메뉴 건너뛰기




Volumn 9, Issue 3, 2017, Pages 234-243

Chemoproteomic profiling and discovery of protein electrophiles in human cells

Author keywords

[No Author keywords available]

Indexed keywords

ADENOSYLMETHIONINE DECARBOXYLASE; AMD1 PROTEIN, HUMAN; AMINO ACID; FLUORESCENT DYE; HYDRAZINE; HYDRAZINE DERIVATIVE; METHIONINE; NERVE PROTEIN;

EID: 85013993092     PISSN: 17554330     EISSN: 17554349     Source Type: Journal    
DOI: 10.1038/nchem.2645     Document Type: Article
Times cited : (64)

References (53)
  • 1
    • 28044433451 scopus 로고    scopus 로고
    • Jr Protein posttranslational modifications: The chemistry of proteome diversifications
    • Walsh, C. T., Garneau-Tsodikova, S. & Gatto, G. J. Jr Protein posttranslational modifications: The chemistry of proteome diversifications. Angew. Chem. Int. Ed. 44, 7342-7372 (2005).
    • (2005) Angew. Chem. Int. Ed. , vol.44 , pp. 7342-7372
    • Walsh, C.T.1    Garneau-Tsodikova, S.2    Gatto, G.J.3
  • 2
    • 0033942582 scopus 로고    scopus 로고
    • Novel cofactors via post-translational modifications of enzyme active sites
    • Okeley, N. M. & van der Donk, W. A. Novel cofactors via post-translational modifications of enzyme active sites. Chem. Biol. 7, R159-R171 (2000).
    • (2000) Chem. Biol. , vol.7 , pp. R159-R171
    • Okeley, N.M.1    Van Der Donk, W.A.2
  • 3
    • 84890644637 scopus 로고    scopus 로고
    • Status of large-scale analysis of post-translational modifications by mass spectrometry
    • Olsen, J. V. & Mann, M. Status of large-scale analysis of post-translational modifications by mass spectrometry. Mol. Cell. Proteomics 12, 3444-3452 (2013).
    • (2013) Mol. Cell. Proteomics , vol.12 , pp. 3444-3452
    • Olsen, J.V.1    Mann, M.2
  • 4
    • 84924045221 scopus 로고    scopus 로고
    • Mass spectrometry in studies of protein thiol chemistry and signaling: Opportunities and caveats
    • Devarie Baez, N. O., Reisz, J. A. & Furdui, C. M. Mass spectrometry in studies of protein thiol chemistry and signaling: opportunities and caveats. Free Radical Biol. Med. 80, 191-211 (2015).
    • (2015) Free Radical Biol. Med. , vol.80 , pp. 191-211
    • Devarie Baez, N.O.1    Reisz, J.A.2    Furdui, C.M.3
  • 5
    • 84893738731 scopus 로고    scopus 로고
    • Chemical approaches to detect and analyze protein sulfenic acids
    • Furdui, C. M. & Poole, L. B. Chemical approaches to detect and analyze protein sulfenic acids. Mass Spectrom. Rev. 33, 126-146 (2014).
    • (2014) Mass Spectrom. Rev. , vol.33 , pp. 126-146
    • Furdui, C.M.1    Poole, L.B.2
  • 6
    • 84949117047 scopus 로고    scopus 로고
    • Chemical methods for the proteome-wide identification of posttranslationally modified proteins
    • Chuh, K. N. & Pratt, M. R. Chemical methods for the proteome-wide identification of posttranslationally modified proteins. Curr. Opin. Chem. Biol. 24, 27-37 (2015).
    • (2015) Curr. Opin. Chem. Biol. , vol.24 , pp. 27-37
    • Chuh, K.N.1    Pratt, M.R.2
  • 8
    • 84919372537 scopus 로고    scopus 로고
    • Chemical proteomics approaches to examine novel histone posttranslational modifications
    • Li, X. & Li, X. D. Chemical proteomics approaches to examine novel histone posttranslational modifications. Curr. Opin. Chem. Biol. 24, 80-90 (2015).
    • (2015) Curr. Opin. Chem. Biol. , vol.24 , pp. 80-90
    • Li, X.1    Li, X.D.2
  • 9
    • 50649112213 scopus 로고    scopus 로고
    • Activity-based protein profiling: From enzyme chemistry to proteomic chemistry
    • Cravatt, B. F., Wright, A. T. & Kozarich, J. W. Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu. Rev. Biochem. 77, 383-414 (2008).
    • (2008) Annu. Rev. Biochem. , vol.77 , pp. 383-414
    • Cravatt, B.F.1    Wright, A.T.2    Kozarich, J.W.3
  • 10
    • 84909953243 scopus 로고    scopus 로고
    • Covalent protein modification: The current landscape of residue-specific electrophiles
    • Shannon, D. A. & Weerapana, E. Covalent protein modification: The current landscape of residue-specific electrophiles. Curr. Opin. Chem. Biol. 24, 18-26 (2015).
    • (2015) Curr. Opin. Chem. Biol. , vol.24 , pp. 18-26
    • Shannon, D.A.1    Weerapana, E.2
  • 11
    • 84897981321 scopus 로고    scopus 로고
    • Intrigues and intricacies of the biosynthetic pathways for the enzymatic quinocofactors: PQQ, TTQ, CTQ, TPQ, and LTQ
    • Klinman, J. P. & Bonnot, F. Intrigues and intricacies of the biosynthetic pathways for the enzymatic quinocofactors: PQQ, TTQ, CTQ, TPQ, and LTQ. Chem. Rev. 114, 4343-4365 (2014).
    • (2014) Chem. Rev. , vol.114 , pp. 4343-4365
    • Klinman, J.P.1    Bonnot, F.2
  • 12
    • 84937638704 scopus 로고    scopus 로고
    • Chemistry and diversity of pyridoxal-5-phosphate dependent enzymes
    • Phillips, R. S. Chemistry and diversity of pyridoxal-5-phosphate dependent enzymes. Biochim. Biophys. Acta 1854, 1167-1174 (2015).
    • (2015) Biochim. Biophys. Acta , vol.1854 , pp. 1167-1174
    • Phillips, R.S.1
  • 13
    • 0038699625 scopus 로고    scopus 로고
    • Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry
    • Zhang, H., Li, X. J., Martin, D. B. & Aebersold, R. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat. Biotechnol. 21, 660-666 (2003).
    • (2003) Nat. Biotechnol. , vol.21 , pp. 660-666
    • Zhang, H.1    Li, X.J.2    Martin, D.B.3    Aebersold, R.4
  • 14
    • 84939814080 scopus 로고    scopus 로고
    • A clickable aminooxy probe for monitoring cellular ADP-ribosylation
    • Morgan, R. K. & Cohen, M. S. A clickable aminooxy probe for monitoring cellular ADP-ribosylation. ACS Chem. Biol. 10, 1778-1784 (2015).
    • (2015) ACS Chem. Biol. , vol.10 , pp. 1778-1784
    • Morgan, R.K.1    Cohen, M.S.2
  • 15
    • 84890120403 scopus 로고    scopus 로고
    • Sulfenic acid chemistry, detection and cellular lifetime
    • Gupta, V. & Carroll, K. S. Sulfenic acid chemistry, detection and cellular lifetime. Biochim. Biophys. Acta 1840, 847-875 (2014).
    • (2014) Biochim. Biophys. Acta , vol.1840 , pp. 847-875
    • Gupta, V.1    Carroll, K.S.2
  • 16
    • 77955455232 scopus 로고    scopus 로고
    • Proteomic identification of carbonylated proteins and their oxidation sites
    • Madian, A. G. & Regnier, F. E. Proteomic identification of carbonylated proteins and their oxidation sites. J. Proteome Res. 9, 3766-3780 (2010).
    • (2010) J. Proteome Res. , vol.9 , pp. 3766-3780
    • Madian, A.G.1    Regnier, F.E.2
  • 17
    • 43949127087 scopus 로고    scopus 로고
    • Chemo-enzymatic detection of protein isoaspartate using protein isoaspartate methyltransferase and hydrazine trapping
    • Alfaro, J. F. et al. Chemo-enzymatic detection of protein isoaspartate using protein isoaspartate methyltransferase and hydrazine trapping. Anal. Chem. 80, 3882-3889 (2008).
    • (2008) Anal. Chem. , vol.80 , pp. 3882-3889
    • Alfaro, J.F.1
  • 18
    • 84930173832 scopus 로고    scopus 로고
    • Detection and quantitation of succinimide in intact protein via hydrazine trapping and chemical derivatization
    • Klaene, J. J., Ni, W., Alfaro, J. F. & Zhou, Z. S. Detection and quantitation of succinimide in intact protein via hydrazine trapping and chemical derivatization. J. Pharm. Sci. 103, 3033-3042 (2014).
    • (2014) J. Pharm. Sci. , vol.103 , pp. 3033-3042
    • Klaene, J.J.1    Ni, W.2    Alfaro, J.F.3    Zhou, Z.S.4
  • 19
    • 0037099395 scopus 로고    scopus 로고
    • A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes
    • Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. Angew. Chem. Int. Ed. 41, 2596-2599 (2002).
    • (2002) Angew. Chem. Int. Ed. , vol.41 , pp. 2596-2599
    • Rostovtsev, V.V.1    Green, L.G.2    Fokin, V.V.3    Sharpless, K.B.4
  • 20
    • 0037462106 scopus 로고    scopus 로고
    • Activity-based protein profiling in vivo using a copper(I)-catalyzed azide-alkyne [3+2] cycloaddition
    • Speers, A. E., Adam, G. C. & Cravatt, B. F. Activity-based protein profiling in vivo using a copper(I)-catalyzed azide-alkyne [3+2] cycloaddition. J. Am. Chem. Soc. 125, 4686-4687 (2003).
    • (2003) J. Am. Chem. Soc. , vol.125 , pp. 4686-4687
    • Speers, A.E.1    Adam, G.C.2    Cravatt, B.F.3
  • 21
    • 43949123265 scopus 로고    scopus 로고
    • Structural and mechanistic studies of arylalkylhydrazine inhibition of human monoamine oxidases A and B
    • Binda, C. et al. Structural and mechanistic studies of arylalkylhydrazine inhibition of human monoamine oxidases A and B. Biochemistry 47, 5616-5625 (2008).
    • (2008) Biochemistry , vol.47 , pp. 5616-5625
    • Binda, C.1
  • 22
    • 0026684203 scopus 로고
    • Purification of human S-adenosylmethionine decarboxylase expressed in Escherichia coli and use of this protein to investigate the mechanism of inhibition by the irreversible inhibitors, 5-deoxy-5-[(3-hydrazinopropyl)methylamino]adenosine and 5-([(Z)-4-amino-2-butenyl]methylamino)-5-deoxyadenosine
    • Shantz, L. M., Stanley, B. A., Secrist, J. A. III & Pegg, A. E. Purification of human S-adenosylmethionine decarboxylase expressed in Escherichia coli and use of this protein to investigate the mechanism of inhibition by the irreversible inhibitors, 5-deoxy-5-[(3-hydrazinopropyl)methylamino]adenosine and 5-([(Z)-4-amino-2-butenyl]methylamino)-5-deoxyadenosine. Biochemistry 31, 6848-6855 (1992).
    • (1992) Biochemistry , vol.31 , pp. 6848-6855
    • Shantz, L.M.1    Stanley, B.A.2    Secrist, J.A.3    Pegg, A.E.4
  • 23
    • 0035106351 scopus 로고    scopus 로고
    • III Large-scale analysis of the yeast proteome by multidimensional protein identification technology
    • Washburn, M. P., Wolters, D. & Yates, J. R. III Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19, 242-247 (2001).
    • (2001) Nat. Biotechnol. , vol.19 , pp. 242-247
    • Washburn, M.P.1    Wolters, D.2    Yates, J.R.3
  • 24
    • 33845329203 scopus 로고    scopus 로고
    • Functional and quantitative proteomics using SILAC
    • Mann, M. Functional and quantitative proteomics using SILAC. Nat. Rev. Mol. Cell Biol. 7, 952-958 (2006).
    • (2006) Nat. Rev. Mol. Cell Biol. , vol.7 , pp. 952-958
    • Mann, M.1
  • 25
    • 79959376326 scopus 로고    scopus 로고
    • Click-generated triazole ureas as ultrapotent in vivo-active serine hydrolase inhibitors
    • Adibekian, A. et al. Click-generated triazole ureas as ultrapotent in vivo-active serine hydrolase inhibitors. Nat. Chem. Biol. 7, 469-478 (2011).
    • (2011) Nat. Chem. Biol. , vol.7 , pp. 469-478
    • Adibekian, A.1
  • 26
    • 64449088672 scopus 로고    scopus 로고
    • Protein carbonylation: 2,4-dinitrophenylhydrazine reacts with both aldehydes/ketones and sulfenic acids
    • Dalle-Donne, I. et al. Protein carbonylation: 2,4-dinitrophenylhydrazine reacts with both aldehydes/ketones and sulfenic acids. Free Radical Biol. Med. 46, 1411-1419 (2009).
    • (2009) Free Radical Biol. Med. , vol.46 , pp. 1411-1419
    • Dalle-Donne, I.1
  • 27
    • 84971207228 scopus 로고    scopus 로고
    • Reactivity, selectivity and stability in sulfenic acid detection: A comparative study of nucleophilic and electropilic probes
    • Gupta, V., Paritala, H. & Carroll, K. S. Reactivity, selectivity and stability in sulfenic acid detection: A comparative study of nucleophilic and electropilic probes. Bioconjugate Chem. 27, 1411-1418 (2016).
    • (2016) Bioconjugate Chem. , vol.27 , pp. 1411-1418
    • Gupta, V.1    Paritala, H.2    Carroll, K.S.3
  • 28
    • 0035859868 scopus 로고    scopus 로고
    • The structural basis for substrate specificity and inhibition of human S-adenosylmethionine decarboxylase
    • Tolbert,W. D. et al. The structural basis for substrate specificity and inhibition of human S-adenosylmethionine decarboxylase. Biochemistry 40, 9484-9494 (2001).
    • (2001) Biochemistry , vol.40 , pp. 9484-9494
    • Tolbert, W.D.1
  • 29
    • 64349094192 scopus 로고    scopus 로고
    • New insights into the design of inhibitors of human S-adenosylmethionine decarboxylase: Studies of adenine C8 substitution in structural analogues of S-adenosylmethionine
    • McCloskey, D. E. et al. New insights into the design of inhibitors of human S-adenosylmethionine decarboxylase: studies of adenine C8 substitution in structural analogues of S-adenosylmethionine. J. Med. Chem. 52, 1388-1407 (2009).
    • (2009) J. Med. Chem. , vol.52 , pp. 1388-1407
    • McCloskey, D.E.1
  • 30
    • 0026464734 scopus 로고
    • Regulation of sadenosylmethionine decarboxylase activity by alterations in the intracellular polyamine content
    • Shantz, L. M., Holm, I., Jänne, O. A. & Pegg, A. E. Regulation of Sadenosylmethionine decarboxylase activity by alterations in the intracellular polyamine content. Biochem. J. 288, 511-518 (1992).
    • (1992) Biochem. J. , vol.288 , pp. 511-518
    • Shantz, L.M.1    Holm, I.2    Jänne, O.A.3    Pegg, A.E.4
  • 31
    • 33847385367 scopus 로고    scopus 로고
    • Plasma methionine determination by capillary electrophoresis-UV assay: Application on patients affected by retinal venous occlusive disease
    • Zinellu, A. et al. Plasma methionine determination by capillary electrophoresis-UV assay: Application on patients affected by retinal venous occlusive disease. Anal. Biochem. 363, 91-96 (2007).
    • (2007) Anal. Biochem. , vol.363 , pp. 91-96
    • Zinellu, A.1
  • 32
    • 0033596728 scopus 로고    scopus 로고
    • Role of cysteine-82 in the catalytic mechanism of human S-adenosylmethionine decarboxylase
    • Xiong, H., Stanley, B. A. & Pegg, A. E. Role of cysteine-82 in the catalytic mechanism of human S-adenosylmethionine decarboxylase. Biochemistry 38, 2462-2470 (1999).
    • (1999) Biochemistry , vol.38 , pp. 2462-2470
    • Xiong, H.1    Stanley, B.A.2    Pegg, A.E.3
  • 33
    • 78650078496 scopus 로고    scopus 로고
    • Quantitative reactivity profiling predicts functional cysteines in proteomes
    • Weerapana, E. et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468, 790-795 (2010).
    • (2010) Nature , vol.468 , pp. 790-795
    • Weerapana, E.1
  • 34
    • 34250746414 scopus 로고    scopus 로고
    • Tandem orthogonal proteolysisactivity-based protein profiling (TOP-ABPP)-a general method for mapping sites of probe modification in proteomes
    • Weerapana, E., Speers, A. E. & Cravatt, B. F. Tandem orthogonal proteolysisactivity-based protein profiling (TOP-ABPP)-a general method for mapping sites of probe modification in proteomes. Nat. Protoc. 2, 1414-1425 (2007).
    • (2007) Nat. Protoc. , vol.2 , pp. 1414-1425
    • Weerapana, E.1    Speers, A.E.2    Cravatt, B.F.3
  • 35
    • 0242515820 scopus 로고    scopus 로고
    • Peptidase family U34 belongs to the superfamily of N-terminal nucleophile hydrolases
    • Pei, J. & Grishin, N. V. Peptidase family U34 belongs to the superfamily of N-terminal nucleophile hydrolases. Protein. Sci. 12, 1131-1135 (2003).
    • (2003) Protein. Sci. , vol.12 , pp. 1131-1135
    • Pei, J.1    Grishin, N.V.2
  • 36
    • 0028972449 scopus 로고
    • A protein catalytic framework with an N-terminal nucleophile is capable of self-activation
    • Brannigan, J. A. et al. A protein catalytic framework with an N-terminal nucleophile is capable of self-activation. Nature 378, 416-419 (1995).
    • (1995) Nature , vol.378 , pp. 416-419
    • Brannigan, J.A.1
  • 37
    • 10544253849 scopus 로고    scopus 로고
    • Jr Lysosomal glycosylasparaginase: A member of a family of amidases that employ a processed N-terminal threonine, serine or cysteine as a combined base-nucleophile catalyst
    • Aronson, N. N. Jr Lysosomal glycosylasparaginase: A member of a family of amidases that employ a processed N-terminal threonine, serine or cysteine as a combined base-nucleophile catalyst. Glycobiology 6, 669-675 (1996).
    • (1996) Glycobiology , vol.6 , pp. 669-675
    • Aronson, N.N.1
  • 38
    • 33845461876 scopus 로고    scopus 로고
    • Nucleophilic catalysis of hydrazone formation and transimination: Implications for dynamic covalent chemistry
    • Dirksen, A., Dirksen, S., Hackeng, T. M. & Dawson, P. E. Nucleophilic catalysis of hydrazone formation and transimination: implications for dynamic covalent chemistry. J. Am. Chem. Soc. 128, 15602-15603 (2006).
    • (2006) J. Am. Chem. Soc. , vol.128 , pp. 15602-15603
    • Dirksen, A.1    Dirksen, S.2    Hackeng, T.M.3    Dawson, P.E.4
  • 39
    • 58149099860 scopus 로고    scopus 로고
    • Rapid oxime and hydrazone ligations with aromatic aldehydes for biomolecular labeling
    • Dirksen, A. & Dawson, P. E. Rapid oxime and hydrazone ligations with aromatic aldehydes for biomolecular labeling. Bioconjug. Chem. 19, 2543-2548 (2008).
    • (2008) Bioconjug. Chem. , vol.19 , pp. 2543-2548
    • Dirksen, A.1    Dawson, P.E.2
  • 40
    • 1842582077 scopus 로고    scopus 로고
    • S-adenosylmethionine decarboxylase degradation by the 26S proteasome is accelerated by substrate-mediated transamination
    • Yerlikaya, A. & Stanley, B. A. S-adenosylmethionine decarboxylase degradation by the 26S proteasome is accelerated by substrate-mediated transamination. J. Biol. Chem. 279, 12469-12478 (2004).
    • (2004) J. Biol. Chem. , vol.279 , pp. 12469-12478
    • Yerlikaya, A.1    Stanley, B.A.2
  • 41
    • 84923342100 scopus 로고    scopus 로고
    • Structure and mechanism of an aspartimide-dependent peptide ligase in human legumain
    • Dall, E., Fegg, J. C., Briza, P. & Brandstetter, H. Structure and mechanism of an aspartimide-dependent peptide ligase in human legumain. Angew. Chem. Int. Ed. 54, 2917-2921 (2015).
    • (2015) Angew. Chem. Int. Ed. , vol.54 , pp. 2917-2921
    • Dall, E.1    Fegg, J.C.2    Briza, P.3    Brandstetter, H.4
  • 42
    • 34248228763 scopus 로고    scopus 로고
    • Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases
    • Casero, R. A. Jr & Marton, L. J. Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat. Rev. Drug Discov. 6, 373-390 (2007).
    • (2007) Nat. Rev. Drug Discov. , vol.6 , pp. 373-390
    • Casero, R.A.1    Marton, L.J.2
  • 43
    • 84885944468 scopus 로고    scopus 로고
    • The emerging role of the Nrf2-Keap1 signaling pathway in cancer
    • Jaramillo, M. C. & Zhang, D. D. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev. 27, 2179-2191 (2013).
    • (2013) Genes Dev. , vol.27 , pp. 2179-2191
    • Jaramillo, M.C.1    Zhang, D.D.2
  • 45
    • 84867330691 scopus 로고    scopus 로고
    • FTO genotype is associated with phenotypic variability of body mass index
    • Yang, J. et al. FTO genotype is associated with phenotypic variability of body mass index. Nature 490, 267-272 (2012).
    • (2012) Nature , vol.490 , pp. 267-272
    • Yang, J.1
  • 46
    • 0005973852 scopus 로고
    • The chemistry of arylhydrazones
    • Buckingham, J. The chemistry of arylhydrazones. Q. Rev. Chem. Soc. 23, 37-56 (1969).
    • (1969) Q. Rev. Chem. Soc. , vol.23 , pp. 37-56
    • Buckingham, J.1
  • 47
    • 0026785571 scopus 로고
    • Active site structure of methylamine dehydrogenase: Hydrazines identify C6 as the reactive site of the tryptophan-derived quinone cofactor
    • Huizinga, E. G. et al. Active site structure of methylamine dehydrogenase: hydrazines identify C6 as the reactive site of the tryptophan-derived quinone cofactor. Biochemistry 31, 9789-9795 (1992).
    • (1992) Biochemistry , vol.31 , pp. 9789-9795
    • Huizinga, E.G.1
  • 48
    • 84921415413 scopus 로고    scopus 로고
    • Formylglycine, a post-translationally generated residue with unique catalytic capabilities and biotechnology applications
    • Appel, M. J. & Bertozzi, C. R. Formylglycine, a post-translationally generated residue with unique catalytic capabilities and biotechnology applications. ACS Chem. Biol. 10, 72-84 (2015).
    • (2015) ACS Chem. Biol. , vol.10 , pp. 72-84
    • Appel, M.J.1    Bertozzi, C.R.2
  • 49
    • 0033520327 scopus 로고    scopus 로고
    • Structural insights into the mechanism of intramolecular proteolysis
    • Xu, Q., Buckley, D., Guan, C. & Guo, H. C. Structural insights into the mechanism of intramolecular proteolysis. Cell 98, 651-661 (1999).
    • (1999) Cell , vol.98 , pp. 651-661
    • Xu, Q.1    Buckley, D.2    Guan, C.3    Guo, H.C.4
  • 50
    • 0345251970 scopus 로고    scopus 로고
    • Identification of D-proline reductase from Clostridium sticklandii as a selenoenzyme and indications for a catalytically active pyruvoyl group derived from a cysteine residue by cleavage of a proprotein
    • Kabisch, U. C. et al. Identification of D-proline reductase from Clostridium sticklandii as a selenoenzyme and indications for a catalytically active pyruvoyl group derived from a cysteine residue by cleavage of a proprotein. J. Biol. Chem. 274, 8445-8454 (1999).
    • (1999) J. Biol. Chem. , vol.274 , pp. 8445-8454
    • Kabisch, U.C.1
  • 51
    • 4644271374 scopus 로고    scopus 로고
    • Glycine reductase mechanism
    • Andreesen, J. R. Glycine reductase mechanism. Curr. Opin. Chem. Biol. 8, 454-461 (2004).
    • (2004) Curr. Opin. Chem. Biol. , vol.8 , pp. 454-461
    • Andreesen, J.R.1
  • 52
    • 0037209757 scopus 로고    scopus 로고
    • Bacterial cysteine desulfurases: Their function and mechanisms
    • Mihara, H. & Esaki, N. Bacterial cysteine desulfurases: Their function and mechanisms. Appl. Microbiol. Biotechnol. 60, 12-23 (2002).
    • (2002) Appl. Microbiol. Biotechnol. , vol.60 , pp. 12-23
    • Mihara, H.1    Esaki, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.