메뉴 건너뛰기




Volumn 33, Issue 5, 2015, Pages 269-279

Multiscale assembly for tissue engineering and regenerative medicine

Author keywords

[No Author keywords available]

Indexed keywords

CELL ENGINEERING; CYTOLOGY; REGENERATIVE MEDICINE; TISSUE ENGINEERING;

EID: 84928065581     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2015.02.003     Document Type: Review
Times cited : (158)

References (115)
  • 1
    • 80052966768 scopus 로고    scopus 로고
    • Bottom-up tissue engineering
    • Elbert D.L. Bottom-up tissue engineering. Curr. Opin. Biotechnol. 2011, 22:674-680.
    • (2011) Curr. Opin. Biotechnol. , vol.22 , pp. 674-680
    • Elbert, D.L.1
  • 2
    • 84871679056 scopus 로고    scopus 로고
    • Emerging technologies for assembly of microscale hydrogels
    • Gurkan U.A., et al. Emerging technologies for assembly of microscale hydrogels. Adv. Healthc. Mater. 2012, 1:149-158.
    • (2012) Adv. Healthc. Mater. , vol.1 , pp. 149-158
    • Gurkan, U.A.1
  • 3
    • 84879660370 scopus 로고    scopus 로고
    • Manipulating biological agents and cells in micro-scale volumes for applications in medicine
    • Tasoglu S., et al. Manipulating biological agents and cells in micro-scale volumes for applications in medicine. Chem. Soc. Rev. 2013, 42:5788-5808.
    • (2013) Chem. Soc. Rev. , vol.42 , pp. 5788-5808
    • Tasoglu, S.1
  • 4
    • 84871703021 scopus 로고    scopus 로고
    • Bioprinting for stem cell research
    • Tasoglu S., Demirci U. Bioprinting for stem cell research. Trends Biotechnol. 2013, 31:10-19.
    • (2013) Trends Biotechnol. , vol.31 , pp. 10-19
    • Tasoglu, S.1    Demirci, U.2
  • 5
    • 79952582118 scopus 로고    scopus 로고
    • Drop-on-demand single cell isolation and total RNA analysis
    • Moon S., et al. Drop-on-demand single cell isolation and total RNA analysis. PLoS ONE 2011, 6:e17455.
    • (2011) PLoS ONE , vol.6 , pp. e17455
    • Moon, S.1
  • 6
    • 34548071012 scopus 로고    scopus 로고
    • Single cell epitaxy by acoustic picolitre droplets
    • Demirci U., Montesano G. Single cell epitaxy by acoustic picolitre droplets. Lab Chip 2007, 7:1139-1145.
    • (2007) Lab Chip , vol.7 , pp. 1139-1145
    • Demirci, U.1    Montesano, G.2
  • 7
    • 84877675234 scopus 로고    scopus 로고
    • Biomimetic self-assembling peptides as scaffolds for soft tissue engineering
    • Maude S., et al. Biomimetic self-assembling peptides as scaffolds for soft tissue engineering. Nanomedicine 2013, 8:823-847.
    • (2013) Nanomedicine , vol.8 , pp. 823-847
    • Maude, S.1
  • 8
    • 47649089828 scopus 로고    scopus 로고
    • DNA origami design of dolphin-shaped structures with flexible tails
    • Andersen E.S., et al. DNA origami design of dolphin-shaped structures with flexible tails. ACS Nano 2008, 2:1213-1218.
    • (2008) ACS Nano , vol.2 , pp. 1213-1218
    • Andersen, E.S.1
  • 9
    • 84887625842 scopus 로고    scopus 로고
    • Supramolecular self-assembly forming a multifunctional synergistic system for targeted co-delivery of gene and drug
    • Zhao F., et al. Supramolecular self-assembly forming a multifunctional synergistic system for targeted co-delivery of gene and drug. Biomaterials 2014, 35:1050-1062.
    • (2014) Biomaterials , vol.35 , pp. 1050-1062
    • Zhao, F.1
  • 10
    • 84871137896 scopus 로고    scopus 로고
    • Biomimetic membrane platform: fabrication, characterization and applications
    • Arslan Yildiz A., et al. Biomimetic membrane platform: fabrication, characterization and applications. Colloids Surf. B Biointerfaces 2013, 103:510-516.
    • (2013) Colloids Surf. B Biointerfaces , vol.103 , pp. 510-516
    • Arslan Yildiz, A.1
  • 11
    • 0034612266 scopus 로고    scopus 로고
    • Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds
    • Holmes T.C., et al. Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:6728-6733.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 6728-6733
    • Holmes, T.C.1
  • 12
    • 78149405921 scopus 로고    scopus 로고
    • Recombinant self-assembling peptides as biomaterials for tissue engineering
    • Kyle S., et al. Recombinant self-assembling peptides as biomaterials for tissue engineering. Biomaterials 2010, 31:9395-9405.
    • (2010) Biomaterials , vol.31 , pp. 9395-9405
    • Kyle, S.1
  • 13
    • 84863192444 scopus 로고    scopus 로고
    • Recombinant production of self-assembling β-structured peptides using SUMO as a fusion partner
    • Prakash A., et al. Recombinant production of self-assembling β-structured peptides using SUMO as a fusion partner. Microb. Cell Fact. 2012, 11:92.
    • (2012) Microb. Cell Fact. , vol.11 , pp. 92
    • Prakash, A.1
  • 14
    • 60549106355 scopus 로고    scopus 로고
    • Co-assembling peptides as defined matrices for endothelial cells
    • Jung J.P., et al. Co-assembling peptides as defined matrices for endothelial cells. Biomaterials 2009, 30:2400-2410.
    • (2009) Biomaterials , vol.30 , pp. 2400-2410
    • Jung, J.P.1
  • 15
    • 84879809903 scopus 로고    scopus 로고
    • Solid-state NMR evidence for β-hairpin structure within MAX8 designer peptide nanofibers
    • Leonard S.R., et al. Solid-state NMR evidence for β-hairpin structure within MAX8 designer peptide nanofibers. Biophys. J. 2013, 105:222-230.
    • (2013) Biophys. J. , vol.105 , pp. 222-230
    • Leonard, S.R.1
  • 16
    • 44949247333 scopus 로고    scopus 로고
    • Molecular design of β-hairpin peptides for material construction
    • Rughani R.V., Schneider J.P. Molecular design of β-hairpin peptides for material construction. MRS Bull. 2008, 33:530-535.
    • (2008) MRS Bull. , vol.33 , pp. 530-535
    • Rughani, R.V.1    Schneider, J.P.2
  • 17
    • 77957707339 scopus 로고    scopus 로고
    • Fibronectin-mimetic peptide-amphiphile nanofiber gels support increased cell adhesion and promote ECM production
    • Shroff K., et al. Fibronectin-mimetic peptide-amphiphile nanofiber gels support increased cell adhesion and promote ECM production. Soft Matter 2010, 6:5064-5072.
    • (2010) Soft Matter , vol.6 , pp. 5064-5072
    • Shroff, K.1
  • 18
    • 77953909551 scopus 로고    scopus 로고
    • A self-assembly pathway to aligned monodomain gels
    • Zhang S., et al. A self-assembly pathway to aligned monodomain gels. Nat. Mater. 2010, 9:594-601.
    • (2010) Nat. Mater. , vol.9 , pp. 594-601
    • Zhang, S.1
  • 19
    • 84907979718 scopus 로고    scopus 로고
    • Cationic charged helical glycopolypeptide using ring opening polymerization of 6-deoxy-6-azido-glyco-N-carboxyanhydride
    • Shaikh A.Y., et al. Cationic charged helical glycopolypeptide using ring opening polymerization of 6-deoxy-6-azido-glyco-N-carboxyanhydride. Biomacromolecules 2014, 15:3679-3686.
    • (2014) Biomacromolecules , vol.15 , pp. 3679-3686
    • Shaikh, A.Y.1
  • 20
    • 84863115302 scopus 로고    scopus 로고
    • Self-assembled supramolecular hydrogels based on polymer-cyclodextrin inclusion complexes for drug delivery
    • Li J. Self-assembled supramolecular hydrogels based on polymer-cyclodextrin inclusion complexes for drug delivery. NPG Asia Mater. 2010, 2:112-118.
    • (2010) NPG Asia Mater. , vol.2 , pp. 112-118
    • Li, J.1
  • 21
    • 34250767800 scopus 로고    scopus 로고
    • Enthalpy-driven three-state switching of a superhydrophilic/superhydrophobic surface
    • Wang S., et al. Enthalpy-driven three-state switching of a superhydrophilic/superhydrophobic surface. Angew. Chem. Int. Ed. Engl. 2007, 46:3915-3917.
    • (2007) Angew. Chem. Int. Ed. Engl. , vol.46 , pp. 3915-3917
    • Wang, S.1
  • 22
    • 46049110528 scopus 로고    scopus 로고
    • Gating of single synthetic nanopores by proton-driven DNA molecular motors
    • Xia F., et al. Gating of single synthetic nanopores by proton-driven DNA molecular motors. J. Am. Chem. Soc. 2008, 130:8345-8350.
    • (2008) J. Am. Chem. Soc. , vol.130 , pp. 8345-8350
    • Xia, F.1
  • 23
    • 79952342651 scopus 로고    scopus 로고
    • Stimuli-responsive controlled-release system using quadruplex DNA-capped silica nanocontainers
    • Chen C., et al. Stimuli-responsive controlled-release system using quadruplex DNA-capped silica nanocontainers. Nucleic Acids Res. 2011, 39:1638-1644.
    • (2011) Nucleic Acids Res. , vol.39 , pp. 1638-1644
    • Chen, C.1
  • 24
    • 28844478961 scopus 로고    scopus 로고
    • DNA molecular motor driven micromechanical cantilever arrays
    • Shu W., et al. DNA molecular motor driven micromechanical cantilever arrays. J. Am. Chem. Soc. 2005, 127:17054-17060.
    • (2005) J. Am. Chem. Soc. , vol.127 , pp. 17054-17060
    • Shu, W.1
  • 25
    • 84894206808 scopus 로고    scopus 로고
    • DNA-directed self-assembly of shape-controlled hydrogels
    • Qi H., et al. DNA-directed self-assembly of shape-controlled hydrogels. Nat. Commun. 2013, 4:2275.
    • (2013) Nat. Commun. , vol.4 , pp. 2275
    • Qi, H.1
  • 26
    • 84863115748 scopus 로고    scopus 로고
    • DNA-based switchable devices and materials
    • Liu D., et al. DNA-based switchable devices and materials. NPG Asia Mater. 2011, 3:109-114.
    • (2011) NPG Asia Mater. , vol.3 , pp. 109-114
    • Liu, D.1
  • 27
    • 33749990933 scopus 로고    scopus 로고
    • Enzyme-catalysed assembly of DNA hydrogel
    • Um S.H., et al. Enzyme-catalysed assembly of DNA hydrogel. Nat. Mater. 2006, 5:797-801.
    • (2006) Nat. Mater. , vol.5 , pp. 797-801
    • Um, S.H.1
  • 28
    • 33645028600 scopus 로고    scopus 로고
    • Folding DNA to create nanoscale shapes and patterns
    • Rothemund P.W.K. Folding DNA to create nanoscale shapes and patterns. Nature 2006, 440:297-302.
    • (2006) Nature , vol.440 , pp. 297-302
    • Rothemund, P.W.K.1
  • 29
    • 65549170920 scopus 로고    scopus 로고
    • Self-assembly of a nanoscale DNA box with a controllable lid
    • Andersen E.S., et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature 2009, 459:73-75.
    • (2009) Nature , vol.459 , pp. 73-75
    • Andersen, E.S.1
  • 30
    • 84874593612 scopus 로고    scopus 로고
    • A mechanical metamaterial made from a DNA hydrogel
    • Lee J.B., et al. A mechanical metamaterial made from a DNA hydrogel. Nat. Nanotechnol. 2012, 7:816-820.
    • (2012) Nat. Nanotechnol. , vol.7 , pp. 816-820
    • Lee, J.B.1
  • 31
    • 78149420766 scopus 로고    scopus 로고
    • A pH-triggered, fast-responding DNA hydrogel
    • Cheng E., et al. A pH-triggered, fast-responding DNA hydrogel. Angew. Chem. Int. Ed. Engl. 2009, 121:7796-7799.
    • (2009) Angew. Chem. Int. Ed. Engl. , vol.121 , pp. 7796-7799
    • Cheng, E.1
  • 32
    • 70349908385 scopus 로고    scopus 로고
    • Cell-targeted self-assembled DNA nanostructures
    • Koyfman A.Y., et al. Cell-targeted self-assembled DNA nanostructures. J. Am. Chem. Soc. 2009, 131:14237-14239.
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 14237-14239
    • Koyfman, A.Y.1
  • 34
    • 84903818780 scopus 로고    scopus 로고
    • Cell sheet engineering for regenerative medicine: current challenges and strategies
    • Owaki T., et al. Cell sheet engineering for regenerative medicine: current challenges and strategies. Biotechnol. J. 2014, 9:904-914.
    • (2014) Biotechnol. J. , vol.9 , pp. 904-914
    • Owaki, T.1
  • 35
    • 84893547187 scopus 로고    scopus 로고
    • Toward the development of bioengineered human three-dimensional vascularized cardiac tissue using cell sheet technology
    • Matsuura K., et al. Toward the development of bioengineered human three-dimensional vascularized cardiac tissue using cell sheet technology. Int. Heart J. 2014, 55:1-7.
    • (2014) Int. Heart J. , vol.55 , pp. 1-7
    • Matsuura, K.1
  • 36
    • 84904464517 scopus 로고    scopus 로고
    • Recent advances in cell sheet technology for periodontal regeneration
    • Wang J., et al. Recent advances in cell sheet technology for periodontal regeneration. Curr. Stem Cell Res. Ther. 2014, 9:162-173.
    • (2014) Curr. Stem Cell Res. Ther. , vol.9 , pp. 162-173
    • Wang, J.1
  • 37
    • 84908406351 scopus 로고    scopus 로고
    • Maintenance and distribution of epithelial stem/progenitor cells after corneal reconstruction using oral mucosal epithelial cell sheets
    • Soma T., et al. Maintenance and distribution of epithelial stem/progenitor cells after corneal reconstruction using oral mucosal epithelial cell sheets. PLoS ONE 2014, 9:e110987.
    • (2014) PLoS ONE , vol.9 , pp. e110987
    • Soma, T.1
  • 38
    • 84890436020 scopus 로고    scopus 로고
    • Articular cartilage regeneration using cell sheet technology
    • Sato M., et al. Articular cartilage regeneration using cell sheet technology. Anat. Rec. (Hoboken) 2014, 297:36-43.
    • (2014) Anat. Rec. (Hoboken) , vol.297 , pp. 36-43
    • Sato, M.1
  • 39
    • 41849097000 scopus 로고    scopus 로고
    • A thermoresponsive, microtextured substrate for cell sheet engineering with defined structural organization
    • Isenberg B.C., et al. A thermoresponsive, microtextured substrate for cell sheet engineering with defined structural organization. Biomaterials 2008, 29:2565-2572.
    • (2008) Biomaterials , vol.29 , pp. 2565-2572
    • Isenberg, B.C.1
  • 40
    • 84891739845 scopus 로고    scopus 로고
    • Spatial control of adult stem cell fate using nanotopographic cues
    • Ahn E.H., et al. Spatial control of adult stem cell fate using nanotopographic cues. Biomaterials 2014, 35:2401-2410.
    • (2014) Biomaterials , vol.35 , pp. 2401-2410
    • Ahn, E.H.1
  • 41
    • 78149444853 scopus 로고    scopus 로고
    • Biomimetic nanopatterns as enabling tools for analysis and control of live cells
    • Kim D.H., et al. Biomimetic nanopatterns as enabling tools for analysis and control of live cells. Adv. Mater. 2010, 22:4551-4566.
    • (2010) Adv. Mater. , vol.22 , pp. 4551-4566
    • Kim, D.H.1
  • 42
    • 84862621219 scopus 로고    scopus 로고
    • Matrix nanotopography as a regulator of cell function
    • Kim D.H., et al. Matrix nanotopography as a regulator of cell function. J. Cell Biol. 2012, 197:351-360.
    • (2012) J. Cell Biol. , vol.197 , pp. 351-360
    • Kim, D.H.1
  • 43
    • 84901912625 scopus 로고    scopus 로고
    • Defined topologically-complex protein matrices to manipulate cell shape via three-dimensional fiber-like patterns
    • Moraes C., et al. Defined topologically-complex protein matrices to manipulate cell shape via three-dimensional fiber-like patterns. Lab Chip 2014, 14:2191-2201.
    • (2014) Lab Chip , vol.14 , pp. 2191-2201
    • Moraes, C.1
  • 44
    • 84859579818 scopus 로고    scopus 로고
    • Fabrication of functional three-dimensional tissues by stacking cell sheets in vitro
    • Haraguchi Y., et al. Fabrication of functional three-dimensional tissues by stacking cell sheets in vitro. Nat. Protoc. 2012, 7:850-858.
    • (2012) Nat. Protoc. , vol.7 , pp. 850-858
    • Haraguchi, Y.1
  • 45
    • 79953275346 scopus 로고    scopus 로고
    • Aqueous biphasic microprinting approach to tissue engineering
    • Tavana H., Takayama S. Aqueous biphasic microprinting approach to tissue engineering. Biomicrofluidics 2011, 5:13404.
    • (2011) Biomicrofluidics , vol.5 , pp. 13404
    • Tavana, H.1    Takayama, S.2
  • 46
    • 0032403465 scopus 로고    scopus 로고
    • Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)
    • Duffy D.C., et al. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 1998, 70:4974-4984.
    • (1998) Anal. Chem. , vol.70 , pp. 4974-4984
    • Duffy, D.C.1
  • 48
    • 35648945318 scopus 로고    scopus 로고
    • Scaffold-free three-dimensional cell culture utilizing micromolded nonadhesive hydrogels
    • Napolitano A., et al. Scaffold-free three-dimensional cell culture utilizing micromolded nonadhesive hydrogels. Biotechniques 2007, 43:494-500.
    • (2007) Biotechniques , vol.43 , pp. 494-500
    • Napolitano, A.1
  • 49
    • 84908551924 scopus 로고    scopus 로고
    • Microscale assembly directed by liquid-based template
    • Chen P., et al. Microscale assembly directed by liquid-based template. Adv. Mater. 2014, 26:5936-5941.
    • (2014) Adv. Mater. , vol.26 , pp. 5936-5941
    • Chen, P.1
  • 50
    • 84872534651 scopus 로고    scopus 로고
    • Cytosystems dynamics in self-organization of tissue architecture
    • Sasai Y. Cytosystems dynamics in self-organization of tissue architecture. Nature 2013, 493:318-326.
    • (2013) Nature , vol.493 , pp. 318-326
    • Sasai, Y.1
  • 51
    • 84867226607 scopus 로고    scopus 로고
    • Tissue engineering 2.0: guiding self-organization during pluripotent stem cell differentiation
    • Woodford C., Zandstra P.W. Tissue engineering 2.0: guiding self-organization during pluripotent stem cell differentiation. Curr. Opin. Biotechnol. 2012, 23:810-819.
    • (2012) Curr. Opin. Biotechnol. , vol.23 , pp. 810-819
    • Woodford, C.1    Zandstra, P.W.2
  • 52
    • 28444486367 scopus 로고    scopus 로고
    • Stem cell niche: structure and function
    • Li L., Xie T. Stem cell niche: structure and function. Annu. Rev. Cell Dev. Biol. 2005, 21:605-631.
    • (2005) Annu. Rev. Cell Dev. Biol. , vol.21 , pp. 605-631
    • Li, L.1    Xie, T.2
  • 53
    • 63849275691 scopus 로고    scopus 로고
    • Programmed assembly of 3-dimensional microtissues with defined cellular connectivity
    • Gartner Z.J., Bertozzi C.R. Programmed assembly of 3-dimensional microtissues with defined cellular connectivity. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:4606-4610.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 4606-4610
    • Gartner, Z.J.1    Bertozzi, C.R.2
  • 54
    • 0033213859 scopus 로고    scopus 로고
    • Laser-guided direct writing for applications in biotechnology
    • Odde D.J., Renn M.J. Laser-guided direct writing for applications in biotechnology. Trends Biotechnol. 1999, 17:385-389.
    • (1999) Trends Biotechnol. , vol.17 , pp. 385-389
    • Odde, D.J.1    Renn, M.J.2
  • 55
    • 33751255405 scopus 로고    scopus 로고
    • Laser-guided assembly of heterotypic three-dimensional living cell microarrays
    • Akselrod G.M., et al. Laser-guided assembly of heterotypic three-dimensional living cell microarrays. Biophys. J. 2006, 91:3465-3473.
    • (2006) Biophys. J. , vol.91 , pp. 3465-3473
    • Akselrod, G.M.1
  • 56
    • 34548093866 scopus 로고    scopus 로고
    • Micropatterning of living cells by laser-guided direct writing: application to fabrication of hepatic-endothelial sinusoid-like structures
    • Nahmias Y., Odde D.J. Micropatterning of living cells by laser-guided direct writing: application to fabrication of hepatic-endothelial sinusoid-like structures. Nat. Protoc. 2006, 1:2288-2296.
    • (2006) Nat. Protoc. , vol.1 , pp. 2288-2296
    • Nahmias, Y.1    Odde, D.J.2
  • 57
    • 1542267824 scopus 로고    scopus 로고
    • Engineering biological structures of prescribed shape using self-assembling multicellular systems
    • Jakab K., et al. Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:2864-2869.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 2864-2869
    • Jakab, K.1
  • 58
    • 84928069893 scopus 로고    scopus 로고
    • In vitro three-dimensional cancer culture models
    • Springer, Y.H. Bae (Ed.)
    • Asghar W., et al. In vitro three-dimensional cancer culture models. Cancer Targeted Drug Delivery 2013, 635-665. Springer. Y.H. Bae (Ed.).
    • (2013) Cancer Targeted Drug Delivery , pp. 635-665
    • Asghar, W.1
  • 59
    • 77950862626 scopus 로고    scopus 로고
    • Three-dimensional tissue culture based on magnetic cell levitation
    • Souza G.R., et al. Three-dimensional tissue culture based on magnetic cell levitation. Nat. Nanotechnol. 2010, 5:291-296.
    • (2010) Nat. Nanotechnol. , vol.5 , pp. 291-296
    • Souza, G.R.1
  • 60
    • 84858448828 scopus 로고    scopus 로고
    • 384 Hanging drop arrays give excellent Z-factors and allow versatile formation of co-culture spheroids
    • Hsiao A.Y., et al. 384 Hanging drop arrays give excellent Z-factors and allow versatile formation of co-culture spheroids. Biotechnol. Bioeng. 2012, 109:1293-1304.
    • (2012) Biotechnol. Bioeng. , vol.109 , pp. 1293-1304
    • Hsiao, A.Y.1
  • 61
    • 77958084893 scopus 로고    scopus 로고
    • Organotypic 3D cell culture models: using the rotating wall vessel to study host-pathogen interactions
    • Barrila J., et al. Organotypic 3D cell culture models: using the rotating wall vessel to study host-pathogen interactions. Nat. Rev. Microbiol. 2010, 8:791-801.
    • (2010) Nat. Rev. Microbiol. , vol.8 , pp. 791-801
    • Barrila, J.1
  • 62
    • 84903650325 scopus 로고    scopus 로고
    • Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis
    • Frey O., et al. Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis. Nat. Commun. 2014, 5:4250.
    • (2014) Nat. Commun. , vol.5 , pp. 4250
    • Frey, O.1
  • 63
    • 84923394523 scopus 로고    scopus 로고
    • Functional maintenance of differentiated embryoid bodies in microfluidic systems: a platform for personalized medicine
    • Guven S., et al. Functional maintenance of differentiated embryoid bodies in microfluidic systems: a platform for personalized medicine. Stem Cells Transl. Med. 2015, 10.5966/sctm.2014-0119.
    • (2015) Stem Cells Transl. Med.
    • Guven, S.1
  • 64
    • 84890589120 scopus 로고    scopus 로고
    • Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment
    • Chan H.F., et al. Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment. Sci. Rep. 2013, 3:3462.
    • (2013) Sci. Rep. , vol.3 , pp. 3462
    • Chan, H.F.1
  • 65
    • 84877736912 scopus 로고    scopus 로고
    • Encapsulation of single cells on a microfluidic device integrating droplet generation with fluorescence-activated droplet sorting
    • Wu L., et al. Encapsulation of single cells on a microfluidic device integrating droplet generation with fluorescence-activated droplet sorting. Biomed. Microdevices 2013, 15:553-560.
    • (2013) Biomed. Microdevices , vol.15 , pp. 553-560
    • Wu, L.1
  • 66
    • 34249809408 scopus 로고    scopus 로고
    • Efficient formation of uniform-sized embryoid bodies using a compartmentalized microchannel device
    • Torisawa Y.S., et al. Efficient formation of uniform-sized embryoid bodies using a compartmentalized microchannel device. Lab Chip 2007, 7:770-776.
    • (2007) Lab Chip , vol.7 , pp. 770-776
    • Torisawa, Y.S.1
  • 67
    • 80053384750 scopus 로고    scopus 로고
    • Organ printing: from bioprinter to organ biofabrication line
    • Mironov V., et al. Organ printing: from bioprinter to organ biofabrication line. Curr. Opin. Biotechnol. 2011, 22:667-673.
    • (2011) Curr. Opin. Biotechnol. , vol.22 , pp. 667-673
    • Mironov, V.1
  • 68
    • 60549108145 scopus 로고    scopus 로고
    • Organ printing: tissue spheroids as building blocks
    • Mironov V., et al. Organ printing: tissue spheroids as building blocks. Biomaterials 2009, 30:2164-2174.
    • (2009) Biomaterials , vol.30 , pp. 2164-2174
    • Mironov, V.1
  • 69
    • 69249208450 scopus 로고    scopus 로고
    • Scaffold-free vascular tissue engineering using bioprinting
    • Norotte C., et al. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 2009, 30:5910-5917.
    • (2009) Biomaterials , vol.30 , pp. 5910-5917
    • Norotte, C.1
  • 70
    • 82355175447 scopus 로고    scopus 로고
    • Magnetic manipulation and spatial patterning of multi-cellular stem cell aggregates
    • Bratt-Leal A.M., et al. Magnetic manipulation and spatial patterning of multi-cellular stem cell aggregates. Integr. Biol. (Camb.) 2011, 3:1224-1232.
    • (2011) Integr. Biol. (Camb.) , vol.3 , pp. 1224-1232
    • Bratt-Leal, A.M.1
  • 71
    • 62249167998 scopus 로고    scopus 로고
    • Self-assembly: from crystals to cells
    • Grzybowski B.A., et al. Self-assembly: from crystals to cells. Soft Matter 2009, 5:1110-1128.
    • (2009) Soft Matter , vol.5 , pp. 1110-1128
    • Grzybowski, B.A.1
  • 72
    • 0030901567 scopus 로고    scopus 로고
    • Self-assembly of mesoscale objects into ordered two-dimensional arrays
    • Bowden N., et al. Self-assembly of mesoscale objects into ordered two-dimensional arrays. Science 1997, 276:233-235.
    • (1997) Science , vol.276 , pp. 233-235
    • Bowden, N.1
  • 73
    • 0033575124 scopus 로고    scopus 로고
    • Mesoscale self-assembly of hexagonal plates using lateral capillary forces: synthesis using the 'capillary bond'
    • Bowden N., et al. Mesoscale self-assembly of hexagonal plates using lateral capillary forces: synthesis using the 'capillary bond'. J. Am. Chem. Soc. 1999, 121:5373-5391.
    • (1999) J. Am. Chem. Soc. , vol.121 , pp. 5373-5391
    • Bowden, N.1
  • 74
    • 0037453661 scopus 로고    scopus 로고
    • Mesoscale self-assembly: capillary interactions when positive and negative menisci have similar amplitudes
    • Wolfe D.B., et al. Mesoscale self-assembly: capillary interactions when positive and negative menisci have similar amplitudes. Langmuir 2003, 19:2206-2214.
    • (2003) Langmuir , vol.19 , pp. 2206-2214
    • Wolfe, D.B.1
  • 75
    • 77951248994 scopus 로고    scopus 로고
    • Interface-directed self-assembly of cell-laden microgels
    • Zamanian B., et al. Interface-directed self-assembly of cell-laden microgels. Small 2010, 6:937-944.
    • (2010) Small , vol.6 , pp. 937-944
    • Zamanian, B.1
  • 76
    • 47749117234 scopus 로고    scopus 로고
    • Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs
    • Du Y., et al. Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:9522-9527.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 9522-9527
    • Du, Y.1
  • 77
    • 19744369891 scopus 로고    scopus 로고
    • Fluid dynamics of floating particles
    • Singh P., Joseph D.D. Fluid dynamics of floating particles. J. Fluid Mech. 2005, 530:31-80.
    • (2005) J. Fluid Mech. , vol.530 , pp. 31-80
    • Singh, P.1    Joseph, D.D.2
  • 78
    • 80051660818 scopus 로고    scopus 로고
    • DNA-templated assembly of droplet-derived PEG microtissues
    • Li C.Y., et al. DNA-templated assembly of droplet-derived PEG microtissues. Lab Chip 2011, 11:2967-2975.
    • (2011) Lab Chip , vol.11 , pp. 2967-2975
    • Li, C.Y.1
  • 79
    • 78650385785 scopus 로고    scopus 로고
    • Macroscopic self-assembly through molecular recognition
    • Harada A., et al. Macroscopic self-assembly through molecular recognition. Nat. Chem. 2011, 3:34-37.
    • (2011) Nat. Chem. , vol.3 , pp. 34-37
    • Harada, A.1
  • 80
    • 84887410963 scopus 로고    scopus 로고
    • Colloidal assembly directed by virtual magnetic moulds
    • Demirors A.F., et al. Colloidal assembly directed by virtual magnetic moulds. Nature 2013, 503:99-103.
    • (2013) Nature , vol.503 , pp. 99-103
    • Demirors, A.F.1
  • 81
    • 0034729748 scopus 로고    scopus 로고
    • Dynamic self-assembly of magnetized, millimetre-sized objects rotating at a liquid-air interface
    • Grzybowski B.A., et al. Dynamic self-assembly of magnetized, millimetre-sized objects rotating at a liquid-air interface. Nature 2000, 405:1033-1036.
    • (2000) Nature , vol.405 , pp. 1033-1036
    • Grzybowski, B.A.1
  • 82
    • 80052057941 scopus 로고    scopus 로고
    • Magnetic manipulation of self-assembled colloidal asters
    • Snezhko A., Aranson I.S. Magnetic manipulation of self-assembled colloidal asters. Nat. Mater. 2011, 10:698-703.
    • (2011) Nat. Mater. , vol.10 , pp. 698-703
    • Snezhko, A.1    Aranson, I.S.2
  • 83
    • 80054713215 scopus 로고    scopus 로고
    • Three-dimensional magnetic assembly of microscale hydrogels
    • Xu F., et al. Three-dimensional magnetic assembly of microscale hydrogels. Adv. Mater. 2011, 23:4254-4260.
    • (2011) Adv. Mater. , vol.23 , pp. 4254-4260
    • Xu, F.1
  • 84
    • 84874046572 scopus 로고    scopus 로고
    • Paramagnetic levitational assembly of hydrogels
    • Tasoglu S., et al. Paramagnetic levitational assembly of hydrogels. Adv. Mater. 2013, 25:1137-1143.
    • (2013) Adv. Mater. , vol.25 , pp. 1137-1143
    • Tasoglu, S.1
  • 85
    • 84908443474 scopus 로고    scopus 로고
    • Guided and magnetic self-assembly of tunable magnetoceptive gels
    • Tasoglu S., et al. Guided and magnetic self-assembly of tunable magnetoceptive gels. Nat. Commun. 2014, 5:4702.
    • (2014) Nat. Commun. , vol.5 , pp. 4702
    • Tasoglu, S.1
  • 86
    • 77957655329 scopus 로고    scopus 로고
    • Ultrasound-controlled cell aggregation in a multi-well chip
    • Onfelt B., et al. Ultrasound-controlled cell aggregation in a multi-well chip. Lab Chip 2010, 10:2727-2732.
    • (2010) Lab Chip , vol.10 , pp. 2727-2732
    • Onfelt, B.1
  • 87
    • 84856296027 scopus 로고    scopus 로고
    • Sheathless size-based acoustic particle separation
    • Guldiken R., et al. Sheathless size-based acoustic particle separation. Sensors 2012, 12:905-922.
    • (2012) Sensors , vol.12 , pp. 905-922
    • Guldiken, R.1
  • 88
    • 38449105727 scopus 로고    scopus 로고
    • Microfluidic chips for cell sorting
    • Chen P., et al. Microfluidic chips for cell sorting. Front. Biosci. 2008, 13:2464-2483.
    • (2008) Front. Biosci. , vol.13 , pp. 2464-2483
    • Chen, P.1
  • 89
    • 70349659810 scopus 로고    scopus 로고
    • Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW)
    • Huang T.J., et al. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab Chip 2009, 9:2890-2895.
    • (2009) Lab Chip , vol.9 , pp. 2890-2895
    • Huang, T.J.1
  • 90
    • 84875258119 scopus 로고    scopus 로고
    • Assembly of complex cell microenvironments using geometrically docked hydrogel shapes
    • Eng G., et al. Assembly of complex cell microenvironments using geometrically docked hydrogel shapes. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:4551-4556.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 4551-4556
    • Eng, G.1
  • 91
    • 80051822767 scopus 로고    scopus 로고
    • The assembly of cell-encapsulating microscale hydrogels using acoustic waves
    • Xu F., et al. The assembly of cell-encapsulating microscale hydrogels using acoustic waves. Biomaterials 2011, 32:7847-7855.
    • (2011) Biomaterials , vol.32 , pp. 7847-7855
    • Xu, F.1
  • 92
    • 84875258119 scopus 로고    scopus 로고
    • Assembly of complex cell microenvironments using geometrically docked hydrogel shapes
    • Eng G., et al. Assembly of complex cell microenvironments using geometrically docked hydrogel shapes. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:4551-4556.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 4551-4556
    • Eng, G.1
  • 93
    • 84865598517 scopus 로고    scopus 로고
    • Release of magnetic nanoparticles from cell-encapsulating biodegradable nanobiomaterials
    • Xu F., et al. Release of magnetic nanoparticles from cell-encapsulating biodegradable nanobiomaterials. ACS Nano 2012, 6:6640-6649.
    • (2012) ACS Nano , vol.6 , pp. 6640-6649
    • Xu, F.1
  • 94
    • 84874051026 scopus 로고    scopus 로고
    • Simple precision creation of digitally specified, spatially heterogeneous, engineered tissue architectures
    • Gurkan U.A., et al. Simple precision creation of digitally specified, spatially heterogeneous, engineered tissue architectures. Adv. Mater. 2013, 25:1192-1198.
    • (2013) Adv. Mater. , vol.25 , pp. 1192-1198
    • Gurkan, U.A.1
  • 95
    • 84893321308 scopus 로고    scopus 로고
    • Untethered micro-robotic coding of three-dimensional material composition
    • Tasoglu S., et al. Untethered micro-robotic coding of three-dimensional material composition. Nat. Commun. 2014, 5:3124.
    • (2014) Nat. Commun. , vol.5 , pp. 3124
    • Tasoglu, S.1
  • 96
    • 77951143354 scopus 로고    scopus 로고
    • Cell bioprinting as a potential high-throughput method for fabricating cell-based biosensors (CBBs)
    • IEEE
    • Xu F., et al. Cell bioprinting as a potential high-throughput method for fabricating cell-based biosensors (CBBs). 2009 IEEE Sensors 2009, 387-391. IEEE.
    • (2009) 2009 IEEE Sensors , pp. 387-391
    • Xu, F.1
  • 97
    • 77951247563 scopus 로고    scopus 로고
    • Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets
    • Moon S., et al. Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets. Tissue Eng. Part C Methods 2009, 16:157-166.
    • (2009) Tissue Eng. Part C Methods , vol.16 , pp. 157-166
    • Moon, S.1
  • 98
    • 84905725612 scopus 로고    scopus 로고
    • 3D bioprinting of tissues and organs
    • Murphy S.V., Atala A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014, 32:773-785.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 773-785
    • Murphy, S.V.1    Atala, A.2
  • 99
    • 84903964392 scopus 로고    scopus 로고
    • Engineering anisotropic biomimetic fibrocartilage microenvironment by bioprinting mesenchymal stem cells in nanoliter gel droplets
    • Gurkan U.A., et al. Engineering anisotropic biomimetic fibrocartilage microenvironment by bioprinting mesenchymal stem cells in nanoliter gel droplets. Mol. Pharm. 2014, 11:2151-2159.
    • (2014) Mol. Pharm. , vol.11 , pp. 2151-2159
    • Gurkan, U.A.1
  • 100
    • 79551649124 scopus 로고    scopus 로고
    • A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform
    • Xu F., et al. A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform. Biotechnol. J. 2011, 6:204-212.
    • (2011) Biotechnol. J. , vol.6 , pp. 204-212
    • Xu, F.1
  • 101
    • 78650261924 scopus 로고    scopus 로고
    • A droplet-based building block approach for bladder smooth muscle cell (SMC) proliferation
    • Xu F., et al. A droplet-based building block approach for bladder smooth muscle cell (SMC) proliferation. Biofabrication 2010, 2:014105.
    • (2010) Biofabrication , vol.2 , pp. 014105
    • Xu, F.1
  • 102
    • 84876331506 scopus 로고    scopus 로고
    • A tissue-like printed material
    • Villar G., et al. A tissue-like printed material. Science 2013, 340:48-52.
    • (2013) Science , vol.340 , pp. 48-52
    • Villar, G.1
  • 103
    • 84879222783 scopus 로고    scopus 로고
    • Bioprinting: functional droplet networks
    • Durmus N.G., et al. Bioprinting: functional droplet networks. Nat. Mater. 2013, 12:478-479.
    • (2013) Nat. Mater. , vol.12 , pp. 478-479
    • Durmus, N.G.1
  • 104
    • 84879103253 scopus 로고    scopus 로고
    • 3D printed bionic ears
    • Mannoor M.S., et al. 3D printed bionic ears. Nano Lett. 2014, 13:2634-2639.
    • (2014) Nano Lett. , vol.13 , pp. 2634-2639
    • Mannoor, M.S.1
  • 105
    • 84905723130 scopus 로고    scopus 로고
    • Cell presses
    • Sinha G. Cell presses. Nat. Biotechnol. 2014, 32:716-719.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 716-719
    • Sinha, G.1
  • 106
    • 84874235737 scopus 로고    scopus 로고
    • High-fidelity tissue engineering of patient-specific auricles for reconstruction of pediatric microtia and other auricular deformities
    • Reiffel A.J., et al. High-fidelity tissue engineering of patient-specific auricles for reconstruction of pediatric microtia and other auricular deformities. PLoS ONE 2013, 8:e56506.
    • (2013) PLoS ONE , vol.8 , pp. e56506
    • Reiffel, A.J.1
  • 107
    • 84877995448 scopus 로고    scopus 로고
    • Bioresorbable airway splint created with a three-dimensional printer
    • Zopf D.A., et al. Bioresorbable airway splint created with a three-dimensional printer. N. Engl. J. Med. 2013, 368:2043-2045.
    • (2013) N. Engl. J. Med. , vol.368 , pp. 2043-2045
    • Zopf, D.A.1
  • 108
    • 84888290491 scopus 로고    scopus 로고
    • 3D organotypic HepaRG cultures as in vitro model for acute and repeated dose toxicity studies
    • Mueller D., et al. 3D organotypic HepaRG cultures as in vitro model for acute and repeated dose toxicity studies. Toxicol. In Vitro 2014, 28:104-112.
    • (2014) Toxicol. In Vitro , vol.28 , pp. 104-112
    • Mueller, D.1
  • 109
    • 84858779329 scopus 로고    scopus 로고
    • Toward engineering functional organ modules by additive manufacturing
    • Marga F., et al. Toward engineering functional organ modules by additive manufacturing. Biofabrication 2012, 4:022001.
    • (2012) Biofabrication , vol.4 , pp. 022001
    • Marga, F.1
  • 110
    • 68949146856 scopus 로고    scopus 로고
    • Engineered 3D tissue models for cell-laden microfluidic channels
    • Song Y.S., et al. Engineered 3D tissue models for cell-laden microfluidic channels. Anal. Bioanal. Chem. 2009, 395:185-193.
    • (2009) Anal. Bioanal. Chem. , vol.395 , pp. 185-193
    • Song, Y.S.1
  • 111
    • 84957850733 scopus 로고    scopus 로고
    • Effect of surface modification of nanofibres with glutamic acid peptide on calcium phosphate nucleation and osteogenic differentiation of marrow stromal cells
    • Published online July 30, 2013.
    • Karaman O., et al. Effect of surface modification of nanofibres with glutamic acid peptide on calcium phosphate nucleation and osteogenic differentiation of marrow stromal cells. J. Tissue Eng. Regen. Med. 2013, Published online July 30, 2013. http://dx.doi.org/10.1002/term.1775.
    • (2013) J. Tissue Eng. Regen. Med.
    • Karaman, O.1
  • 112
    • 84886288184 scopus 로고    scopus 로고
    • In situ cell manipulation through enzymatic hydrogel photopatterning
    • Mosiewicz K.A., et al. In situ cell manipulation through enzymatic hydrogel photopatterning. Nat. Mater. 2013, 12:1072-1078.
    • (2013) Nat. Mater. , vol.12 , pp. 1072-1078
    • Mosiewicz, K.A.1
  • 113
    • 84856812282 scopus 로고    scopus 로고
    • Photoreversible patterning of biomolecules within click-based hydrogels
    • DeForest C.A., Anseth K.S. Photoreversible patterning of biomolecules within click-based hydrogels. Angew. Chem. Int. Ed. Engl. 2012, 51:1816-1819.
    • (2012) Angew. Chem. Int. Ed. Engl. , vol.51 , pp. 1816-1819
    • DeForest, C.A.1    Anseth, K.S.2
  • 114
    • 84893195428 scopus 로고    scopus 로고
    • Design of a composite biomaterial system for tissue engineering applications
    • Jiang B., et al. Design of a composite biomaterial system for tissue engineering applications. Acta. Biomater. 2014, 10:1177-1186.
    • (2014) Acta. Biomater. , vol.10 , pp. 1177-1186
    • Jiang, B.1
  • 115
    • 77956639728 scopus 로고    scopus 로고
    • Impact of a compound droplet on a flat surface: A model for single cell epitaxy
    • 082103
    • Tasoglu S., et al. Impact of a compound droplet on a flat surface: A model for single cell epitaxy. Phys. Fluids 2010, 22. 082103.
    • (2010) Phys. Fluids , vol.22
    • Tasoglu, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.