-
1
-
-
0030800782
-
Up-regulation of flk-1/vascular endothelial growth factor receptor 2 by its ligand in a cerebral slice culture system
-
Kremer C, Breier G, Risau W, Plate KH. Up-regulation of flk-1/vascular endothelial growth factor receptor 2 by its ligand in a cerebral slice culture system. Cancer Res. 1997;57(17):3852-3859.
-
(1997)
Cancer Res.
, vol.57
, Issue.17
, pp. 3852-3859
-
-
Kremer, C.1
Breier, G.2
Risau, W.3
Plate, K.H.4
-
2
-
-
0032582502
-
Cardiovascular failure in mouse embryos deficient in VEGF receptor-3
-
Dumont DJ, et al. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science. 1998;282(5390):946-949.
-
(1998)
Science.
, vol.282
, Issue.5390
, pp. 946-949
-
-
Dumont, D.J.1
-
3
-
-
84921417379
-
VEGFR3 does not sustain retinal angiogenesis without VEGFR2
-
Zarkada G, Heinolainen K, Makinen T, Kubota Y, Alitalo K. VEGFR3 does not sustain retinal angiogenesis without VEGFR2. Proc Natl Acad Sci USA. 2015;112(3):761-766.
-
(2015)
Proc Natl Acad Sci USA.
, vol.112
, Issue.3
, pp. 761-766
-
-
Zarkada, G.1
Heinolainen, K.2
Makinen, T.3
Kubota, Y.4
Alitalo, K.5
-
4
-
-
84859453770
-
Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signalling
-
Benedito R, et al. Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signalling. Nature. 2012;484(7392):110-114.
-
(2012)
Nature.
, vol.484
, Issue.7392
, pp. 110-114
-
-
Benedito, R.1
-
5
-
-
80053564674
-
VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling
-
Tammela T, et al. VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling. Nat Cell Biol. 2011;13(10):1202-1213.
-
(2011)
Nat Cell Biol.
, vol.13
, Issue.10
, pp. 1202-1213
-
-
Tammela, T.1
-
6
-
-
0036984640
-
Role of angiogenesis in tumor growth and metastasis
-
Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol. 2002;29(6 Suppl 16):15-18.
-
(2002)
Semin Oncol.
, vol.29
, Issue.6
, pp. 15-18
-
-
Folkman, J.1
-
7
-
-
79960227968
-
VEGF and angiopoietin signaling in tumor angiogenesis and metastasis
-
Saharinen P, Eklund L, Pulkki K, Bono P, Alitalo K. VEGF and angiopoietin signaling in tumor angiogenesis and metastasis. Trends Mol Med. 2011;17(7):347-362.
-
(2011)
Trends Mol Med.
, vol.17
, Issue.7
, pp. 347-362
-
-
Saharinen, P.1
Eklund, L.2
Pulkki, K.3
Bono, P.4
Alitalo, K.5
-
8
-
-
84855915831
-
Identification and angiogenic role of the novel tumor endothelial marker CLEC14A
-
Mura M, et al. Identification and angiogenic role of the novel tumor endothelial marker CLEC14A. Oncogene. 2012;31(3):293-305.
-
(2012)
Oncogene.
, vol.31
, Issue.3
, pp. 293-305
-
-
Mura, M.1
-
9
-
-
29144452851
-
The C-type lectin-like domain superfamily
-
Zelensky AN, Gready JE. The C-type lectin-like domain superfamily. FEBS J. 2005;272(24):6179-6217.
-
(2005)
FEBS J.
, vol.272
, Issue.24
, pp. 6179-6217
-
-
Zelensky, A.N.1
Gready, J.E.2
-
10
-
-
0034892611
-
Endothelium-specific loss of murine thrombomodulin disrupts the protein C anticoagulant pathway and causes juvenile-onset thrombosis
-
Isermann B, et al. Endothelium-specific loss of murine thrombomodulin disrupts the protein C anticoagulant pathway and causes juvenile-onset thrombosis. J Clin Invest. 2001;108(4):537-546.
-
(2001)
J Clin Invest.
, vol.108
, Issue.4
, pp. 537-546
-
-
Isermann, B.1
-
11
-
-
55749115786
-
Lectin-like domain of thrombomodulin binds to its specific ligand Lewis y antigen and neutralizes lipopolysaccharide-induced inflammatory response
-
Shi CS, et al. Lectin-like domain of thrombomodulin binds to its specific ligand Lewis Y antigen and neutralizes lipopolysaccharide-induced inflammatory response. Blood. 2008;112(9):3661-3670.
-
(2008)
Blood.
, vol.112
, Issue.9
, pp. 3661-3670
-
-
Shi, C.S.1
-
12
-
-
33644777599
-
Tumor endothelial marker 1 (Tem1) functions in the growth and progression of abdominal tumors
-
Nanda A, et al. Tumor endothelial marker 1 (Tem1) functions in the growth and progression of abdominal tumors. Proc Natl Acad Sci USA. 2006;103(9):3351-3356.
-
(2006)
Proc Natl Acad Sci USA.
, vol.103
, Issue.9
, pp. 3351-3356
-
-
Nanda, A.1
-
13
-
-
67649840704
-
Signalling through C-type lectin receptors: Shaping immune responses
-
Geijtenbeek TB, Gringhuis SI. Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol. 2009;9(7):465-479.
-
(2009)
Nat Rev Immunol.
, vol.9
, Issue.7
, pp. 465-479
-
-
Geijtenbeek, T.B.1
Gringhuis, S.I.2
-
14
-
-
78650868374
-
Clec14a is specifically expressed in endothelial cells and mediates cell to cell adhesion
-
Rho SS, et al. Clec14a is specifically expressed in endothelial cells and mediates cell to cell adhesion. Biochem Biophys Res Commun. 2011;404(1):103-108.
-
(2011)
Biochem Biophys Res Commun.
, vol.404
, Issue.1
, pp. 103-108
-
-
Rho, S.S.1
-
15
-
-
84957629240
-
MULTIMERIN2 binds VEGF-A primarily via the carbohydrate chains exerting an angiostatic function and impairing tumor growth
-
Colladel R, et al. MULTIMERIN2 binds VEGF-A primarily via the carbohydrate chains exerting an angiostatic function and impairing tumor growth. Oncotarget. 2016;7(2):2022-2037.
-
(2016)
Oncotarget.
, vol.7
, Issue.2
, pp. 2022-2037
-
-
Colladel, R.1
-
16
-
-
84890616064
-
SILAC-based proteomics of human primary endothelial cell morphogenesis unveils tumor angiogenic markers
-
Zanivan S, et al. SILAC-based proteomics of human primary endothelial cell morphogenesis unveils tumor angiogenic markers. Mol Cell Proteomics. 2013;12(12):3599-3611.
-
(2013)
Mol Cell Proteomics.
, vol.12
, Issue.12
, pp. 3599-3611
-
-
Zanivan, S.1
-
17
-
-
84881549640
-
A core human primary tumor angiogenesis signature identifies the endothelial orphan receptor ELTD1 as a key regulator of angiogenesis
-
Masiero M, et al. A core human primary tumor angiogenesis signature identifies the endothelial orphan receptor ELTD1 as a key regulator of angiogenesis. Cancer Cell. 2013;24(2):229-241.
-
(2013)
Cancer Cell.
, vol.24
, Issue.2
, pp. 229-241
-
-
Masiero, M.1
-
18
-
-
84922470710
-
Targeted identification of sialoglycoproteins in hypoxic endothelial cells and validation in zebrafish reveal roles for proteins in angiogenesis
-
Delcourt N, et al. Targeted identification of sialoglycoproteins in hypoxic endothelial cells and validation in zebrafish reveal roles for proteins in angiogenesis. J Biol Chem. 2015;290(6):3405-3417.
-
(2015)
J Biol Chem.
, vol.290
, Issue.6
, pp. 3405-3417
-
-
Delcourt, N.1
-
19
-
-
84973161115
-
Sprouting angiogenesis is regulated by shedding of the C-type lectin family 14, member A (CLEC14A) ectodomain, catalyzed by rhomboid-like 2 protein (RHBDL2)
-
Noy PJ, Swain RK, Khan K, Lodhia P, Bicknell R. Sprouting angiogenesis is regulated by shedding of the C-type lectin family 14, member A (CLEC14A) ectodomain, catalyzed by rhomboid-like 2 protein (RHBDL2). FASEB J. 2016;30(6):2311-2323.
-
(2016)
FASEB J.
, vol.30
, Issue.6
, pp. 2311-2323
-
-
Noy, P.J.1
Swain, R.K.2
Khan, K.3
Lodhia, P.4
Bicknell, R.5
-
20
-
-
0346777254
-
Vascular endothelial growth factor and diabetic retinopathy: Pathophysiological mechanisms and treatment perspectives
-
Caldwell RB, et al. Vascular endothelial growth factor and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Diabetes Metab Res Rev. 2003;19(6):442-455.
-
(2003)
Diabetes Metab Res Rev.
, vol.19
, Issue.6
, pp. 442-455
-
-
Caldwell, R.B.1
-
21
-
-
0030576517
-
Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis
-
Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86(3):353-364.
-
(1996)
Cell.
, vol.86
, Issue.3
, pp. 353-364
-
-
Hanahan, D.1
Folkman, J.2
-
22
-
-
30744432619
-
Endothelial cells and VEGF in vascular development
-
Coultas L, Chawengsaksophak K, Rossant J. Endothelial cells and VEGF in vascular development. Nature. 2005;438(7070):937-945.
-
(2005)
Nature.
, vol.438
, Issue.7070
, pp. 937-945
-
-
Coultas, L.1
Chawengsaksophak, K.2
Rossant, J.3
-
23
-
-
0028825887
-
Overexpression of vascular endothelial growth factor in the avian embryo induces hypervascularization and increased vascular permeability without alterations of embryonic pattern formation
-
Flamme I, von Reutern M, Drexler HC, Syed-Ali S, Risau W. Overexpression of vascular endothelial growth factor in the avian embryo induces hypervascularization and increased vascular permeability without alterations of embryonic pattern formation. Dev Biol. 1995;171(2):399-414.
-
(1995)
Dev Biol.
, vol.171
, Issue.2
, pp. 399-414
-
-
Flamme, I.1
Von Reutern, M.2
Drexler, H.C.3
Syed-Ali, S.4
Risau, W.5
-
24
-
-
0032560844
-
VEGF/VPF overexpression in skin of transgenic mice induces angiogenesis, vascular hyperpermeability and accelerated tumor development
-
Larcher F, Murillas R, Bolontrade M, Conti CJ, Jorcano JL. VEGF/VPF overexpression in skin of transgenic mice induces angiogenesis, vascular hyperpermeability and accelerated tumor development. Oncogene. 1998;17(3):303-311.
-
(1998)
Oncogene.
, vol.17
, Issue.3
, pp. 303-311
-
-
Larcher, F.1
Murillas, R.2
Bolontrade, M.3
Conti, C.J.4
Jorcano, J.L.5
-
25
-
-
78649899926
-
VEGFR-3 ligand-binding and kinase activity are required for lymphangiogenesis but not for angiogenesis
-
Zhang L, et al. VEGFR-3 ligand-binding and kinase activity are required for lymphangiogenesis but not for angiogenesis. Cell Res. 2010;20(12):1319-1331.
-
(2010)
Cell Res.
, vol.20
, Issue.12
, pp. 1319-1331
-
-
Zhang, L.1
-
26
-
-
34250370123
-
Distinct vascular endothelial growth factor signals for lymphatic vessel enlargement and sprouting
-
Wirzenius M, et al. Distinct vascular endothelial growth factor signals for lymphatic vessel enlargement and sprouting. J Exp Med. 2007;204(6):1431-1440.
-
(2007)
J Exp Med.
, vol.204
, Issue.6
, pp. 1431-1440
-
-
Wirzenius, M.1
-
27
-
-
78751693016
-
Blood vessel endothelial VEGFR-2 delays lymphangiogenesis: An endogenous trapping mechanism links lymph-and angiogenesis
-
Nakao S, et al. Blood vessel endothelial VEGFR-2 delays lymphangiogenesis: an endogenous trapping mechanism links lymph-and angiogenesis. Blood. 2011;117(3):1081-1090.
-
(2011)
Blood.
, vol.117
, Issue.3
, pp. 1081-1090
-
-
Nakao, S.1
-
28
-
-
6944228960
-
VEGF-A promotes tissue repair-associated lymphatic vessel formation via VEGFR-2 and the alpha1beta1 and alpha2beta1 integrins
-
Hong YK, et al. VEGF-A promotes tissue repair-associated lymphatic vessel formation via VEGFR-2 and the alpha1beta1 and alpha2beta1 integrins. FASEB J. 2004;18(10):1111-1113.
-
(2004)
FASEB J.
, vol.18
, Issue.10
, pp. 1111-1113
-
-
Hong, Y.K.1
-
29
-
-
84896002041
-
Vascular endothelial growth factor receptor-2 promotes the development of the lymphatic vasculature
-
Dellinger MT, Meadows SM, Wynne K, Cleaver O, Brekken RA. Vascular endothelial growth factor receptor-2 promotes the development of the lymphatic vasculature. PLoS One. 2013;8(9):e74686.
-
(2013)
PLoS One.
, vol.8
, Issue.9
, pp. e74686
-
-
Dellinger, M.T.1
Meadows, S.M.2
Wynne, K.3
Cleaver, O.4
Brekken, R.A.5
-
30
-
-
17044458971
-
Ligand-induced vascular endothelial growth factor receptor-3 (VEGFR-3) heterodimerization with VEGFR-2 in primary lymphatic endothelial cells regulates tyrosine phosphorylation sites
-
Dixelius J, et al. Ligand-induced vascular endothelial growth factor receptor-3 (VEGFR-3) heterodimerization with VEGFR-2 in primary lymphatic endothelial cells regulates tyrosine phosphorylation sites. J Biol Chem. 2003;278(42):40973-40979.
-
(2003)
J Biol Chem.
, vol.278
, Issue.42
, pp. 40973-40979
-
-
Dixelius, J.1
-
31
-
-
77951498501
-
VEGF receptor 2/-3 heterodimers detected in situ by proximity ligation on angiogenic sprouts
-
Nilsson I, et al. VEGF receptor 2/-3 heterodimers detected in situ by proximity ligation on angiogenic sprouts. EMBO J. 2010;29(8):1377-1388.
-
(2010)
EMBO J.
, vol.29
, Issue.8
, pp. 1377-1388
-
-
Nilsson, I.1
-
32
-
-
0242624291
-
Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3
-
Mäkinen T, et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J. 2001;20(17):4762-4773.
-
(2001)
EMBO J.
, vol.20
, Issue.17
, pp. 4762-4773
-
-
Mäkinen, T.1
-
34
-
-
36048978608
-
Notch alters VEGF responsiveness in human and murine endothelial cells by direct regulation of VEGFR-3 expression
-
Shawber CJ, et al. Notch alters VEGF responsiveness in human and murine endothelial cells by direct regulation of VEGFR-3 expression. J Clin Invest. 2007;117(11):3369-3382.
-
(2007)
J Clin Invest.
, vol.117
, Issue.11
, pp. 3369-3382
-
-
Shawber, C.J.1
-
35
-
-
79960988887
-
Notch restricts lymphatic vessel sprouting induced by vascular endothelial growth factor
-
Zheng W, et al. Notch restricts lymphatic vessel sprouting induced by vascular endothelial growth factor. Blood. 2011;118(4):1154-1162.
-
(2011)
Blood.
, vol.118
, Issue.4
, pp. 1154-1162
-
-
Zheng, W.1
-
36
-
-
79957902010
-
Signal transduction by vascular endothelial growth factor receptors
-
Koch S, Tugues S, Li X, Gualandi L, Claesson-Welsh L. Signal transduction by vascular endothelial growth factor receptors. Biochem J. 2011;437(2):169-183.
-
(2011)
Biochem J.
, vol.437
, Issue.2
, pp. 169-183
-
-
Koch, S.1
Tugues, S.2
Li, X.3
Gualandi, L.4
Claesson-Welsh, L.5
-
37
-
-
84863219862
-
MULTIMERIN2 impairs tumor angiogenesis and growth by interfering with VEGF-A/VEGFR2 pathway
-
Lorenzon E, et al. MULTIMERIN2 impairs tumor angiogenesis and growth by interfering with VEGF-A/VEGFR2 pathway. Oncogene. 2012;31(26):3136-3147.
-
(2012)
Oncogene.
, vol.31
, Issue.26
, pp. 3136-3147
-
-
Lorenzon, E.1
-
38
-
-
84890616064
-
SILAC-based proteomics of human primary endothelial cell morphogenesis unveils tumor angiogenic markers
-
Zanivan S, et al. SILAC-based proteomics of human primary endothelial cell morphogenesis unveils tumor angiogenic markers. Mol Cell Proteomics. 2013;12(12):3599-3611.
-
(2013)
Mol Cell Proteomics.
, vol.12
, Issue.12
, pp. 3599-3611
-
-
Zanivan, S.1
-
39
-
-
80053242320
-
VEGFR2 translocates to the nucleus to regulate its own transcription
-
Domingues I, Rino J, Demmers JA, de Lanerolle P, Santos SC. VEGFR2 translocates to the nucleus to regulate its own transcription. PLoS One. 2011;6(9):e25668.
-
(2011)
PLoS One.
, vol.6
, Issue.9
, pp. e25668
-
-
Domingues, I.1
Rino, J.2
Demmers, J.A.3
De Lanerolle, P.4
Santos, S.C.5
-
40
-
-
84874607534
-
Integrative genome-wide gene expression profiling of clear cell renal cell carcinoma in Czech Republic and in the United States
-
Wozniak MB, et al. Integrative genome-wide gene expression profiling of clear cell renal cell carcinoma in Czech Republic and in the United States. PLoS One. 2013;8(3):e57886.
-
(2013)
PLoS One.
, vol.8
, Issue.3
, pp. e57886
-
-
Wozniak, M.B.1
-
41
-
-
84879883224
-
Favorable prognosis of operable non-small cell lung cancer (NSCLC) patients harboring an increased expression of tumor endothelial markers (TEMs)
-
Pircher A, et al. Favorable prognosis of operable non-small cell lung cancer (NSCLC) patients harboring an increased expression of tumor endothelial markers (TEMs). Lung Cancer. 2013;81(2):252-258.
-
(2013)
Lung Cancer.
, vol.81
, Issue.2
, pp. 252-258
-
-
Pircher, A.1
-
42
-
-
84907997949
-
Induction of acute lung inflammation in mice with hemorrhagic shock and resuscitation: Role of HMGB1
-
Kao RL, et al. Induction of acute lung inflammation in mice with hemorrhagic shock and resuscitation: role of HMGB1. J Inflamm (Lond). 2014;11(1):30.
-
(2014)
J Inflamm (Lond).
, vol.11
, Issue.1
, pp. 30
-
-
Kao, R.L.1
-
43
-
-
33749019109
-
Anti-HMGB1 neutralizing antibody ameliorates gut barrier dysfunction and improves survival after hemorrhagic shock
-
Yang R, et al. Anti-HMGB1 neutralizing antibody ameliorates gut barrier dysfunction and improves survival after hemorrhagic shock. Mol Med. 2006;12(4-6):105-114.
-
(2006)
Mol Med.
, vol.12
, Issue.4-6
, pp. 105-114
-
-
Yang, R.1
-
44
-
-
84875846289
-
Tumor VEGF:VEGFR2 autocrine feed-forward loop triggers angiogenesis in lung cancer
-
Chatterjee S, et al. Tumor VEGF:VEGFR2 autocrine feed-forward loop triggers angiogenesis in lung cancer. J Clin Invest. 2013;123(4):1732-1740.
-
(2013)
J Clin Invest.
, vol.123
, Issue.4
, pp. 1732-1740
-
-
Chatterjee, S.1
-
45
-
-
43249095919
-
Tumor angiogenesis
-
Kerbel RS. Tumor angiogenesis. N Engl J Med. 2008;358(19):2039-2049.
-
(2008)
N Engl J Med.
, vol.358
, Issue.19
, pp. 2039-2049
-
-
Kerbel, R.S.1
-
46
-
-
84860130221
-
Anti-VEGF/VEGFR therapy for cancer: Reassessing the target
-
Sitohy B, Nagy JA, Dvorak HF. Anti-VEGF/VEGFR therapy for cancer: reassessing the target. Cancer Res. 2012;72(8):1909-1914.
-
(2012)
Cancer Res.
, vol.72
, Issue.8
, pp. 1909-1914
-
-
Sitohy, B.1
Nagy, J.A.2
Dvorak, H.F.3
-
47
-
-
0034000699
-
VEGF receptor signaling in tumor angiogenesis
-
McMahon G. VEGF receptor signaling in tumor angiogenesis. Oncologist. 2000;5 Suppl 1:3-10.
-
(2000)
Oncologist.
, vol.5
, pp. 3-10
-
-
McMahon, G.1
-
48
-
-
84938095333
-
Vascular endothelial growth factor (VEGF) inhibition-A critical review
-
Moreira IS, Fernandes PA, Ramos MJ. Vascular endothelial growth factor (VEGF) inhibition-A critical review. Anticancer Agents Med Chem. 2007;7(2):223-245.
-
(2007)
Anticancer Agents Med Chem.
, vol.7
, Issue.2
, pp. 223-245
-
-
Moreira, I.S.1
Fernandes, P.A.2
Ramos, M.J.3
-
49
-
-
0033396726
-
Expression and functional significance of vascular endothelial growth factor receptors in human tumor cells
-
Herold-Mende C, et al. Expression and functional significance of vascular endothelial growth factor receptors in human tumor cells. Lab Invest. 1999;79(12):1573-1582.
-
(1999)
Lab Invest.
, vol.79
, Issue.12
, pp. 1573-1582
-
-
Herold-Mende, C.1
-
50
-
-
84864711123
-
Elevated vascular endothelial growth factor receptor-2 abundance contributes to increased angiogenesis in vascular endothelial growth factor receptor-1-deficient mice
-
Ho VC, Duan LJ, Cronin C, Liang BT, Fong GH. Elevated vascular endothelial growth factor receptor-2 abundance contributes to increased angiogenesis in vascular endothelial growth factor receptor-1-deficient mice. Circulation. 2012;126(6):741-752.
-
(2012)
Circulation.
, vol.126
, Issue.6
, pp. 741-752
-
-
Ho, V.C.1
Duan, L.J.2
Cronin, C.3
Liang, B.T.4
Fong, G.H.5
-
51
-
-
84947870788
-
Blocking CLEC14A-MMRN2 binding inhibits sprouting angiogenesis and tumour growth
-
Noy PJ, et al. Blocking CLEC14A-MMRN2 binding inhibits sprouting angiogenesis and tumour growth. Oncogene. 2015;34(47):5821-5831.
-
(2015)
Oncogene.
, vol.34
, Issue.47
, pp. 5821-5831
-
-
Noy, P.J.1
-
52
-
-
84898797252
-
Activation of vascular endothelial growth factor receptor-3 in macrophages restrains TLR4-NF-κB signaling and protects against endotoxin shock
-
Zhang Y, et al. Activation of vascular endothelial growth factor receptor-3 in macrophages restrains TLR4-NF-κB signaling and protects against endotoxin shock. Immunity. 2014;40(4):501-514.
-
(2014)
Immunity.
, vol.40
, Issue.4
, pp. 501-514
-
-
Zhang, Y.1
-
53
-
-
0029160975
-
Increased plasma levels of soluble thrombomodulin in patients with sepsis and organ failure
-
Iba T, Yagi Y, Kidokoro A, Fukunaga M, Fukunaga T. Increased plasma levels of soluble thrombomodulin in patients with sepsis and organ failure. Surg Today. 1995;25(7):585-590.
-
(1995)
Surg Today.
, vol.25
, Issue.7
, pp. 585-590
-
-
Iba, T.1
Yagi, Y.2
Kidokoro, A.3
Fukunaga, M.4
Fukunaga, T.5
-
54
-
-
84979198577
-
Thrombomodulin/activated protein C system in septic disseminated intravascular coagulation
-
Ikezoe T. Thrombomodulin/activated protein C system in septic disseminated intravascular coagulation. J Intensive Care. 2015;3(1):1.
-
(2015)
J Intensive Care.
, vol.3
, Issue.1
, pp. 1
-
-
Ikezoe, T.1
-
55
-
-
84947870788
-
Blocking CLEC14A-MMRN2 binding inhibits sprouting angiogenesis and tumour growth
-
Noy PJ, et al. Blocking CLEC14A-MMRN2 binding inhibits sprouting angiogenesis and tumour growth. Oncogene. 2015;34(47):5821-5831.
-
(2015)
Oncogene.
, vol.34
, Issue.47
, pp. 5821-5831
-
-
Noy, P.J.1
-
56
-
-
0035427557
-
Endothelial cell culture: Protocol to obtain and cultivate human umbilical endothelial cells
-
Marin V, Kaplanski G, Grès S, Farnarier C, Bongrand P. Endothelial cell culture: protocol to obtain and cultivate human umbilical endothelial cells. J Immunol Methods. 2001;254(1-2):183-190.
-
(2001)
J Immunol Methods.
, vol.254
, Issue.1-2
, pp. 183-190
-
-
Marin, V.1
Kaplanski, G.2
Grès, S.3
Farnarier, C.4
Bongrand, P.5
-
57
-
-
84861151846
-
Use of the mouse aortic ring assay to study angiogenesis
-
Baker M, et al. Use of the mouse aortic ring assay to study angiogenesis. Nat Protoc. 2011;7(1):89-104.
-
(2011)
Nat Protoc.
, vol.7
, Issue.1
, pp. 89-104
-
-
Baker, M.1
-
58
-
-
70350036077
-
Quantification of oxygen-induced retinopathy in the mouse: A model of vessel loss, vessel regrowth and pathological angiogenesis
-
Connor KM, et al. Quantification of oxygen-induced retinopathy in the mouse: A model of vessel loss, vessel regrowth and pathological angiogenesis. Nat Protoc. 2009;4(11):1565-1573.
-
(2009)
Nat Protoc.
, vol.4
, Issue.11
, pp. 1565-1573
-
-
Connor, K.M.1
-
59
-
-
81155134376
-
A computational tool for quantitative analysis of vascular networks
-
Zudaire E, Gambardella L, Kurcz C, Vermeren S. A computational tool for quantitative analysis of vascular networks. PLoS One. 2011;6(11):e27385.
-
(2011)
PLoS One.
, vol.6
, Issue.11
, pp. e27385
-
-
Zudaire, E.1
Gambardella, L.2
Kurcz, C.3
Vermeren, S.4
|