C. (1989). A general theory for jackknife variance estimation. The Annals of Statisticspages 1176-1197.
    • (1989) The Annals of Statistics , pp. 1176-1197
    • Shao, J.1    Wu, C.2
  • 37
    • 79958787689 scopus 로고    scopus 로고
    • Informing sequential clinical decision-making through reinforcement learning: an empirical study
    • and
    • Shortreed, S., Laber, E., Lizotte, D., Stroup, T., Pineau, J., and Murphy, S. (2011). Informing sequential clinical decision-making through reinforcement learning: an empirical study. Machine Learning 84, 109-136.
    • (2011) Machine Learning , vol.84 , pp. 109-136
    • Shortreed, S.1    Laber, E.2    Lizotte, D.3    Stroup, T.4    Pineau, J.5    Murphy, S.6
  • 38
    • 85153145570 scopus 로고    scopus 로고
    • and. Penalized q-learning for dynamic treatment regimes. arXiv:1108.5338v1 [stat.ME].
    • Song, R., Wang, W., Zeng, D., and Kosorok, M. (2012). Penalized q-learning for dynamic treatment regimes. arXiv:1108.5338v1 [stat.ME].
    • (2012)
    • Song, R.1    Wang, W.2    Zeng, D.3    Kosorok, M.4
  • 39
    • 85153151998 scopus 로고    scopus 로고
    • and. Reinforcement learning: An introduction. MIT Press, Cambridge.
    • Sutton, R. and Barto, A. (1998). Reinforcement learning: An introduction. MIT Press, Cambridge.
    • (1998)
    • Sutton, R.1    Barto, A.2
  • 41
    • 85153149656 scopus 로고
    • Learning from delayed rewards. Ph.D. Thesis, Cambridge University.
    • Watkins, C. (1989). Learning from delayed rewards. Ph.D. Thesis, Cambridge University.
    • (1989)
    • Watkins, C.1
  • 42
    • 70449449564 scopus 로고    scopus 로고
    • Reinforcement learning design for cancer clinical trials
    • Zhao, Y., Kosorok, M., and Zeng, D. (2009) Reinforcement learning design for cancer clinical trials. Statistics in Medicine 28, 3294-3315.
    • (2009) Statistics in Medicine , vol.28 , pp. 3294-3315
    • Zhao, Y.1    Kosorok, M.2    Zeng, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.