메뉴 건너뛰기




Volumn 32, Issue , 2017, Pages 139-151

Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification

Author keywords

Convolutional neural network; Fault diagnosis; Rolling bearing

Indexed keywords

BACKPROPAGATION; BEARINGS (MACHINE PARTS); CLASSIFICATION (OF INFORMATION); COMPLEX NETWORKS; COMPUTATION THEORY; COMPUTER AIDED DIAGNOSIS; CONVOLUTION; DEEP LEARNING; DEEP NEURAL NETWORKS; FAILURE ANALYSIS; FEATURE EXTRACTION; IMAGE RECOGNITION; NEURAL NETWORKS; ROLLER BEARINGS; SYSTEMS ENGINEERING; VIBRATIONS (MECHANICAL);

EID: 85013801625     PISSN: 14740346     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.aei.2017.02.005     Document Type: Article
Times cited : (408)

References (50)
  • 1
    • 5044252073 scopus 로고    scopus 로고
    • Robust performance degradation assessment methods for enhanced rolling element bearing prognostics
    • [1] Qiu, H., Lee, J., Lin, J., Yu, G., Robust performance degradation assessment methods for enhanced rolling element bearing prognostics. Adv. Eng. Inform. 17 (2003), 127–140.
    • (2003) Adv. Eng. Inform. , vol.17 , pp. 127-140
    • Qiu, H.1    Lee, J.2    Lin, J.3    Yu, G.4
  • 2
    • 58049190180 scopus 로고    scopus 로고
    • Rotating machinery prognostics: state of the art, challenges and opportunities
    • [2] Heng, A., Zhang, S., Tan, A.C.C., Mathew, J., Rotating machinery prognostics: state of the art, challenges and opportunities. Mech. Syst. Signal Pr. 23 (2009), 724–739.
    • (2009) Mech. Syst. Signal Pr. , vol.23 , pp. 724-739
    • Heng, A.1    Zhang, S.2    Tan, A.C.C.3    Mathew, J.4
  • 3
    • 84926087284 scopus 로고    scopus 로고
    • A research on intelligent fault diagnosis of wind turbines based on ontology and FMECA
    • [3] Zhou, A., Yu, D., Zhang, W., A research on intelligent fault diagnosis of wind turbines based on ontology and FMECA. Adv. Eng. Inform. 29 (2015), 115–125.
    • (2015) Adv. Eng. Inform. , vol.29 , pp. 115-125
    • Zhou, A.1    Yu, D.2    Zhang, W.3
  • 4
    • 56249097921 scopus 로고    scopus 로고
    • Diagnosis of subharmonic faults of large rotating machinery based on EMD
    • [4] Wu, F., Qu, L., Diagnosis of subharmonic faults of large rotating machinery based on EMD. Mech. Syst. Signal. Pr. 23 (2009), 467–475.
    • (2009) Mech. Syst. Signal. Pr. , vol.23 , pp. 467-475
    • Wu, F.1    Qu, L.2
  • 5
    • 84971401606 scopus 로고    scopus 로고
    • The fault feature extraction of rolling bearing based on EMD and difference spectrum of singular value
    • [5] Han, T., Jiang, D., Wang, N., The fault feature extraction of rolling bearing based on EMD and difference spectrum of singular value. Shock. Vib., 2016.
    • (2016) Shock. Vib.
    • Han, T.1    Jiang, D.2    Wang, N.3
  • 6
    • 84888643163 scopus 로고    scopus 로고
    • Fault diagnosis and prognosis using wavelet packet decomposition. Fourier transform and artificial neural network
    • [6] Zhang, Z., Wang, Y., Wang, K., Fault diagnosis and prognosis using wavelet packet decomposition. Fourier transform and artificial neural network. J. Intell. Manuf. 24 (2013), 1213–1227.
    • (2013) J. Intell. Manuf. , vol.24 , pp. 1213-1227
    • Zhang, Z.1    Wang, Y.2    Wang, K.3
  • 9
    • 84961051737 scopus 로고    scopus 로고
    • Fault diagnosis in spur gears based on genetic algorithm and random forest
    • [9] Cerrada, M., Zurita, G., Cabrera, D., Sanchez, R., Artes, M., Li, C., Fault diagnosis in spur gears based on genetic algorithm and random forest. Mech. Syst. Signal Pr. 70–71 (2016), 87–103.
    • (2016) Mech. Syst. Signal Pr. , vol.70-71 , pp. 87-103
    • Cerrada, M.1    Zurita, G.2    Cabrera, D.3    Sanchez, R.4    Artes, M.5    Li, C.6
  • 10
    • 84908092471 scopus 로고    scopus 로고
    • Fault diagnosis based on dependent feature vector and probability neural network for rolling element bearings
    • [10] Chen, X., Zhou, J., Xiao, J., Zhang, X., Xiao, H., Zhu, W., Fu, W., Fault diagnosis based on dependent feature vector and probability neural network for rolling element bearings. Appl. Math. Comput. 247 (2014), 835–847.
    • (2014) Appl. Math. Comput. , vol.247 , pp. 835-847
    • Chen, X.1    Zhou, J.2    Xiao, J.3    Zhang, X.4    Xiao, H.5    Zhu, W.6    Fu, W.7
  • 11
    • 84976336466 scopus 로고    scopus 로고
    • Rolling bearing fault diagnosis based on partially ensemble empirical mode decomposition and variable predictive model-based class discrimination
    • [11] Zheng, J., Rolling bearing fault diagnosis based on partially ensemble empirical mode decomposition and variable predictive model-based class discrimination. Arch. Civ. Mech. Eng. 16 (2016), 784–794.
    • (2016) Arch. Civ. Mech. Eng. , vol.16 , pp. 784-794
    • Zheng, J.1
  • 12
    • 84979463234 scopus 로고    scopus 로고
    • A new rolling bearing fault diagnosis method based on GFT impulse component extraction
    • [12] Ou, L., Yu, D., Yang, H., A new rolling bearing fault diagnosis method based on GFT impulse component extraction. Mech. Syst. Signal Pr. 81 (2016), 162–182.
    • (2016) Mech. Syst. Signal Pr. , vol.81 , pp. 162-182
    • Ou, L.1    Yu, D.2    Yang, H.3
  • 13
    • 84907854703 scopus 로고    scopus 로고
    • Fault diagnosis of rolling bearings using a genetic algorithm optimized neural network
    • [13] Unal, M., Onat, M., Demetgul, M., Kucuk, H., Fault diagnosis of rolling bearings using a genetic algorithm optimized neural network. Measurement 58 (2014), 187–196.
    • (2014) Measurement , vol.58 , pp. 187-196
    • Unal, M.1    Onat, M.2    Demetgul, M.3    Kucuk, H.4
  • 14
    • 84889096899 scopus 로고    scopus 로고
    • Multiwavelet transform and its applications in mechanical fault diagnosis - a review
    • [14] Sun, H., He, Z., Zi, Y., Yuan, J., Wang, X., Chen, J., He, S., Multiwavelet transform and its applications in mechanical fault diagnosis - a review. Mech. Syst. Signal Pr. 43 (2014), 1–24.
    • (2014) Mech. Syst. Signal Pr. , vol.43 , pp. 1-24
    • Sun, H.1    He, Z.2    Zi, Y.3    Yuan, J.4    Wang, X.5    Chen, J.6    He, S.7
  • 15
    • 84876940227 scopus 로고    scopus 로고
    • Recent advances in time-frequency analysis methods for machinery fault diagnosis: a review with application examples
    • [15] Feng, Z., Liang, M., Chu, F., Recent advances in time-frequency analysis methods for machinery fault diagnosis: a review with application examples. Mech. Syst. Signal Pr. 38 (2013), 165–205.
    • (2013) Mech. Syst. Signal Pr. , vol.38 , pp. 165-205
    • Feng, Z.1    Liang, M.2    Chu, F.3
  • 16
    • 5044244532 scopus 로고    scopus 로고
    • Enhanced diagnostic certainty using information entropy theory
    • [16] Qu, L.S., Li, L.M., Lee, J., Enhanced diagnostic certainty using information entropy theory. Adv. Eng. Inform. 17 (2003), 141–150.
    • (2003) Adv. Eng. Inform. , vol.17 , pp. 141-150
    • Qu, L.S.1    Li, L.M.2    Lee, J.3
  • 17
    • 60349128109 scopus 로고    scopus 로고
    • Empirical mode decomposition, an adaptive approach for interpreting shaft vibratory signals of large rotating machinery
    • [17] Yang, W., Tavner, P.J., Empirical mode decomposition, an adaptive approach for interpreting shaft vibratory signals of large rotating machinery. J. Sound. Vib. 321 (2009), 1144–1170.
