-
1
-
-
5044252073
-
Robust performance degradation assessment methods for enhanced rolling element bearing prognostics
-
[1] Qiu, H., Lee, J., Lin, J., Yu, G., Robust performance degradation assessment methods for enhanced rolling element bearing prognostics. Adv. Eng. Inform. 17 (2003), 127–140.
-
(2003)
Adv. Eng. Inform.
, vol.17
, pp. 127-140
-
-
Qiu, H.1
Lee, J.2
Lin, J.3
Yu, G.4
-
2
-
-
58049190180
-
Rotating machinery prognostics: state of the art, challenges and opportunities
-
[2] Heng, A., Zhang, S., Tan, A.C.C., Mathew, J., Rotating machinery prognostics: state of the art, challenges and opportunities. Mech. Syst. Signal Pr. 23 (2009), 724–739.
-
(2009)
Mech. Syst. Signal Pr.
, vol.23
, pp. 724-739
-
-
Heng, A.1
Zhang, S.2
Tan, A.C.C.3
Mathew, J.4
-
3
-
-
84926087284
-
A research on intelligent fault diagnosis of wind turbines based on ontology and FMECA
-
[3] Zhou, A., Yu, D., Zhang, W., A research on intelligent fault diagnosis of wind turbines based on ontology and FMECA. Adv. Eng. Inform. 29 (2015), 115–125.
-
(2015)
Adv. Eng. Inform.
, vol.29
, pp. 115-125
-
-
Zhou, A.1
Yu, D.2
Zhang, W.3
-
4
-
-
56249097921
-
Diagnosis of subharmonic faults of large rotating machinery based on EMD
-
[4] Wu, F., Qu, L., Diagnosis of subharmonic faults of large rotating machinery based on EMD. Mech. Syst. Signal. Pr. 23 (2009), 467–475.
-
(2009)
Mech. Syst. Signal. Pr.
, vol.23
, pp. 467-475
-
-
Wu, F.1
Qu, L.2
-
5
-
-
84971401606
-
The fault feature extraction of rolling bearing based on EMD and difference spectrum of singular value
-
[5] Han, T., Jiang, D., Wang, N., The fault feature extraction of rolling bearing based on EMD and difference spectrum of singular value. Shock. Vib., 2016.
-
(2016)
Shock. Vib.
-
-
Han, T.1
Jiang, D.2
Wang, N.3
-
6
-
-
84888643163
-
Fault diagnosis and prognosis using wavelet packet decomposition. Fourier transform and artificial neural network
-
[6] Zhang, Z., Wang, Y., Wang, K., Fault diagnosis and prognosis using wavelet packet decomposition. Fourier transform and artificial neural network. J. Intell. Manuf. 24 (2013), 1213–1227.
-
(2013)
J. Intell. Manuf.
, vol.24
, pp. 1213-1227
-
-
Zhang, Z.1
Wang, Y.2
Wang, K.3
-
7
-
-
85017341902
-
Fault diagnosis of monoblock centrifugal pump using SVM
-
[7] Muralidharan, V., Sugumaran, V., Indira, V., Fault diagnosis of monoblock centrifugal pump using SVM. Eng. Sci. Technol., Int. J. 17 (2014), 152–157.
-
(2014)
Eng. Sci. Technol., Int. J.
, vol.17
, pp. 152-157
-
-
Muralidharan, V.1
Sugumaran, V.2
Indira, V.3
-
8
-
-
84870669188
-
Automatic bearing fault diagnosis based on one-class ν-SVM
-
[8] Fernández-Francos, D., Martínez-Rego, D., Fontenla-Romero, O., Alonso-Betanzos, A., