메뉴 건너뛰기




Volumn 127, Issue 2, 2017, Pages 457-471

Carbohydrate-binding protein CLEC14A regulates VEGFR-2- and VEGFR-3-dependent signals during angiogenesis and lymphangiogenesis

Author keywords

[No Author keywords available]

Indexed keywords

ANTINEOPLASTIC AGENT; C TYPE LECTIN FAMILY 14 MEMBER A PROTEIN; CARBOHYDRATE BINDING PROTEIN; DMH 4; SUNITINIB; UNCLASSIFIED DRUG; VASCULOTROPIN RECEPTOR 2; VASCULOTROPIN RECEPTOR 3; CLEC14A PROTEIN, MOUSE; KDR PROTEIN, MOUSE; LECTIN; MEMBRANE PROTEIN; TUMOR PROTEIN;

EID: 85014104709     PISSN: 00219738     EISSN: 15588238     Source Type: Journal    
DOI: 10.1172/JCI85145     Document Type: Article
Times cited : (25)

References (59)
  • 1
    • 0030800782 scopus 로고    scopus 로고
    • Up-regulation of flk-1/vascular endothelial growth factor receptor 2 by its ligand in a cerebral slice culture system
    • Kremer C, Breier G, Risau W, Plate KH. Up-regulation of flk-1/vascular endothelial growth factor receptor 2 by its ligand in a cerebral slice culture system. Cancer Res. 1997;57(17):3852-3859.
    • (1997) Cancer Res. , vol.57 , Issue.17 , pp. 3852-3859
    • Kremer, C.1    Breier, G.2    Risau, W.3    Plate, K.H.4
  • 2
    • 0032582502 scopus 로고    scopus 로고
    • Cardiovascular failure in mouse embryos deficient in VEGF receptor-3
    • Dumont DJ, et al. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science. 1998;282(5390):946-949.
    • (1998) Science. , vol.282 , Issue.5390 , pp. 946-949
    • Dumont, D.J.1
  • 4
    • 84859453770 scopus 로고    scopus 로고
    • Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signalling
    • Benedito R, et al. Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signalling. Nature. 2012;484(7392):110-114.
    • (2012) Nature. , vol.484 , Issue.7392 , pp. 110-114
    • Benedito, R.1
  • 5
    • 80053564674 scopus 로고    scopus 로고
    • VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling
    • Tammela T, et al. VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling. Nat Cell Biol. 2011;13(10):1202-1213.
    • (2011) Nat Cell Biol. , vol.13 , Issue.10 , pp. 1202-1213
    • Tammela, T.1
  • 6
    • 0036984640 scopus 로고    scopus 로고
    • Role of angiogenesis in tumor growth and metastasis
    • Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol. 2002;29(6 Suppl 16):15-18.
    • (2002) Semin Oncol. , vol.29 , Issue.6 , pp. 15-18
    • Folkman, J.1
  • 7
    • 79960227968 scopus 로고    scopus 로고
    • VEGF and angiopoietin signaling in tumor angiogenesis and metastasis
    • Saharinen P, Eklund L, Pulkki K, Bono P, Alitalo K. VEGF and angiopoietin signaling in tumor angiogenesis and metastasis. Trends Mol Med. 2011;17(7):347-362.
    • (2011) Trends Mol Med. , vol.17 , Issue.7 , pp. 347-362
    • Saharinen, P.1    Eklund, L.2    Pulkki, K.3    Bono, P.4    Alitalo, K.5
  • 8
    • 84855915831 scopus 로고    scopus 로고
    • Identification and angiogenic role of the novel tumor endothelial marker CLEC14A
    • Mura M, et al. Identification and angiogenic role of the novel tumor endothelial marker CLEC14A. Oncogene. 2012;31(3):293-305.
    • (2012) Oncogene. , vol.31 , Issue.3 , pp. 293-305
    • Mura, M.1
  • 9
    • 29144452851 scopus 로고    scopus 로고
    • The C-type lectin-like domain superfamily
    • Zelensky AN, Gready JE. The C-type lectin-like domain superfamily. FEBS J. 2005;272(24):6179-6217.
    • (2005) FEBS J. , vol.272 , Issue.24 , pp. 6179-6217
    • Zelensky, A.N.1    Gready, J.E.2
  • 10
    • 0034892611 scopus 로고    scopus 로고
    • Endothelium-specific loss of murine thrombomodulin disrupts the protein C anticoagulant pathway and causes juvenile-onset thrombosis
    • Isermann B, et al. Endothelium-specific loss of murine thrombomodulin disrupts the protein C anticoagulant pathway and causes juvenile-onset thrombosis. J Clin Invest. 2001;108(4):537-546.
    • (2001) J Clin Invest. , vol.108 , Issue.4 , pp. 537-546
    • Isermann, B.1
  • 11
    • 55749115786 scopus 로고    scopus 로고
    • Lectin-like domain of thrombomodulin binds to its specific ligand Lewis y antigen and neutralizes lipopolysaccharide-induced inflammatory response
    • Shi CS, et al. Lectin-like domain of thrombomodulin binds to its specific ligand Lewis Y antigen and neutralizes lipopolysaccharide-induced inflammatory response. Blood. 2008;112(9):3661-3670.
    • (2008) Blood. , vol.112 , Issue.9 , pp. 3661-3670
    • Shi, C.S.1
  • 12
    • 33644777599 scopus 로고    scopus 로고
    • Tumor endothelial marker 1 (Tem1) functions in the growth and progression of abdominal tumors
    • Nanda A, et al. Tumor endothelial marker 1 (Tem1) functions in the growth and progression of abdominal tumors. Proc Natl Acad Sci USA. 2006;103(9):3351-3356.
    • (2006) Proc Natl Acad Sci USA. , vol.103 , Issue.9 , pp. 3351-3356
    • Nanda, A.1
  • 13
    • 67649840704 scopus 로고    scopus 로고
    • Signalling through C-type lectin receptors: Shaping immune responses
    • Geijtenbeek TB, Gringhuis SI. Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol. 2009;9(7):465-479.
    • (2009) Nat Rev Immunol. , vol.9 , Issue.7 , pp. 465-479
    • Geijtenbeek, T.B.1    Gringhuis, S.I.2
  • 14
    • 78650868374 scopus 로고    scopus 로고
    • Clec14a is specifically expressed in endothelial cells and mediates cell to cell adhesion
    • Rho SS, et al. Clec14a is specifically expressed in endothelial cells and mediates cell to cell adhesion. Biochem Biophys Res Commun. 2011;404(1):103-108.
    • (2011) Biochem Biophys Res Commun. , vol.404 , Issue.1 , pp. 103-108
    • Rho, S.S.1
  • 15
    • 84957629240 scopus 로고    scopus 로고
    • MULTIMERIN2 binds VEGF-A primarily via the carbohydrate chains exerting an angiostatic function and impairing tumor growth
    • Colladel R, et al. MULTIMERIN2 binds VEGF-A primarily via the carbohydrate chains exerting an angiostatic function and impairing tumor growth. Oncotarget. 2016;7(2):2022-2037.
    • (2016) Oncotarget. , vol.7 , Issue.2 , pp. 2022-2037
    • Colladel, R.1
  • 16
    • 84890616064 scopus 로고    scopus 로고
    • SILAC-based proteomics of human primary endothelial cell morphogenesis unveils tumor angiogenic markers
    • Zanivan S, et al. SILAC-based proteomics of human primary endothelial cell morphogenesis unveils tumor angiogenic markers. Mol Cell Proteomics. 2013;12(12):3599-3611.
    • (2013) Mol Cell Proteomics. , vol.12 , Issue.12 , pp. 3599-3611
    • Zanivan, S.1
  • 17
    • 84881549640 scopus 로고    scopus 로고
    • A core human primary tumor angiogenesis signature identifies the endothelial orphan receptor ELTD1 as a key regulator of angiogenesis
    • Masiero M, et al. A core human primary tumor angiogenesis signature identifies the endothelial orphan receptor ELTD1 as a key regulator of angiogenesis. Cancer Cell. 2013;24(2):229-241.
    • (2013) Cancer Cell. , vol.24 , Issue.2 , pp. 229-241
    • Masiero, M.1
  • 18
    • 84922470710 scopus 로고    scopus 로고
    • Targeted identification of sialoglycoproteins in hypoxic endothelial cells and validation in zebrafish reveal roles for proteins in angiogenesis
    • Delcourt N, et al. Targeted identification of sialoglycoproteins in hypoxic endothelial cells and validation in zebrafish reveal roles for proteins in angiogenesis. J Biol Chem. 2015;290(6):3405-3417.
    • (2015) J Biol Chem. , vol.290 , Issue.6 , pp. 3405-3417
    • Delcourt, N.1
  • 19
    • 84973161115 scopus 로고    scopus 로고
    • Sprouting angiogenesis is regulated by shedding of the C-type lectin family 14, member A (CLEC14A) ectodomain, catalyzed by rhomboid-like 2 protein (RHBDL2)
    • Noy PJ, Swain RK, Khan K, Lodhia P, Bicknell R. Sprouting angiogenesis is regulated by shedding of the C-type lectin family 14, member A (CLEC14A) ectodomain, catalyzed by rhomboid-like 2 protein (RHBDL2). FASEB J. 2016;30(6):2311-2323.
    • (2016) FASEB J. , vol.30 , Issue.6 , pp. 2311-2323
    • Noy, P.J.1    Swain, R.K.2    Khan, K.3    Lodhia, P.4    Bicknell, R.5
  • 20
    • 0346777254 scopus 로고    scopus 로고
    • Vascular endothelial growth factor and diabetic retinopathy: Pathophysiological mechanisms and treatment perspectives
    • Caldwell RB, et al. Vascular endothelial growth factor and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Diabetes Metab Res Rev. 2003;19(6):442-455.
    • (2003) Diabetes Metab Res Rev. , vol.19 , Issue.6 , pp. 442-455
    • Caldwell, R.B.1
  • 21
    • 0030576517 scopus 로고    scopus 로고
    • Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis
    • Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86(3):353-364.
    • (1996) Cell. , vol.86 , Issue.3 , pp. 353-364
    • Hanahan, D.1    Folkman, J.2
  • 22
    • 30744432619 scopus 로고    scopus 로고
    • Endothelial cells and VEGF in vascular development
    • Coultas L, Chawengsaksophak K, Rossant J. Endothelial cells and VEGF in vascular development. Nature. 2005;438(7070):937-945.
    • (2005) Nature. , vol.438 , Issue.7070 , pp. 937-945
    • Coultas, L.1    Chawengsaksophak, K.2    Rossant, J.3
  • 23
    • 0028825887 scopus 로고
    • Overexpression of vascular endothelial growth factor in the avian embryo induces hypervascularization and increased vascular permeability without alterations of embryonic pattern formation
    • Flamme I, von Reutern M, Drexler HC, Syed-Ali S, Risau W. Overexpression of vascular endothelial growth factor in the avian embryo induces hypervascularization and increased vascular permeability without alterations of embryonic pattern formation. Dev Biol. 1995;171(2):399-414.
    • (1995) Dev Biol. , vol.171 , Issue.2 , pp. 399-414
    • Flamme, I.1    Von Reutern, M.2    Drexler, H.C.3    Syed-Ali, S.4    Risau, W.5
  • 24
    • 0032560844 scopus 로고    scopus 로고
    • VEGF/VPF overexpression in skin of transgenic mice induces angiogenesis, vascular hyperpermeability and accelerated tumor development
    • Larcher F, Murillas R, Bolontrade M, Conti CJ, Jorcano JL. VEGF/VPF overexpression in skin of transgenic mice induces angiogenesis, vascular hyperpermeability and accelerated tumor development. Oncogene. 1998;17(3):303-311.
    • (1998) Oncogene. , vol.17 , Issue.3 , pp. 303-311
    • Larcher, F.1    Murillas, R.2    Bolontrade, M.3    Conti, C.J.4    Jorcano, J.L.5
  • 25
    • 78649899926 scopus 로고    scopus 로고
    • VEGFR-3 ligand-binding and kinase activity are required for lymphangiogenesis but not for angiogenesis
    • Zhang L, et al. VEGFR-3 ligand-binding and kinase activity are required for lymphangiogenesis but not for angiogenesis. Cell Res. 2010;20(12):1319-1331.
    • (2010) Cell Res. , vol.20 , Issue.12 , pp. 1319-1331
    • Zhang, L.1
  • 26
    • 34250370123 scopus 로고    scopus 로고
    • Distinct vascular endothelial growth factor signals for lymphatic vessel enlargement and sprouting
    • Wirzenius M, et al. Distinct vascular endothelial growth factor signals for lymphatic vessel enlargement and sprouting. J Exp Med. 2007;204(6):1431-1440.
    • (2007) J Exp Med. , vol.204 , Issue.6 , pp. 1431-1440
    • Wirzenius, M.1
  • 27
    • 78751693016 scopus 로고    scopus 로고
    • Blood vessel endothelial VEGFR-2 delays lymphangiogenesis: An endogenous trapping mechanism links lymph-and angiogenesis
    • Nakao S, et al. Blood vessel endothelial VEGFR-2 delays lymphangiogenesis: an endogenous trapping mechanism links lymph-and angiogenesis. Blood. 2011;117(3):1081-1090.
    • (2011) Blood. , vol.117 , Issue.3 , pp. 1081-1090
    • Nakao, S.1
  • 28
    • 6944228960 scopus 로고    scopus 로고
    • VEGF-A promotes tissue repair-associated lymphatic vessel formation via VEGFR-2 and the alpha1beta1 and alpha2beta1 integrins
    • Hong YK, et al. VEGF-A promotes tissue repair-associated lymphatic vessel formation via VEGFR-2 and the alpha1beta1 and alpha2beta1 integrins. FASEB J. 2004;18(10):1111-1113.
    • (2004) FASEB J. , vol.18 , Issue.10 , pp. 1111-1113
    • Hong, Y.K.1
  • 29
    • 84896002041 scopus 로고    scopus 로고
    • Vascular endothelial growth factor receptor-2 promotes the development of the lymphatic vasculature
    • Dellinger MT, Meadows SM, Wynne K, Cleaver O, Brekken RA. Vascular endothelial growth factor receptor-2 promotes the development of the lymphatic vasculature. PLoS One. 2013;8(9):e74686.
    • (2013) PLoS One. , vol.8 , Issue.9 , pp. e74686
    • Dellinger, M.T.1    Meadows, S.M.2    Wynne, K.3    Cleaver, O.4    Brekken, R.A.5
  • 30
    • 17044458971 scopus 로고    scopus 로고
    • Ligand-induced vascular endothelial growth factor receptor-3 (VEGFR-3) heterodimerization with VEGFR-2 in primary lymphatic endothelial cells regulates tyrosine phosphorylation sites
    • Dixelius J, et al. Ligand-induced vascular endothelial growth factor receptor-3 (VEGFR-3) heterodimerization with VEGFR-2 in primary lymphatic endothelial cells regulates tyrosine phosphorylation sites. J Biol Chem. 2003;278(42):40973-40979.
    • (2003) J Biol Chem. , vol.278 , Issue.42 , pp. 40973-40979
    • Dixelius, J.1
  • 31
    • 77951498501 scopus 로고    scopus 로고
    • VEGF receptor 2/-3 heterodimers detected in situ by proximity ligation on angiogenic sprouts
    • Nilsson I, et al. VEGF receptor 2/-3 heterodimers detected in situ by proximity ligation on angiogenic sprouts. EMBO J. 2010;29(8):1377-1388.
    • (2010) EMBO J. , vol.29 , Issue.8 , pp. 1377-1388
    • Nilsson, I.1
  • 32
    • 0242624291 scopus 로고    scopus 로고
    • Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3
    • Mäkinen T, et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J. 2001;20(17):4762-4773.
    • (2001) EMBO J. , vol.20 , Issue.17 , pp. 4762-4773
    • Mäkinen, T.1
  • 33
    • 84922069231 scopus 로고    scopus 로고
    • Molecular controls of lymphatic VEGFR3 signaling
    • Deng Y, Zhang X, Simons M. Molecular controls of lymphatic VEGFR3 signaling. Arterioscler Thromb Vasc Biol. 2015;35(2):421-429.
    • (2015) Arterioscler Thromb Vasc Biol. , vol.35 , Issue.2 , pp. 421-429
    • Deng, Y.1    Zhang, X.2    Simons, M.3
  • 34
    • 36048978608 scopus 로고    scopus 로고
    • Notch alters VEGF responsiveness in human and murine endothelial cells by direct regulation of VEGFR-3 expression
    • Shawber CJ, et al. Notch alters VEGF responsiveness in human and murine endothelial cells by direct regulation of VEGFR-3 expression. J Clin Invest. 2007;117(11):3369-3382.
    • (2007) J Clin Invest. , vol.117 , Issue.11 , pp. 3369-3382
    • Shawber, C.J.1
  • 35
    • 79960988887 scopus 로고    scopus 로고
    • Notch restricts lymphatic vessel sprouting induced by vascular endothelial growth factor
    • Zheng W, et al. Notch restricts lymphatic vessel sprouting induced by vascular endothelial growth factor. Blood. 2011;118(4):1154-1162.
    • (2011) Blood. , vol.118 , Issue.4 , pp. 1154-1162
    • Zheng, W.1
  • 36
    • 79957902010 scopus 로고    scopus 로고
    • Signal transduction by vascular endothelial growth factor receptors
    • Koch S, Tugues S, Li X, Gualandi L, Claesson-Welsh L. Signal transduction by vascular endothelial growth factor receptors. Biochem J. 2011;437(2):169-183.
    • (2011) Biochem J. , vol.437 , Issue.2 , pp. 169-183
    • Koch, S.1    Tugues, S.2    Li, X.3    Gualandi, L.4    Claesson-Welsh, L.5
  • 37
    • 84863219862 scopus 로고    scopus 로고
    • MULTIMERIN2 impairs tumor angiogenesis and growth by interfering with VEGF-A/VEGFR2 pathway
    • Lorenzon E, et al. MULTIMERIN2 impairs tumor angiogenesis and growth by interfering with VEGF-A/VEGFR2 pathway. Oncogene. 2012;31(26):3136-3147.
    • (2012) Oncogene. , vol.31 , Issue.26 , pp. 3136-3147
    • Lorenzon, E.1
  • 38
    • 84890616064 scopus 로고    scopus 로고
    • SILAC-based proteomics of human primary endothelial cell morphogenesis unveils tumor angiogenic markers
    • Zanivan S, et al. SILAC-based proteomics of human primary endothelial cell morphogenesis unveils tumor angiogenic markers. Mol Cell Proteomics. 2013;12(12):3599-3611.
    • (2013) Mol Cell Proteomics. , vol.12 , Issue.12 , pp. 3599-3611
    • Zanivan, S.1
  • 40
    • 84874607534 scopus 로고    scopus 로고
    • Integrative genome-wide gene expression profiling of clear cell renal cell carcinoma in Czech Republic and in the United States
    • Wozniak MB, et al. Integrative genome-wide gene expression profiling of clear cell renal cell carcinoma in Czech Republic and in the United States. PLoS One. 2013;8(3):e57886.
    • (2013) PLoS One. , vol.8 , Issue.3 , pp. e57886
    • Wozniak, M.B.1
  • 41
    • 84879883224 scopus 로고    scopus 로고
    • Favorable prognosis of operable non-small cell lung cancer (NSCLC) patients harboring an increased expression of tumor endothelial markers (TEMs)
    • Pircher A, et al. Favorable prognosis of operable non-small cell lung cancer (NSCLC) patients harboring an increased expression of tumor endothelial markers (TEMs). Lung Cancer. 2013;81(2):252-258.
    • (2013) Lung Cancer. , vol.81 , Issue.2 , pp. 252-258
    • Pircher, A.1
  • 42
    • 84907997949 scopus 로고    scopus 로고
    • Induction of acute lung inflammation in mice with hemorrhagic shock and resuscitation: Role of HMGB1
    • Kao RL, et al. Induction of acute lung inflammation in mice with hemorrhagic shock and resuscitation: role of HMGB1. J Inflamm (Lond). 2014;11(1):30.
    • (2014) J Inflamm (Lond). , vol.11 , Issue.1 , pp. 30
    • Kao, R.L.1
  • 43
    • 33749019109 scopus 로고    scopus 로고
    • Anti-HMGB1 neutralizing antibody ameliorates gut barrier dysfunction and improves survival after hemorrhagic shock
    • Yang R, et al. Anti-HMGB1 neutralizing antibody ameliorates gut barrier dysfunction and improves survival after hemorrhagic shock. Mol Med. 2006;12(4-6):105-114.
    • (2006) Mol Med. , vol.12 , Issue.4-6 , pp. 105-114
    • Yang, R.1
  • 44
    • 84875846289 scopus 로고    scopus 로고
    • Tumor VEGF:VEGFR2 autocrine feed-forward loop triggers angiogenesis in lung cancer
    • Chatterjee S, et al. Tumor VEGF:VEGFR2 autocrine feed-forward loop triggers angiogenesis in lung cancer. J Clin Invest. 2013;123(4):1732-1740.
    • (2013) J Clin Invest. , vol.123 , Issue.4 , pp. 1732-1740
    • Chatterjee, S.1
  • 45
    • 43249095919 scopus 로고    scopus 로고
    • Tumor angiogenesis
    • Kerbel RS. Tumor angiogenesis. N Engl J Med. 2008;358(19):2039-2049.
    • (2008) N Engl J Med. , vol.358 , Issue.19 , pp. 2039-2049
    • Kerbel, R.S.1
  • 46
    • 84860130221 scopus 로고    scopus 로고
    • Anti-VEGF/VEGFR therapy for cancer: Reassessing the target
    • Sitohy B, Nagy JA, Dvorak HF. Anti-VEGF/VEGFR therapy for cancer: reassessing the target. Cancer Res. 2012;72(8):1909-1914.
    • (2012) Cancer Res. , vol.72 , Issue.8 , pp. 1909-1914
    • Sitohy, B.1    Nagy, J.A.2    Dvorak, H.F.3
  • 47
    • 0034000699 scopus 로고    scopus 로고
    • VEGF receptor signaling in tumor angiogenesis
    • McMahon G. VEGF receptor signaling in tumor angiogenesis. Oncologist. 2000;5 Suppl 1:3-10.
    • (2000) Oncologist. , vol.5 , pp. 3-10
    • McMahon, G.1
  • 48
    • 84938095333 scopus 로고    scopus 로고
    • Vascular endothelial growth factor (VEGF) inhibition-A critical review
    • Moreira IS, Fernandes PA, Ramos MJ. Vascular endothelial growth factor (VEGF) inhibition-A critical review. Anticancer Agents Med Chem. 2007;7(2):223-245.
    • (2007) Anticancer Agents Med Chem. , vol.7 , Issue.2 , pp. 223-245
    • Moreira, I.S.1    Fernandes, P.A.2    Ramos, M.J.3
  • 49
    • 0033396726 scopus 로고    scopus 로고
    • Expression and functional significance of vascular endothelial growth factor receptors in human tumor cells
    • Herold-Mende C, et al. Expression and functional significance of vascular endothelial growth factor receptors in human tumor cells. Lab Invest. 1999;79(12):1573-1582.
    • (1999) Lab Invest. , vol.79 , Issue.12 , pp. 1573-1582
    • Herold-Mende, C.1
  • 50
    • 84864711123 scopus 로고    scopus 로고
    • Elevated vascular endothelial growth factor receptor-2 abundance contributes to increased angiogenesis in vascular endothelial growth factor receptor-1-deficient mice
    • Ho VC, Duan LJ, Cronin C, Liang BT, Fong GH. Elevated vascular endothelial growth factor receptor-2 abundance contributes to increased angiogenesis in vascular endothelial growth factor receptor-1-deficient mice. Circulation. 2012;126(6):741-752.
    • (2012) Circulation. , vol.126 , Issue.6 , pp. 741-752
    • Ho, V.C.1    Duan, L.J.2    Cronin, C.3    Liang, B.T.4    Fong, G.H.5
  • 51
    • 84947870788 scopus 로고    scopus 로고
    • Blocking CLEC14A-MMRN2 binding inhibits sprouting angiogenesis and tumour growth
    • Noy PJ, et al. Blocking CLEC14A-MMRN2 binding inhibits sprouting angiogenesis and tumour growth. Oncogene. 2015;34(47):5821-5831.
    • (2015) Oncogene. , vol.34 , Issue.47 , pp. 5821-5831
    • Noy, P.J.1
  • 52
    • 84898797252 scopus 로고    scopus 로고
    • Activation of vascular endothelial growth factor receptor-3 in macrophages restrains TLR4-NF-κB signaling and protects against endotoxin shock
    • Zhang Y, et al. Activation of vascular endothelial growth factor receptor-3 in macrophages restrains TLR4-NF-κB signaling and protects against endotoxin shock. Immunity. 2014;40(4):501-514.
    • (2014) Immunity. , vol.40 , Issue.4 , pp. 501-514
    • Zhang, Y.1
  • 53
    • 0029160975 scopus 로고
    • Increased plasma levels of soluble thrombomodulin in patients with sepsis and organ failure
    • Iba T, Yagi Y, Kidokoro A, Fukunaga M, Fukunaga T. Increased plasma levels of soluble thrombomodulin in patients with sepsis and organ failure. Surg Today. 1995;25(7):585-590.
    • (1995) Surg Today. , vol.25 , Issue.7 , pp. 585-590
    • Iba, T.1    Yagi, Y.2    Kidokoro, A.3    Fukunaga, M.4    Fukunaga, T.5
  • 54
    • 84979198577 scopus 로고    scopus 로고
    • Thrombomodulin/activated protein C system in septic disseminated intravascular coagulation
    • Ikezoe T. Thrombomodulin/activated protein C system in septic disseminated intravascular coagulation. J Intensive Care. 2015;3(1):1.
    • (2015) J Intensive Care. , vol.3 , Issue.1 , pp. 1
    • Ikezoe, T.1
  • 55
    • 84947870788 scopus 로고    scopus 로고
    • Blocking CLEC14A-MMRN2 binding inhibits sprouting angiogenesis and tumour growth
    • Noy PJ, et al. Blocking CLEC14A-MMRN2 binding inhibits sprouting angiogenesis and tumour growth. Oncogene. 2015;34(47):5821-5831.
    • (2015) Oncogene. , vol.34 , Issue.47 , pp. 5821-5831
    • Noy, P.J.1
  • 56
    • 0035427557 scopus 로고    scopus 로고
    • Endothelial cell culture: Protocol to obtain and cultivate human umbilical endothelial cells
    • Marin V, Kaplanski G, Grès S, Farnarier C, Bongrand P. Endothelial cell culture: protocol to obtain and cultivate human umbilical endothelial cells. J Immunol Methods. 2001;254(1-2):183-190.
    • (2001) J Immunol Methods. , vol.254 , Issue.1-2 , pp. 183-190
    • Marin, V.1    Kaplanski, G.2    Grès, S.3    Farnarier, C.4    Bongrand, P.5
  • 57
    • 84861151846 scopus 로고    scopus 로고
    • Use of the mouse aortic ring assay to study angiogenesis
    • Baker M, et al. Use of the mouse aortic ring assay to study angiogenesis. Nat Protoc. 2011;7(1):89-104.
    • (2011) Nat Protoc. , vol.7 , Issue.1 , pp. 89-104
    • Baker, M.1
  • 58
    • 70350036077 scopus 로고    scopus 로고
    • Quantification of oxygen-induced retinopathy in the mouse: A model of vessel loss, vessel regrowth and pathological angiogenesis
    • Connor KM, et al. Quantification of oxygen-induced retinopathy in the mouse: A model of vessel loss, vessel regrowth and pathological angiogenesis. Nat Protoc. 2009;4(11):1565-1573.
    • (2009) Nat Protoc. , vol.4 , Issue.11 , pp. 1565-1573
    • Connor, K.M.1
  • 59
    • 81155134376 scopus 로고    scopus 로고
    • A computational tool for quantitative analysis of vascular networks
    • Zudaire E, Gambardella L, Kurcz C, Vermeren S. A computational tool for quantitative analysis of vascular networks. PLoS One. 2011;6(11):e27385.
    • (2011) PLoS One. , vol.6 , Issue.11 , pp. e27385
    • Zudaire, E.1    Gambardella, L.2    Kurcz, C.3    Vermeren, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.