    • (2009) J. Sound. Vib. , vol.321 , pp. 1144-1170
    • Yang, W.1    Tavner, P.J.2
  • 18
    • 84865110324 scopus 로고    scopus 로고
    • Fault diagnosis of main engine journal bearing based on vibration analysis using Fisher linear discriminant. K-nearest neighbor and support vector machine
    • [18] Moosavian, A., Ahmadi, H., Tabatabaeefar, A., Fault diagnosis of main engine journal bearing based on vibration analysis using Fisher linear discriminant. K-nearest neighbor and support vector machine. J. Vibroeng. 14 (2012), 894–906.
    • (2012) J. Vibroeng. , vol.14 , pp. 894-906
    • Moosavian, A.1    Ahmadi, H.2    Tabatabaeefar, A.3
  • 19
    • 84887056149 scopus 로고    scopus 로고
    • Prognostics and health management design for rotary machinery systems-reviews, methodology and applications
    • [19] Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., Siegel, D., Prognostics and health management design for rotary machinery systems-reviews, methodology and applications. Mech. Syst. Signal Pr. 42 (2014), 314–334.
    • (2014) Mech. Syst. Signal Pr. , vol.42 , pp. 314-334
    • Lee, J.1    Wu, F.2    Zhao, W.3    Ghaffari, M.4    Liao, L.5    Siegel, D.6
  • 20
    • 84862824347 scopus 로고    scopus 로고
    • Novel method for rolling element bearing health assessment-A tachometer-less synchronously averaged envelope feature extraction technique
    • [20] Siegel, D., Al-Atat, H., Shauche, V., Liao, L., Snyder, J., Lee, J., Novel method for rolling element bearing health assessment-A tachometer-less synchronously averaged envelope feature extraction technique. Mech. Syst. Signal Pr. 29 (2012), 362–376.
    • (2012) Mech. Syst. Signal Pr. , vol.29 , pp. 362-376
    • Siegel, D.1    Al-Atat, H.2    Shauche, V.3    Liao, L.4    Snyder, J.5    Lee, J.6
  • 21
    • 84879397113 scopus 로고    scopus 로고
    • Using continuous wavelet transform of generalized flexibility matrix in damage identification
    • [21] Ashory, M.R., Masoumi, M., Jamshidi, E., Khalili, B., Using continuous wavelet transform of generalized flexibility matrix in damage identification. J. Vibroeng. 15 (2013), 512–519.
    • (2013) J. Vibroeng. , vol.15 , pp. 512-519
    • Ashory, M.R.1    Masoumi, M.2    Jamshidi, E.3    Khalili, B.4
  • 22
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • [22] Hinton, G.E., Salakhutdinov, R.R., Reducing the dimensionality of data with neural networks. Science 313 (2006), 504–507.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 23
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • [23] Hinton, G.E., Osindero, S., Teh, Y., A fast learning algorithm for deep belief nets. Neural. Comput. 18 (2006), 1527–1554.
    • (2006) Neural. Comput. , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 26
    • 84878409063 scopus 로고    scopus 로고
    • Recurrent Neural Networks for Noise Reduction in Robust ASR,2012, pp. 22-25.
    • [26] A.L. Maas, Q.V. Le, T.M. O'Neil, O. Vinyals, P. Nguyen, A.Y. Ng, Recurrent Neural Networks for Noise Reduction in Robust ASR,2012, pp. 22-25.
    • Maas, A.L.1    Le, Q.V.2    O'Neil, T.M.3    Vinyals, O.4    Nguyen, P.5    Ng, A.Y.6
  • 27
    • 84988325385 scopus 로고    scopus 로고
    • Connectionist temporal classification: labelling unsegmented sequence data with recurrent
    • [27] Graves, S.F.F.G.A., Connectionist temporal classification: labelling unsegmented sequence data with recurrent. Neural Networks, 2006.
    • (2006) Neural Networks
    • Graves, S.F.F.G.A.1
  • 28
    • 0030737097 scopus 로고    scopus 로고
    • Face recognition: a convolutional neural-network approach
    • (a publication of the IEEE Neural Networks Council)
    • [28] Lawrence, S., Giles, C.L., Tsoi, A.C., Back, A.D., Face recognition: a convolutional neural-network approach. IEEE Trans. Neural Networks 8 (1997), 98–113 (a publication of the IEEE Neural Networks Council).
    • (1997) IEEE Trans. Neural Networks , vol.8 , pp. 98-113
    • Lawrence, S.1    Giles, C.L.2    Tsoi, A.C.3    Back, A.D.4
  • 29
    • 84875848937 scopus 로고    scopus 로고
    • Failure diagnosis using deep belief learning based health state classification
    • [29] Tamilselvan, P., Wang, P., Failure diagnosis using deep belief learning based health state classification. Reliab. Eng. Syst. Safe 115 (2013), 124–135.
