메뉴 건너뛰기




Volumn 22, Issue 4, 2017, Pages 652-664

The use of nanoscaffolds and dendrimers in tissue engineering

Author keywords

[No Author keywords available]

Indexed keywords

DENDRIMER; MOLECULAR SCAFFOLD; BIOMATERIAL; NANOPARTICLE;

EID: 85014224887     PISSN: 13596446     EISSN: 18785832     Source Type: Journal    
DOI: 10.1016/j.drudis.2016.12.007     Document Type: Review
Times cited : (109)

References (119)
  • 1
    • 85006201188 scopus 로고    scopus 로고
    • Cellular and molecular basis of the imbalance between vascular damage and repair in ageing and age-related diseases: as biomarkers and targets for new treatments
    • 1 Madonna, R., et al. Cellular and molecular basis of the imbalance between vascular damage and repair in ageing and age-related diseases: as biomarkers and targets for new treatments. Mech. Ageing Dev. 159 (2016), 22–30.
    • (2016) Mech. Ageing Dev. , vol.159 , pp. 22-30
    • Madonna, R.1
  • 2
    • 84978869356 scopus 로고    scopus 로고
    • Delivering nucleic-acid based nanomedicines on biomaterial scaffolds for orthopedic tissue repair: challenges, progress and future perspectives
    • 2 Raftery, R.M., et al. Delivering nucleic-acid based nanomedicines on biomaterial scaffolds for orthopedic tissue repair: challenges, progress and future perspectives. Adv. Mater. 28 (2016), 5447–5469.
    • (2016) Adv. Mater. , vol.28 , pp. 5447-5469
    • Raftery, R.M.1
  • 3
    • 66249146049 scopus 로고    scopus 로고
    • Complexity in biomaterials for tissue engineering
    • 3 Place, E.S., et al. Complexity in biomaterials for tissue engineering. Nat. Mater. 8 (2009), 457–470.
    • (2009) Nat. Mater. , vol.8 , pp. 457-470
    • Place, E.S.1
  • 4
    • 84870023704 scopus 로고    scopus 로고
    • Evaluation of bone regeneration using the rat critical size calvarial defect
    • 4 Spicer, P.P., et al. Evaluation of bone regeneration using the rat critical size calvarial defect. Nat. Protoc. 7 (2012), 1918–1929.
    • (2012) Nat. Protoc. , vol.7 , pp. 1918-1929
    • Spicer, P.P.1
  • 5
    • 84992168461 scopus 로고    scopus 로고
    • Tissue-engineered trachea: A review
    • 5 Law, J.X., et al. Tissue-engineered trachea: A review. Int. J. Pediatr. Otorhinolaryngol 91 (2016), 55–63.
    • (2016) Int. J. Pediatr. Otorhinolaryngol , vol.91 , pp. 55-63
    • Law, J.X.1
  • 6
    • 84995418587 scopus 로고    scopus 로고
    • Review on organ transplantation: a social medical need
    • 6 Saxena, R., et al. Review on organ transplantation: a social medical need. J. Crit. Rev. 3 (2016), 23–29.
    • (2016) J. Crit. Rev. , vol.3 , pp. 23-29
    • Saxena, R.1
  • 7
    • 84952334199 scopus 로고    scopus 로고
    • The influence of immunosuppressive agents on the risk of de novo donor-specific hla antibody production in solid organ transplant recipients
    • 7 O'Leary, J.G., et al. The influence of immunosuppressive agents on the risk of de novo donor-specific hla antibody production in solid organ transplant recipients. Transplantation 100 (2016), 39–53.
    • (2016) Transplantation , vol.100 , pp. 39-53
    • O'Leary, J.G.1
  • 8
    • 84939574415 scopus 로고    scopus 로고
    • Rapamycin prolongs cardiac allograft survival in a mouse model by inducing myeloid-derived suppressor cells
    • 8 Nakamura, T., et al. Rapamycin prolongs cardiac allograft survival in a mouse model by inducing myeloid-derived suppressor cells. Am. J. Transplant. 15 (2015), 2364–2377.
    • (2015) Am. J. Transplant. , vol.15 , pp. 2364-2377
    • Nakamura, T.1
  • 9
    • 84957542047 scopus 로고    scopus 로고
    • An overview of tissue engineering as an alternative for toxicity assessment
    • 9 Garrod, M., Chau, D.Y.S., An overview of tissue engineering as an alternative for toxicity assessment. J. Pharm. Pharm. Sci. 19 (2016), 31–71.
    • (2016) J. Pharm. Pharm. Sci. , vol.19 , pp. 31-71
    • Garrod, M.1    Chau, D.Y.S.2
  • 10
    • 84947559026 scopus 로고    scopus 로고
    • A high stiffness bio-inspired hydrogel from the combination of a poly(amido amine) dendrimer with DOPA
    • 10 Wang, Y., et al. A high stiffness bio-inspired hydrogel from the combination of a poly(amido amine) dendrimer with DOPA. Chem. Commun. (Camb.) 51 (2015), 16786–16789.
    • (2015) Chem. Commun. (Camb.) , vol.51 , pp. 16786-16789
    • Wang, Y.1
  • 11
    • 84869419897 scopus 로고    scopus 로고
    • Engineering complex tissues
    • 11 Atala, A., et al. Engineering complex tissues. Sci. Transl. Med., 4, 2012, 160rv12.
    • (2012) Sci. Transl. Med. , vol.4 , pp. 160rv12
    • Atala, A.1
  • 12
    • 67650169752 scopus 로고    scopus 로고
    • Hydrogels as extracellular matrix mimics for 3D cell culture
    • 12 Tibbitt, M.W., Anseth, K.S., Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 103 (2009), 655–663.
    • (2009) Biotechnol. Bioeng. , vol.103 , pp. 655-663
    • Tibbitt, M.W.1    Anseth, K.S.2
  • 13
    • 84977880883 scopus 로고    scopus 로고
    • Current translational challenges for tissue engineering: 3D culture, nanotechnology, and decellularized matrices
    • 13 Sullivan, D.C., et al. Current translational challenges for tissue engineering: 3D culture, nanotechnology, and decellularized matrices. Curr. Pathobiol. Rep. 3 (2015), 99–106.
    • (2015) Curr. Pathobiol. Rep. , vol.3 , pp. 99-106
    • Sullivan, D.C.1
  • 14
    • 85018073206 scopus 로고    scopus 로고
    • Expediting the transition from replacement medicine to tissue engineering
    • 14 Coury, A.J., Expediting the transition from replacement medicine to tissue engineering. Regen. Biomater. 3 (2016), 111–113.
    • (2016) Regen. Biomater. , vol.3 , pp. 111-113
    • Coury, A.J.1
  • 15
    • 84947559026 scopus 로고    scopus 로고
    • A high stiffness bio-inspired hydrogel from the combination of a poly(amido amine) dendrimer with DOPA
    • 15 Wang, Y., et al. A high stiffness bio-inspired hydrogel from the combination of a poly(amido amine) dendrimer with DOPA. Chem. Commun. 51 (2015), 9996–10001.
    • (2015) Chem. Commun. , vol.51 , pp. 9996-10001
    • Wang, Y.1
  • 16
    • 84931858256 scopus 로고    scopus 로고
    • Bone engineering of maxillary sinus bone deficiencies using enriched cd90+ stem cell therapy: a randomized clinical trial
    • 16 Kaigler, D., et al. Bone engineering of maxillary sinus bone deficiencies using enriched cd90+ stem cell therapy: a randomized clinical trial. J. Bone Miner. Res. 30 (2015), 1206–1216.
    • (2015) J. Bone Miner. Res. , vol.30 , pp. 1206-1216
    • Kaigler, D.1
  • 17
    • 84921964678 scopus 로고    scopus 로고
    • Development of a tissue-engineering vascular graft for use in congenital heart surgery
    • 17 Shinoka, T., Development of a tissue-engineering vascular graft for use in congenital heart surgery. EBioMedicine 1 (2014), 12–13.
    • (2014) EBioMedicine , vol.1 , pp. 12-13
    • Shinoka, T.1
  • 18
    • 84875231374 scopus 로고    scopus 로고
    • Tissue engineering of blood vessels in cardiovascular disease: moving towards clinical translation
    • 18 Udelsman, B.V., et al. Tissue engineering of blood vessels in cardiovascular disease: moving towards clinical translation. Heart 99 (2013), 454–460.
    • (2013) Heart , vol.99 , pp. 454-460
    • Udelsman, B.V.1
  • 19
    • 84959441624 scopus 로고    scopus 로고
    • Anti-microbial dendrimers against multidrug-resistant P. aeruginosa enhance the angiogenic effect of biological burn-wound bandages
    • 19 Abdel-Sayed, P., et al. Anti-microbial dendrimers against multidrug-resistant P. aeruginosa enhance the angiogenic effect of biological burn-wound bandages. Sci. Rep. 6 (2016), 1857–1869.
    • (2016) Sci. Rep. , vol.6 , pp. 1857-1869
    • Abdel-Sayed, P.1
  • 20
    • 33846818621 scopus 로고    scopus 로고
    • Tissue engineering of vascularized cardiac muscle from human embryonic stem cells
    • 20 Caspi, O., et al. Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ. Res. 100 (2007), 263–272.
    • (2007) Circ. Res. , vol.100 , pp. 263-272
    • Caspi, O.1
  • 21
    • 34848863384 scopus 로고    scopus 로고
    • Adult mesenchymal stem cells for tissue engineering versus regenerative medicine
    • 21 Caplan, A.I., Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J. Cell. Physiol. 213 (2007), 341–347.
    • (2007) J. Cell. Physiol. , vol.213 , pp. 341-347
    • Caplan, A.I.1
  • 22
    • 84907966717 scopus 로고    scopus 로고
    • A comparison of the in vitro mineralisation and dentinogenic potential of mesenchymal stem cells derived from adipose tissue, bone marrow and dental pulp
    • 22 Davies, O.G., et al. A comparison of the in vitro mineralisation and dentinogenic potential of mesenchymal stem cells derived from adipose tissue, bone marrow and dental pulp. J. Bone Miner. Metab. 33 (2015), 371–382.
    • (2015) J. Bone Miner. Metab. , vol.33 , pp. 371-382
    • Davies, O.G.1
  • 23
    • 84959432033 scopus 로고    scopus 로고
    • Optimizing biomaterials for tissue engineering human bone using mesenchymal stem cells
    • 23 Weinand, C., et al. Optimizing biomaterials for tissue engineering human bone using mesenchymal stem cells. Plast. Reconstr. Surg. 137 (2016), 854–863.
    • (2016) Plast. Reconstr. Surg. , vol.137 , pp. 854-863
    • Weinand, C.1
  • 24
    • 84954177636 scopus 로고    scopus 로고
    • Adipose-derived endothelial and mesenchymal stem cells enhance vascular network formation on three-dimensional constructs in vitro
    • 24 Freiman, A., et al. Adipose-derived endothelial and mesenchymal stem cells enhance vascular network formation on three-dimensional constructs in vitro. Stem Cell Res. Ther. 71 (2016), 300–310.
    • (2016) Stem Cell Res. Ther. , vol.71 , pp. 300-310
    • Freiman, A.1
  • 25
    • 84928065581 scopus 로고    scopus 로고
    • Multiscale assembly for tissue engineering and regenerative medicine
    • 25 Guven, S., et al. Multiscale assembly for tissue engineering and regenerative medicine. Trends Biotechnol. 33 (2015), 269–279.
    • (2015) Trends Biotechnol. , vol.33 , pp. 269-279
    • Guven, S.1
  • 26
    • 84926418509 scopus 로고    scopus 로고
    • The current state of scaffolds for musculoskeletal regenerative applications
    • 26 Smith, B.D., Grande, D.A., The current state of scaffolds for musculoskeletal regenerative applications. Nat. Rev. Rheumatol. 11 (2015), 213–222.
    • (2015) Nat. Rev. Rheumatol. , vol.11 , pp. 213-222
    • Smith, B.D.1    Grande, D.A.2
  • 27
    • 52949146356 scopus 로고    scopus 로고
    • Applications of dendrimers in tissue engineering
    • 27 Joshi, N., Grinstaff, M., Applications of dendrimers in tissue engineering. Curr. Top. Med. Chem. 8 (2008), 1225–1236.
    • (2008) Curr. Top. Med. Chem. , vol.8 , pp. 1225-1236
    • Joshi, N.1    Grinstaff, M.2
  • 28
    • 85018069461 scopus 로고    scopus 로고
    • Biomimetic scaffolds for tissue engineering biomimetic scaffolds for skin and skeletal tissue engineering
    • 28 Cheung, A.T.M., et al. Biomimetic scaffolds for tissue engineering biomimetic scaffolds for skin and skeletal tissue engineering. J. Biotechnol. Biomater., 5, 2015, 191.
    • (2015) J. Biotechnol. Biomater. , vol.5 , pp. 191
    • Cheung, A.T.M.1
  • 29
    • 85018069461 scopus 로고    scopus 로고
    • Biomimetic scaffolds for skin and skeletal tissue engineering
    • 29 Cheung, A.T.M., et al. Biomimetic scaffolds for skin and skeletal tissue engineering. J. Biotechnol. Biomater., 5, 2015, 191.
    • (2015) J. Biotechnol. Biomater. , vol.5 , pp. 191
    • Cheung, A.T.M.1
  • 30
    • 84879325968 scopus 로고    scopus 로고
    • Controlled release strategies for bone, cartilage, and osteochondral engineering – Part I: Recapitulation of native tissue healing and variables for the design of delivery systems
    • 30 Santo, V.E., et al. Controlled release strategies for bone, cartilage, and osteochondral engineering – Part I: Recapitulation of native tissue healing and variables for the design of delivery systems. Tissue Eng. Part B: Rev. 19 (2013), 308–326.
    • (2013) Tissue Eng. Part B: Rev. , vol.19 , pp. 308-326
    • Santo, V.E.1
  • 31
    • 47749121495 scopus 로고    scopus 로고
    • Collagen scaffolds for tissue engineering
    • 31 Glowacki, J., Mizuno, S., Collagen scaffolds for tissue engineering. Biopolymers [Internet] 89 (2008), 338–344.
    • (2008) Biopolymers [Internet] , vol.89 , pp. 338-344
    • Glowacki, J.1    Mizuno, S.2
  • 32
    • 84970919073 scopus 로고    scopus 로고
    • Nanoparticle-based bioactive agent release systems for bone and cartilage tissue engineering
    • 32 Monteiro, N., et al. Nanoparticle-based bioactive agent release systems for bone and cartilage tissue engineering. Regen. Ther. 1 (2015), 109–118.
    • (2015) Regen. Ther. , vol.1 , pp. 109-118
    • Monteiro, N.1
  • 33
    • 10044251135 scopus 로고    scopus 로고
    • ® composite tubular foam scaffolds for tissue engineering applications
    • ® composite tubular foam scaffolds for tissue engineering applications. Mater. Sci. Eng. C 25 (2005), 23–31.
    • (2005) Mater. Sci. Eng. C , vol.25 , pp. 23-31
    • Boccaccini, A.R.1
  • 34
    • 34249950268 scopus 로고    scopus 로고
    • Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering
    • 34 Habraken, W.J.E.M., et al. Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. Adv. Drug Deliv. Rev. 59 (2007), 234–248.
    • (2007) Adv. Drug Deliv. Rev. , vol.59 , pp. 234-248
    • Habraken, W.J.E.M.1
  • 35
    • 84867204437 scopus 로고    scopus 로고
    • Chitosan/bioactive glass nanoparticles composites for biomedical applications
    • 35 Luz, G.M., Mano, J.F., Chitosan/bioactive glass nanoparticles composites for biomedical applications. Biomed. Mater., 7, 2012, 054104.
    • (2012) Biomed. Mater. , vol.7 , pp. 054104
    • Luz, G.M.1    Mano, J.F.2
  • 36
    • 84876679784 scopus 로고    scopus 로고
    • A tissue engineering approach based on the use of bioceramics for bone repair
    • 686–651
    • 36 Salinas, A.J., et al. A tissue engineering approach based on the use of bioceramics for bone repair. Biomater. Sci., 1, 2012 686–651.
    • (2012) Biomater. Sci. , vol.1
    • Salinas, A.J.1
  • 37
    • 0035671158 scopus 로고    scopus 로고
    • The design of scaffolds for use in tissue engineering. Part I. Traditional factors
    • 37 Yang, S., et al. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 7 (2001), 679–689.
    • (2001) Tissue Eng. , vol.7 , pp. 679-689
    • Yang, S.1
  • 38
    • 33748333100 scopus 로고    scopus 로고
    • The effect of anisotropic architecture on cell and tissue infiltration into tissue engineering scaffolds
    • 38 Silva, M.M.C.G., et al. The effect of anisotropic architecture on cell and tissue infiltration into tissue engineering scaffolds. Biomaterials 27 (2006), 5909–5917.
    • (2006) Biomaterials , vol.27 , pp. 5909-5917
    • Silva, M.M.C.G.1
  • 39
    • 84887925650 scopus 로고    scopus 로고
    • Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size
    • 39 Loh, Q.L., Choong, C., Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng. Part B: Rev. 19 (2013), 485–502.
    • (2013) Tissue Eng. Part B: Rev. , vol.19 , pp. 485-502
    • Loh, Q.L.1    Choong, C.2
  • 40
    • 2342500358 scopus 로고    scopus 로고
    • In vitro assessment of cell penetration into porous hydroxyapatite scaffolds with a central aligned channel
    • 40 Rose, F.R., et al. In vitro assessment of cell penetration into porous hydroxyapatite scaffolds with a central aligned channel. Biomaterials 25 (2004), 5507–5514.
    • (2004) Biomaterials , vol.25 , pp. 5507-5514
    • Rose, F.R.1
  • 41
    • 55649106158 scopus 로고    scopus 로고
    • Bioinspired tissue engineering: the great promise of protein delivery technologies
    • 41 Quaglia, F., Bioinspired tissue engineering: the great promise of protein delivery technologies. Int. J. Pharm. 364 (2008), 281–297.
    • (2008) Int. J. Pharm. , vol.364 , pp. 281-297
    • Quaglia, F.1
  • 42
    • 27944466697 scopus 로고    scopus 로고
    • Exploring and engineering the cell surface interface
    • 42 Stevens, M.M., George, J.H., Exploring and engineering the cell surface interface. Science 310 (2005), 1135–1138.
    • (2005) Science , vol.310 , pp. 1135-1138
    • Stevens, M.M.1    George, J.H.2
  • 43
    • 72149113088 scopus 로고    scopus 로고
    • Liposomal gene delivery mediated by tissue-engineered scaffolds
    • 43 Kulkarni, M., et al. Liposomal gene delivery mediated by tissue-engineered scaffolds. Trends Biotechnol. 28 (2010), 28–36.
    • (2010) Trends Biotechnol. , vol.28 , pp. 28-36
    • Kulkarni, M.1
  • 44
    • 84954317505 scopus 로고    scopus 로고
    • Harnessing hierarchical nano- and micro-fabrication technologies for musculoskeletal tissue engineering
    • 44 Abbah, S.A., et al. Harnessing hierarchical nano- and micro-fabrication technologies for musculoskeletal tissue engineering. Adv. Healthc. Mater. 4 (2015), 2488–2499.
    • (2015) Adv. Healthc. Mater. , vol.4 , pp. 2488-2499
    • Abbah, S.A.1
  • 45
    • 79952011307 scopus 로고    scopus 로고
    • Tissue engineering by self-assembly and bio-printing of living cells
    • 45 Jakab, K., et al. Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication, 2, 2010, 022001.
    • (2010) Biofabrication , vol.2 , pp. 022001
    • Jakab, K.1
  • 46
    • 0028454975 scopus 로고
    • Collagen fibres with improved strength for the repair of soft tissue injuries
    • 46 Wang, M.C., et al. Collagen fibres with improved strength for the repair of soft tissue injuries. Biomaterials 15 (1994), 507–512.
    • (1994) Biomaterials , vol.15 , pp. 507-512
    • Wang, M.C.1
  • 47
    • 42949178007 scopus 로고    scopus 로고
    • Extruded collagen-polyethylene glycol fibers for tissue engineering applications
    • 47 Zeugolis, D.I., et al. Extruded collagen-polyethylene glycol fibers for tissue engineering applications. J. Biomed. Mater. Res. B: Appl. Biomater. 85 (2008), 343–352.
    • (2008) J. Biomed. Mater. Res. B: Appl. Biomater. , vol.85 , pp. 343-352
    • Zeugolis, D.I.1
  • 48
    • 84870197482 scopus 로고    scopus 로고
    • Genipin crosslinking elevates the strength of electrochemically aligned collagen to the level of tendons
    • 48 Alfredo Uquillas, J., et al. Genipin crosslinking elevates the strength of electrochemically aligned collagen to the level of tendons. J. Mech. Behav. Biomed. Mater. 15 (2012), 176–189.
    • (2012) J. Mech. Behav. Biomed. Mater. , vol.15 , pp. 176-189
    • Alfredo Uquillas, J.1
  • 49
    • 0021325957 scopus 로고
    • Magnetic alignment of collagen during self-assembly
    • 49 Torbet, J., Ronzière, M.C., Magnetic alignment of collagen during self-assembly. Biochem. J. 219 (1984), 1057–1059.
    • (1984) Biochem. J. , vol.219 , pp. 1057-1059
    • Torbet, J.1    Ronzière, M.C.2
  • 50
    • 84904039153 scopus 로고    scopus 로고
    • Structural and biochemical modification of a collagen scaffold to selectively enhance msc tenogenic, chondrogenic, and osteogenic differentiation
    • 50 Caliari, S.R., Harley, B.A.C., Structural and biochemical modification of a collagen scaffold to selectively enhance msc tenogenic, chondrogenic, and osteogenic differentiation. Adv. Healthc. Mater. 3 (2014), 1086–1096.
    • (2014) Adv. Healthc. Mater. , vol.3 , pp. 1086-1096
    • Caliari, S.R.1    Harley, B.A.C.2
  • 51
    • 75149129940 scopus 로고    scopus 로고
    • Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method
    • 51 Wu, X., et al. Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. Acta Biomater. 6 (2010), 1167–1177.
    • (2010) Acta Biomater. , vol.6 , pp. 1167-1177
    • Wu, X.1
  • 52
    • 3042782581 scopus 로고    scopus 로고
    • Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems
    • 52 Hutmacher, D.W., et al. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol. 22 (2004), 354–362.
    • (2004) Trends Biotechnol. , vol.22 , pp. 354-362
    • Hutmacher, D.W.1
  • 53
    • 84869876690 scopus 로고    scopus 로고
    • Additive manufacturing techniques for the production of tissue engineering constructs
    • 53 Mota, C., et al. Additive manufacturing techniques for the production of tissue engineering constructs. J. Tissue Eng. Regen. Med. 9 (2015), 174–190.
    • (2015) J. Tissue Eng. Regen. Med. , vol.9 , pp. 174-190
    • Mota, C.1
  • 54
    • 33846267342 scopus 로고    scopus 로고
    • Cell electrospinning: a unique biotechnique for encapsulating living organisms for generating active biological microthreads/scaffolds
    • 54 Townsend-Nicholson, A., Jayasinghe, S.N., Cell electrospinning: a unique biotechnique for encapsulating living organisms for generating active biological microthreads/scaffolds. Biomacromolecules 7 (2006), 3364–3369.
    • (2006) Biomacromolecules , vol.7 , pp. 3364-3369
    • Townsend-Nicholson, A.1    Jayasinghe, S.N.2
  • 55
    • 32044456949 scopus 로고    scopus 로고
    • Electrohydrodynamic jet processing: an advanced electric-field-driven jetting phenomenon for processing living cells
    • 55 Jayasinghe, S.N., et al. Electrohydrodynamic jet processing: an advanced electric-field-driven jetting phenomenon for processing living cells. Small 2 (2006), 216–219.
    • (2006) Small , vol.2 , pp. 216-219
    • Jayasinghe, S.N.1
  • 56
    • 33847119347 scopus 로고    scopus 로고
    • Electrospinning for tissue engineering scaffolds
    • 56 Lannutti, J., et al. Electrospinning for tissue engineering scaffolds. Mater. Sci. Eng. C 27 (2007), 504–509.
    • (2007) Mater. Sci. Eng. C , vol.27 , pp. 504-509
    • Lannutti, J.1
  • 57
    • 84884817774 scopus 로고    scopus 로고
    • Cell electrospinning: a novel tool for functionalising fibres, scaffolds and membranes with living cells and other advanced materials for regenerative biology and medicine
    • 57 Jayasinghe, S.N., Cell electrospinning: a novel tool for functionalising fibres, scaffolds and membranes with living cells and other advanced materials for regenerative biology and medicine. Analyst 138 (2013), 2215–2223.
    • (2013) Analyst , vol.138 , pp. 2215-2223
    • Jayasinghe, S.N.1
  • 58
    • 79951639575 scopus 로고    scopus 로고
    • Bio-electrosprays: from bio-analytics to a generic tool for the health sciences
    • 58 Jayasinghe, S.N., Bio-electrosprays: from bio-analytics to a generic tool for the health sciences. Analyst 136 (2011), 878–890.
    • (2011) Analyst , vol.136 , pp. 878-890
    • Jayasinghe, S.N.1
  • 59
    • 84884273340 scopus 로고    scopus 로고
    • Electrospinning of nanofibers for tissue engineering applications
    • 59 Liu, H., et al. Electrospinning of nanofibers for tissue engineering applications. J. Nanomater. 2013 (2013), 1–11.
    • (2013) J. Nanomater. , vol.2013 , pp. 1-11
    • Liu, H.1
  • 60
    • 84875867620 scopus 로고    scopus 로고
    • Tendon healing and anti-adhesion properties of electrospun fibrous membranes containing bFGF loaded nanoparticles
    • 60 Liu, S., et al. Tendon healing and anti-adhesion properties of electrospun fibrous membranes containing bFGF loaded nanoparticles. Biomaterials 34 (2013), 4690–4701.
    • (2013) Biomaterials , vol.34 , pp. 4690-4701
    • Liu, S.1
  • 61
    • 84857528561 scopus 로고    scopus 로고
    • Preferential cell response to anisotropic electro-spun fibrous scaffolds under tension-free conditions
    • 61 English, A., et al. Preferential cell response to anisotropic electro-spun fibrous scaffolds under tension-free conditions. J. Mater. Sci. Mater. Med. 23 (2012), 137–148.
    • (2012) J. Mater. Sci. Mater. Med. , vol.23 , pp. 137-148
    • English, A.1
  • 62
    • 38449106637 scopus 로고    scopus 로고
    • Enhancement of in vitro capillary tube formation by substrate nanotopography
    • 62 Bettinger, C.J., et al. Enhancement of in vitro capillary tube formation by substrate nanotopography. Adv. Mater. 20 (2008), 99–103.
    • (2008) Adv. Mater. , vol.20 , pp. 99-103
    • Bettinger, C.J.1
  • 63
    • 60549098069 scopus 로고    scopus 로고
    • Stem cell fate dictated solely by altered nanotube dimension
    • 63 Oh, S., et al. Stem cell fate dictated solely by altered nanotube dimension. Proc. Natl. Acad. Sci. U. S. A. 106 (2009), 2130–2135.
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , pp. 2130-2135
    • Oh, S.1
  • 64
    • 84958982363 scopus 로고    scopus 로고
    • Advancing biomaterials of human origin for tissue engineering
    • 64 Chen, F.-M., Liu, X., Advancing biomaterials of human origin for tissue engineering. Prog. Polym. Sci. 53 (2016), 86–168.
    • (2016) Prog. Polym. Sci. , vol.53 , pp. 86-168
    • Chen, F.-M.1    Liu, X.2
  • 65
    • 33947150969 scopus 로고    scopus 로고
    • Nanostructured materials for applications in drug delivery and tissue engineering
    • 65 Goldberg, M., et al. Nanostructured materials for applications in drug delivery and tissue engineering. J. Biomater. Sci. Polym. Ed. 18 (2007), 241–268.
    • (2007) J. Biomater. Sci. Polym. Ed. , vol.18 , pp. 241-268
    • Goldberg, M.1
  • 66
    • 27644579095 scopus 로고    scopus 로고
    • Development of nanocomposites for bone grafting
    • 66 Murugan, R., Ramakrishna, S., Development of nanocomposites for bone grafting. Compos. Sci. Technol. 65 (2005), 2385–2406.
    • (2005) Compos. Sci. Technol. , vol.65 , pp. 2385-2406
    • Murugan, R.1    Ramakrishna, S.2
  • 67
    • 70449427826 scopus 로고    scopus 로고
    • Carbon nanotubes in scaffolds for tissue engineering
    • 67 Edwards, S.L., et al. Carbon nanotubes in scaffolds for tissue engineering. Expert Rev. Med. Devices 6 (2009), 499–505.
    • (2009) Expert Rev. Med. Devices , vol.6 , pp. 499-505
    • Edwards, S.L.1
  • 68
    • 44149127749 scopus 로고    scopus 로고
    • Biodegradable polymer tubes with lithographically controlled 3D micro- and nanotopography
    • 68 Seunarine, K., et al. Biodegradable polymer tubes with lithographically controlled 3D micro- and nanotopography. Microelectron. Eng. 85 (2008), 1350–1354.
    • (2008) Microelectron. Eng. , vol.85 , pp. 1350-1354
    • Seunarine, K.1
  • 69
    • 36148968810 scopus 로고    scopus 로고
    • Controlled dual release of basic fibroblast growth factor and indomethacin from heparin-conjugated polymeric micelle
    • 69 Lee, J.S., et al. Controlled dual release of basic fibroblast growth factor and indomethacin from heparin-conjugated polymeric micelle. Int. J. Pharm. 346 (2008), 57–63.
    • (2008) Int. J. Pharm. , vol.346 , pp. 57-63
    • Lee, J.S.1
  • 70
    • 68749095864 scopus 로고    scopus 로고
    • In vitro and in vivo chondrogenesis of rabbit bone marrow-derived stromal cells in fibrin matrix mixed with growth factor loaded in nanoparticles
    • 70 Park, J.S., et al. In vitro and in vivo chondrogenesis of rabbit bone marrow-derived stromal cells in fibrin matrix mixed with growth factor loaded in nanoparticles. Tissue Eng. Part A 15 (2009), 2163–2175.
    • (2009) Tissue Eng. Part A , vol.15 , pp. 2163-2175
    • Park, J.S.1
  • 71
    • 84885666145 scopus 로고    scopus 로고
    • Dendrimers for enhanced drug solubilization
    • Dionysios Douroumis Alfred Fahr John Wiley & Sons
    • 71 Jain, N.K., Tekade, R.K., Dendrimers for enhanced drug solubilization. Douroumis, Dionysios, Fahr, Alfred, (eds.) Drug Delivery Strategies for Poorly Water-Soluble Drugs, 2013, John Wiley & Sons, 373–409.
    • (2013) Drug Delivery Strategies for Poorly Water-Soluble Drugs , pp. 373-409
    • Jain, N.K.1    Tekade, R.K.2
  • 72
    • 84962052421 scopus 로고    scopus 로고
    • Luteinizing hormone-releasing hormone peptide tethered nanoparticulate system for enhanced antitumoral efficacy of paclitaxel
    • 72 Ghanghoria, R., et al. Luteinizing hormone-releasing hormone peptide tethered nanoparticulate system for enhanced antitumoral efficacy of paclitaxel. Nanomedicine (Lond.) 11 (2016), 797–816.
    • (2016) Nanomedicine (Lond.) , vol.11 , pp. 797-816
    • Ghanghoria, R.1
  • 73
    • 84946036128 scopus 로고    scopus 로고
    • Nanomaterial based approaches for the diagnosis and therapy of cardiovascular diseases
    • 73 Sharma, P.A., et al. Nanomaterial based approaches for the diagnosis and therapy of cardiovascular diseases. Curr. Pharm. Des. 21 (2015), 4465–4478.
    • (2015) Curr. Pharm. Des. , vol.21 , pp. 4465-4478
    • Sharma, P.A.1
  • 74
    • 84875926133 scopus 로고    scopus 로고
    • Nanoparticulate carrier mediated intranasal delivery of insulin for the restoration of memory signaling in Alzheimer's disease
    • 74 Dwivedi, P., et al. Nanoparticulate carrier mediated intranasal delivery of insulin for the restoration of memory signaling in Alzheimer's disease. Curr. Nanosci. 9 (2013), 46–55.
    • (2013) Curr. Nanosci. , vol.9 , pp. 46-55
    • Dwivedi, P.1
  • 75
    • 84979031454 scopus 로고    scopus 로고
    • Augmented delivery of gemcitabine in lung cancer cells exploring mannose anchored solid lipid nanoparticles
    • 75 Soni, N., et al. Augmented delivery of gemcitabine in lung cancer cells exploring mannose anchored solid lipid nanoparticles. J. Colloid Interface Sci. 481 (2016), 107–116.
    • (2016) J. Colloid Interface Sci. , vol.481 , pp. 107-116
    • Soni, N.1
  • 76
    • 84870310822 scopus 로고    scopus 로고
    • Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers
    • 76 Wahajuddin, A.S., Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int. J. Nanomedicine 7 (2012), 3445–3471.
    • (2012) Int. J. Nanomedicine , vol.7 , pp. 3445-3471
    • Wahajuddin, A.S.1
  • 77
    • 84957584263 scopus 로고    scopus 로고
    • Theranostic nanoseeds for efficacious internal radiation therapy of unresectable solid tumors
    • 77 Moeendarbari, S., et al. Theranostic nanoseeds for efficacious internal radiation therapy of unresectable solid tumors. Sci. Rep. 6 (2016), 97–118.
    • (2016) Sci. Rep. , vol.6 , pp. 97-118
    • Moeendarbari, S.1
  • 78
    • 84888635702 scopus 로고    scopus 로고
    • Improvement of cellular uptake, in vitro antitumor activity and sustained release profile with increased bioavailability from a nanoemulsion platform
    • 78 Choudhury, H., et al. Improvement of cellular uptake, in vitro antitumor activity and sustained release profile with increased bioavailability from a nanoemulsion platform. Int. J. Pharm. 460 (2014), 131–143.
    • (2014) Int. J. Pharm. , vol.460 , pp. 131-143
    • Choudhury, H.1
  • 79
    • 84885605439 scopus 로고    scopus 로고
    • STAT6 siRNA matrix-loaded gelatin nanocarriers: formulation, characterization, and ex vivo proof of concept using adenocarcinoma cells
    • 79 Youngren, S.R., et al. STAT6 siRNA matrix-loaded gelatin nanocarriers: formulation, characterization, and ex vivo proof of concept using adenocarcinoma cells. Biomed Res. Int., 2013, 1–13.
    • (2013) Biomed Res. Int. , pp. 1-13
    • Youngren, S.R.1
  • 80
    • 84920506822 scopus 로고    scopus 로고
    • Glycyrrhizin conjugated dendrimer and multi-walled carbon nanotubes for liver specific delivery of doxorubicin
    • 80 Chopdey, P.K., et al. Glycyrrhizin conjugated dendrimer and multi-walled carbon nanotubes for liver specific delivery of doxorubicin. J. Nanosci. Nanotechnol. 15 (2015), 1088–1100.
    • (2015) J. Nanosci. Nanotechnol. , vol.15 , pp. 1088-1100
    • Chopdey, P.K.1
  • 81
    • 0030199872 scopus 로고    scopus 로고
    • Effect of polymeric nanoparticle administration on the clearance activity of the mononuclear phagocyte system in mice
    • 81 Fernández-Urrusuno, R., et al. Effect of polymeric nanoparticle administration on the clearance activity of the mononuclear phagocyte system in mice. J. Biomed. Mater. Res. 31 (1996), 401–408.
    • (1996) J. Biomed. Mater. Res. , vol.31 , pp. 401-408
    • Fernández-Urrusuno, R.1
  • 82
    • 0024948138 scopus 로고
    • Blood clearance and organ distribution of intravenously administered polymethacrylic nanoparticles in mice
    • 82 Rolland, A., et al. Blood clearance and organ distribution of intravenously administered polymethacrylic nanoparticles in mice. J. Pharm. Sci. 78 (1989), 481–484.
    • (1989) J. Pharm. Sci. , vol.78 , pp. 481-484
    • Rolland, A.1
  • 83
    • 84887653585 scopus 로고    scopus 로고
    • Graphene-based nanomaterials for drug delivery and tissue engineering
    • 83 Goenka, S., et al. Graphene-based nanomaterials for drug delivery and tissue engineering. J. Control. Release 173 (2014), 75–88.
    • (2014) J. Control. Release , vol.173 , pp. 75-88
    • Goenka, S.1
  • 84
    • 84968584122 scopus 로고    scopus 로고
    • Dendrimers and dendrons as versatile building blocks for the fabrication of functional hydrogels
    • 84 Kaga, S., et al. Dendrimers and dendrons as versatile building blocks for the fabrication of functional hydrogels. Molecules, 21, 2016, 497.
    • (2016) Molecules , vol.21 , pp. 497
    • Kaga, S.1
  • 85
    • 84903199958 scopus 로고    scopus 로고
    • A novel poly(amido amine)-dendrimer-based hydrogel as a mimic for the extracellular matrix
    • 85 Wang, Y., et al. A novel poly(amido amine)-dendrimer-based hydrogel as a mimic for the extracellular matrix. Adv. Mater. 26 (2014), 4163–4167.
    • (2014) Adv. Mater. , vol.26 , pp. 4163-4167
    • Wang, Y.1
  • 86
    • 84946051633 scopus 로고    scopus 로고
    • Nanocarriers assisted sirna gene therapy for the management of cardiovascular disorders
    • 86 Maheshwari, R., et al. Nanocarriers assisted sirna gene therapy for the management of cardiovascular disorders. Curr. Pharm. Des. 21 (2015), 4427–4440.
    • (2015) Curr. Pharm. Des. , vol.21 , pp. 4427-4440
    • Maheshwari, R.1
  • 87
    • 85025145092 scopus 로고    scopus 로고
    • Abstract 3680: albumin–chitosan hybrid onconase nanocarriers for mesothelioma therapy
    • 87 Tekade, R.K., et al. Abstract 3680: albumin–chitosan hybrid onconase nanocarriers for mesothelioma therapy. Cancer Res., 75, 2015, 3680.
    • (2015) Cancer Res. , vol.75 , pp. 3680
    • Tekade, R.K.1
  • 88
    • 84979008645 scopus 로고    scopus 로고
    • RNAi-combined nano-chemotherapeutics to tackle resistant tumors
    • 88 Tekade, R.K., et al. RNAi-combined nano-chemotherapeutics to tackle resistant tumors. Drug Discov. Today 21 (2016), 1761–1774.
    • (2016) Drug Discov. Today , vol.21 , pp. 1761-1774
    • Tekade, R.K.1
  • 89
    • 80051675175 scopus 로고    scopus 로고
    • Evaluation of dendrimer safety and efficacy through cell line studies
    • 89 Kesharwani, P., et al. Evaluation of dendrimer safety and efficacy through cell line studies. Curr. Drug Targets 12 (2011), 1478–1497.
    • (2011) Curr. Drug Targets , vol.12 , pp. 1478-1497
    • Kesharwani, P.1
  • 90
    • 79956340892 scopus 로고    scopus 로고
    • Cancer targeting potential of some ligand-anchored poly(propylene imine) dendrimers: a comparison
    • 90 Kesharwani, P., et al. Cancer targeting potential of some ligand-anchored poly(propylene imine) dendrimers: a comparison. Nanomedicine 7 (2011), 295–304.
    • (2011) Nanomedicine , vol.7 , pp. 295-304
    • Kesharwani, P.1
  • 91
    • 84939986764 scopus 로고    scopus 로고
    • Dendrimer generational nomenclature: the need to harmonize
    • 91 Kesharwani, P., et al. Dendrimer generational nomenclature: the need to harmonize. Drug Discov. Today 20 (2015), 497–499.
    • (2015) Drug Discov. Today , vol.20 , pp. 497-499
    • Kesharwani, P.1
  • 92
    • 84930358373 scopus 로고    scopus 로고
    • One platform comparison of solubilization potential of dendrimer with some solubilizing agents
    • 92 Jain, S., et al. One platform comparison of solubilization potential of dendrimer with some solubilizing agents. Drug Dev. Ind. Pharm. 41 (2015), 722–727.
    • (2015) Drug Dev. Ind. Pharm. , vol.41 , pp. 722-727
    • Jain, S.1
  • 93
    • 70350404331 scopus 로고    scopus 로고
    • Exploring dendrimer towards dual drug delivery: pH responsive simultaneous drug-release kinetics
    • 93 Tekade, R.K., et al. Exploring dendrimer towards dual drug delivery: pH responsive simultaneous drug-release kinetics. J. Microencapsul. 26 (2009), 287–296.
    • (2009) J. Microencapsul. , vol.26 , pp. 287-296
    • Tekade, R.K.1
  • 94
    • 84922998546 scopus 로고    scopus 로고
    • Dendrimer-stabilized smart-nanoparticle (DSSN) platform for targeted delivery of hydrophobic antitumor therapeutics
    • 94 Tekade, R.K., et al. Dendrimer-stabilized smart-nanoparticle (DSSN) platform for targeted delivery of hydrophobic antitumor therapeutics. Pharm. Res. 32 (2015), 910–928.
    • (2015) Pharm. Res. , vol.32 , pp. 910-928
    • Tekade, R.K.1
  • 95
    • 84925510347 scopus 로고    scopus 로고
    • Generation dependent safety and efficacy of folic acid conjugated dendrimer based anticancer drug formulations
    • 95 Kesharwani, P., et al. Generation dependent safety and efficacy of folic acid conjugated dendrimer based anticancer drug formulations. Pharm. Res. 32 (2015), 1438–1450.
    • (2015) Pharm. Res. , vol.32 , pp. 1438-1450
    • Kesharwani, P.1
  • 96
    • 84898040575 scopus 로고    scopus 로고
    • Dendrimer, liposomes, carbon nanotubes and PLGA nanoparticles: one platform assessment of drug delivery potential
    • 96 Mody, N., et al. Dendrimer, liposomes, carbon nanotubes and PLGA nanoparticles: one platform assessment of drug delivery potential. AAPS PharmSciTech, 15, 2014, 388.
    • (2014) AAPS PharmSciTech , vol.15 , pp. 388
    • Mody, N.1
  • 97
    • 67249135321 scopus 로고    scopus 로고
    • Dendimer-mediated solubilization, formulation development and in vitro–in vivo assessment of piroxicam
    • 97 Prajapati, R.N., et al. Dendimer-mediated solubilization, formulation development and in vitro–in vivo assessment of piroxicam. Mol. Pharm. 6 (2009), 940–950.
    • (2009) Mol. Pharm. , vol.6 , pp. 940-950
    • Prajapati, R.N.1
  • 98
    • 70349129495 scopus 로고    scopus 로고
    • Dendrimers: emerging polymers for drug-delivery systems
    • 98 Nanjwade, B.K., et al. Dendrimers: emerging polymers for drug-delivery systems. Eur. J. Pharm. Sci. 38 (2009), 185–196.
    • (2009) Eur. J. Pharm. Sci. , vol.38 , pp. 185-196
    • Nanjwade, B.K.1
  • 99
    • 84912123904 scopus 로고    scopus 로고
    • Formulation development and in vitro–in vivo assessment of the fourth-generation PPI dendrimer as a cancer-targeting vector
    • 99 Kesharwani, P., et al. Formulation development and in vitro–in vivo assessment of the fourth-generation PPI dendrimer as a cancer-targeting vector. Nanomedicine (Lond.) 9 (2014), 2291–2308.
    • (2014) Nanomedicine (Lond.) , vol.9 , pp. 2291-2308
    • Kesharwani, P.1
  • 100
    • 84899475562 scopus 로고    scopus 로고
    • Generation dependent cancer targeting potential of poly(propyleneimine) dendrimer
    • 100 Kesharwani, P., et al. Generation dependent cancer targeting potential of poly(propyleneimine) dendrimer. Biomaterials 35 (2014), 5539–5548.
    • (2014) Biomaterials , vol.35 , pp. 5539-5548
    • Kesharwani, P.1
  • 101
    • 85047685009 scopus 로고    scopus 로고
    • Dendrimers as therapeutic agents: a systematic review
    • 101 Gajbhiye, V., et al. Dendrimers as therapeutic agents: a systematic review. J. Pharm. Pharmacol. 61 (2009), 989–1003.
    • (2009) J. Pharm. Pharmacol. , vol.61 , pp. 989-1003
    • Gajbhiye, V.1
  • 102
    • 84946750622 scopus 로고    scopus 로고
    • Editorial: contemporary siRNA therapeutics and the current state-of-art
    • 102 Tekade, R.K., Editorial: contemporary siRNA therapeutics and the current state-of-art. Curr. Pharm. Des. 21 (2015), 4527–4528.
    • (2015) Curr. Pharm. Des. , vol.21 , pp. 4527-4528
    • Tekade, R.K.1
  • 103
    • 60549108884 scopus 로고    scopus 로고
    • PEGylated PPI dendritic architectures for sustained delivery of H2 receptor antagonist
    • 103 Gajbhiye, V., et al. PEGylated PPI dendritic architectures for sustained delivery of H2 receptor antagonist. Eur. J. Med. Chem. 44 (2009), 1155–1166.
    • (2009) Eur. J. Med. Chem. , vol.44 , pp. 1155-1166
    • Gajbhiye, V.1
  • 104
    • 84964582930 scopus 로고    scopus 로고
    • Recent advances in dendritic macromonomers for hydrogel formation and their medical applications
    • 104 Ghobril, C., et al. Recent advances in dendritic macromonomers for hydrogel formation and their medical applications. Biomacromolecules 17 (2016), 1235–1252.
    • (2016) Biomacromolecules , vol.17 , pp. 1235-1252
    • Ghobril, C.1
  • 105
    • 84882749057 scopus 로고    scopus 로고
    • Cancer targeting potential of folate targeted nanocarrier under comparative influence of tretinoin and dexamethasone
    • 105 Dhakad, R.S., et al. Cancer targeting potential of folate targeted nanocarrier under comparative influence of tretinoin and dexamethasone. Curr. Drug Deliv. 10 (2013), 477–491.
    • (2013) Curr. Drug Deliv. , vol.10 , pp. 477-491
    • Dhakad, R.S.1
  • 106
    • 77950171559 scopus 로고    scopus 로고
    • Synthesis and characterization of photocurable polyamidoamine dendrimer hydrogels as a versatile platform for tissue engineering and drug delivery
    • 106 Desai, P.N., et al. Synthesis and characterization of photocurable polyamidoamine dendrimer hydrogels as a versatile platform for tissue engineering and drug delivery. Biomacromolecules 11 (2010), 666–673.
    • (2010) Biomacromolecules , vol.11 , pp. 666-673
    • Desai, P.N.1
  • 107
    • 84937459180 scopus 로고    scopus 로고
    • Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications
    • 107 Ren, X., et al. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem. Soc. Rev. 44 (2015), 3754–3772.
    • (2015) Chem. Soc. Rev. , vol.44 , pp. 3754-3772
    • Ren, X.1
  • 108
    • 84873083026 scopus 로고    scopus 로고
    • The effects of an RGD-PAMAM dendrimer conjugate in 3D spheroid culture on cell proliferation, expression and aggregation
    • 108 Jiang, L., et al. The effects of an RGD-PAMAM dendrimer conjugate in 3D spheroid culture on cell proliferation, expression and aggregation. Biomaterials 34 (2013), 2665–2673.
    • (2013) Biomaterials , vol.34 , pp. 2665-2673
    • Jiang, L.1
  • 109
    • 57549117429 scopus 로고    scopus 로고
    • The osteogenic differentiation of rat bone marrow stromal cells cultured with dexamethasone-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles
    • 109 Oliveira, J.M., et al. The osteogenic differentiation of rat bone marrow stromal cells cultured with dexamethasone-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles. Biomaterials 30 (2009), 804–813.
    • (2009) Biomaterials , vol.30 , pp. 804-813
    • Oliveira, J.M.1
  • 110
    • 84906551244 scopus 로고    scopus 로고
    • New dendrimer functionalized multi-walled carbon nanotube hybrids for bone tissue engineering
    • 110 Murugan, E., et al. New dendrimer functionalized multi-walled carbon nanotube hybrids for bone tissue engineering. RSC Adv. 4 (2014), 242–243.
    • (2014) RSC Adv. , vol.4 , pp. 242-243
    • Murugan, E.1
  • 111
    • 33646258718 scopus 로고    scopus 로고
    • Burn wound infections
    • 111 Church, D., et al. Burn wound infections. Clin. Microbiol. Rev. 19 (2006), 403–434.
    • (2006) Clin. Microbiol. Rev. , vol.19 , pp. 403-434
    • Church, D.1
  • 112
    • 33646886616 scopus 로고    scopus 로고
    • Dendrimer crosslinked collagen as a corneal tissue engineering scaffold: mechanical properties and corneal epithelial cell interactions
    • 112 Duan, X., Sheardown, H., Dendrimer crosslinked collagen as a corneal tissue engineering scaffold: mechanical properties and corneal epithelial cell interactions. Biomaterials 27 (2006), 4608–4617.
    • (2006) Biomaterials , vol.27 , pp. 4608-4617
    • Duan, X.1    Sheardown, H.2
  • 113
    • 0019423220 scopus 로고
    • Clinical types of corneal transplant rejection. Their manifestations, frequency, preoperative correlates, and treatment
    • 113 Alldredge, O.C., Krachmer, J.H., Clinical types of corneal transplant rejection. Their manifestations, frequency, preoperative correlates, and treatment. Arch. Ophthalmol. 99 (1981), 599–604.
    • (1981) Arch. Ophthalmol. , vol.99 , pp. 599-604
    • Alldredge, O.C.1    Krachmer, J.H.2
  • 114
    • 84921807363 scopus 로고    scopus 로고
    • Regulation of dendrimer/dextran material performance by altered tissue microenvironment in inflammation and neoplasia
    • 114 Oliva, N., et al. Regulation of dendrimer/dextran material performance by altered tissue microenvironment in inflammation and neoplasia. Sci. Transl. Med., 7, 2015, 272ra11.
    • (2015) Sci. Transl. Med. , vol.7 , pp. 272ra11
    • Oliva, N.1
  • 115
    • 84859834657 scopus 로고    scopus 로고
    • Effective healing of diabetic skin wounds by using nonviral gene therapy based on minicircle vascular endothelial growth factor DNA and a cationic dendrimer
    • 115 Kwon, M.J., et al. Effective healing of diabetic skin wounds by using nonviral gene therapy based on minicircle vascular endothelial growth factor DNA and a cationic dendrimer. J. Gene Med. 14 (2012), 272–278.
    • (2012) J. Gene Med. , vol.14 , pp. 272-278
    • Kwon, M.J.1
  • 116
    • 33644541073 scopus 로고    scopus 로고
    • Antithrombogenic properties of bioconjugate streptokinase-polyglycerol dendrimers
    • 116 Fernandes, E.G.R., et al. Antithrombogenic properties of bioconjugate streptokinase-polyglycerol dendrimers. J. Mater. Sci. Mater. Med. 17 (2006), 105–111.
    • (2006) J. Mater. Sci. Mater. Med. , vol.17 , pp. 105-111
    • Fernandes, E.G.R.1
  • 117
    • 84977667109 scopus 로고    scopus 로고
    • Elastic light tunable tissue adhesive dendrimers
    • 117 Feng, G., et al. Elastic light tunable tissue adhesive dendrimers. Macromol. Biosci. 16 (2016), 1072–1082.
    • (2016) Macromol. Biosci. , vol.16 , pp. 1072-1082
    • Feng, G.1
  • 118
    • 84978997914 scopus 로고    scopus 로고
    • Conjugation to poly (amidoamine) dendrimers and pulmonary delivery reduce cardiac accumulation and enhance antitumor activity of doxorubicin in lung metastasis
    • 118 Zhong, Q., et al. Conjugation to poly (amidoamine) dendrimers and pulmonary delivery reduce cardiac accumulation and enhance antitumor activity of doxorubicin in lung metastasis. Mol. Pharm. 13 (2016), 2363–2375.
    • (2016) Mol. Pharm. , vol.13 , pp. 2363-2375
    • Zhong, Q.1
  • 119
    • 56349134979 scopus 로고    scopus 로고
    • Surface engineered dendrimers for dual drug delivery: A receptor up-regulation and enhanced cancer targeting strategy
    • [119] Tekade, R.K., Dutta, T., Tyagi, A., Bharti, A.C., Das, B.C., Jain, N.K., Surface engineered dendrimers for dual drug delivery: A receptor up-regulation and enhanced cancer targeting strategy. J. Drug Targeting 16 (2008), 758–772.
    • (2008) J. Drug Targeting , vol.16 , pp. 758-772
    • Tekade, R.K.1    Dutta, T.2    Tyagi, A.3    Bharti, A.C.4    Das, B.C.5    Jain, N.K.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.