    • (2013) Reliab. Eng. Syst. Safe , vol.115 , pp. 124-135
    • Tamilselvan, P.1    Wang, P.2
  • 30
    • 79551544230 scopus 로고    scopus 로고
    • Convolutional neural networks for P300 detection with application to brain-computer interfaces
    • [30] Cecotti, H., Graeser, A., Convolutional neural networks for P300 detection with application to brain-computer interfaces. IEEE Trans. Pattern. Anal. 33 (2011), 433–445.
    • (2011) IEEE Trans. Pattern. Anal. , vol.33 , pp. 433-445
    • Cecotti, H.1    Graeser, A.2
  • 31
    • 84864073449 scopus 로고    scopus 로고
    • Greedy layer-wise training of deep networks. In: Editor edito. Advances in Neural Information Processing Systems 19 (NIPS’06), Pub Place, 2007.
    • [31] B. Yoshua, L. Pascal, P. Dan, L. Hugo, Greedy layer-wise training of deep networks. In: Editor edito. Advances in Neural Information Processing Systems 19 (NIPS’06), Pub Place, 2007.
    • Yoshua, B.1    Pascal, L.2    Dan, P.3    Hugo, L.4
  • 32
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • [32] LeCun, Y., Bengio, Y., Hinton, G., Deep learning. Nature 521 (2015), 436–444.
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 33
    • 84926030663 scopus 로고    scopus 로고
    • Adaptive convolutional neural network and its application in face recognition
    • [33] Zhang, Y., Zhao, D., Sun, J., Zou, G., Li, W., Adaptive convolutional neural network and its application in face recognition. Neural. Process. Lett. 43 (2016), 389–399.
    • (2016) Neural. Process. Lett. , vol.43 , pp. 389-399
    • Zhang, Y.1    Zhao, D.2    Sun, J.3    Zou, G.4    Li, W.5
  • 34
    • 84960344531 scopus 로고    scopus 로고
    • Understanding deep convolutional networks
    • [34] Mallat, S., Understanding deep convolutional networks. Philos. Trans. R. Soc. A, 374, 2016.
    • (2016) Philos. Trans. R. Soc. A , vol.374
    • Mallat, S.1
  • 35
    • 84864069017 scopus 로고    scopus 로고
    • Efficient learning of sparse representations with an energy-based model
    • [35] Ranzato, C.P.S.C.M., Efficient learning of sparse representations with an energy-based model. Adv. Neural Inf. Process. Syst. 19:NIPS’06 (2007), 1137–1144.
    • (2007) Adv. Neural Inf. Process. Syst. , vol.19 , Issue.NIPS’06 , pp. 1137-1144
    • Ranzato, C.P.S.C.M.1
  • 36
    • 84956858756 scopus 로고    scopus 로고
    • String representations and distances in deep Convolutional Neural Networks for image classification
    • [36] Barat, C., Ducottet, C., String representations and distances in deep Convolutional Neural Networks for image classification. Pattern. Recogn. 54 (2016), 104–115.
    • (2016) Pattern. Recogn. , vol.54 , pp. 104-115
    • Barat, C.1    Ducottet, C.2
  • 37
    • 84924515207 scopus 로고    scopus 로고
    • The Mathematics of Signal Processing
    • Cambridge University Press
    • [37] Damelin, S., Miller, W., The Mathematics of Signal Processing. 2011, Cambridge University Press.
    • (2011)
    • Damelin, S.1    Miller, W.2
  • 38
    • 84907340164 scopus 로고    scopus 로고
    • Improved automatic speech recognition system using sparse decomposition by basis pursuit with deep rectifier neural networks and compressed sensing recomposition of speech signals
    • [38] Gavrilescu, M., Improved automatic speech recognition system using sparse decomposition by basis pursuit with deep rectifier neural networks and compressed sensing recomposition of speech signals. 2014 10th International Conference on Communications (COMM), 2014.
    • (2014) 2014 10th International Conference on Communications (COMM)
    • Gavrilescu, M.1
  • 39
    • 84969940648 scopus 로고    scopus 로고
    • DropSample: a new training method to enhance deep convolutional neural networks for large-scale unconstrained handwritten Chinese character recognition
    • [39] Yang, W., Jin, L., Tao, D., Xie, Z., Feng, Z., DropSample: a new training method to enhance deep convolutional neural networks for large-scale unconstrained handwritten Chinese character recognition. Pattern. Recogn. 58 (2016), 190–203.
    • (2016) Pattern. Recogn. , vol.58 , pp. 190-203
    • Yang, W.1    Jin, L.2    Tao, D.3    Xie, Z.4    Feng, Z.5
  • 41
    • 0009282621 scopus 로고    scopus 로고
    • Shape, Contour and Grouping in Computer Vision
    • Springer Berlin Heidelberg
    • [41] Forsyth, D.A., Mundy, J.L., di Gesú, V., Cipolla, R., Shape, Contour and Grouping in Computer Vision. 1999, Springer, Berlin Heidelberg.
    • (1999)
    • Forsyth, D.A.1    Mundy, J.L.2    di Gesú, V.3    Cipolla, R.4
  • 42
    • 84937459583 scopus 로고    scopus 로고
    • An adaptive conjugate gradient algorithm for large-scale unconstrained optimization
    • [42] Andrei, N., An adaptive conjugate gradient algorithm for large-scale unconstrained optimization. J. Comput. Appl. Math. 292 (2016), 83–91.
    • (2016) J. Comput. Appl. Math. , vol.292 , pp. 83-91
    • Andrei, N.1
  • 43
    • 84945898896 scopus 로고    scopus 로고
    • Scene classification via a gradient boosting random convolutional network framework
    • [43] Zhang, F., Du, B., Zhang, L., Scene classification via a gradient boosting random convolutional network framework. IEEE. Trans. Geosci. Remote 54 (2016), 1793–1802.
    • (2016) IEEE. Trans. Geosci. Remote , vol.54 , pp. 1793-1802
    • Zhang, F.1    Du, B.2    Zhang, L.3
  • 44
    • 85013742510 scopus 로고    scopus 로고
    • Noise-enhanced convolutional neural networks, Neural Networks.
    • [44] K. Audhkhasi, O. Osoba, B. Kosko, Noise-enhanced convolutional neural networks, Neural Networks.
    • Audhkhasi, K.1    Osoba, O.2    Kosko, B.3
  • 45
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • [45] Yann Lecun, L.B.Y.B., Gradient-based learning applied to document recognition. P IEEE, 1998, 2278–2324.
    • (1998) P IEEE , pp. 2278-2324
    • Yann Lecun, L.B.Y.B.1
  • 46
    • 84937975641 scopus 로고    scopus 로고
    • Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study
    • [46] Smith, W.A., Randall, R.B., Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study. Mech. Syst. Signal Pr. 64–65 (2015), 100–131.
    • (2015) Mech. Syst. Signal Pr. , vol.64-65 , pp. 100-131
    • Smith, W.A.1    Randall, R.B.2
  • 47
    • 33750135479 scopus 로고    scopus 로고
    • A convolutional neural network approach for objective video quality assessment
    • [47] Le Callet, P., Viard-Gaudin, C., Barba, D., A convolutional neural network approach for objective video quality assessment. IEEE Trans. Neural Networks 17 (2006), 1316–1327.
    • (2006) IEEE Trans. Neural Networks , vol.17 , pp. 1316-1327
    • Le Callet, P.1    Viard-Gaudin, C.2    Barba, D.3
  • 48
    • 84901948826 scopus 로고    scopus 로고
    • Health assessment and fault diagnosis for centrifugal pumps using Softmax regression
    • [48] Ma, J., Lu, C., Zhang, W., Tang, Y., Health assessment and fault diagnosis for centrifugal pumps using Softmax regression. J. Vibroeng. 16 (2014), 1464–1474.
    • (2014) J. Vibroeng. , vol.16 , pp. 1464-1474
    • Ma, J.1    Lu, C.2    Zhang, W.3    Tang, Y.4
  • 49
    • 34848858238 scopus 로고    scopus 로고
    • A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM
    • [49] Yang, Y., Yu, D., Cheng, J., A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM. Measurement 40 (2007), 943–950.
    • (2007) Measurement , vol.40 , pp. 943-950
    • Yang, Y.1    Yu, D.2    Cheng, J.3
  • 50
    • 78650170620 scopus 로고    scopus 로고
    • Novel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks
    • [50] Hsieh, C., Lu, R., Lee, N., Chiu, W., Hsu, M., Li, Y.J., Novel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks. Surgery 149 (2011), 87–93.
    • (2011) Surgery , vol.149 , pp. 87-93
    • Hsieh, C.1    Lu, R.2    Lee, N.3    Chiu, W.4    Hsu, M.5    Li, Y.J.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.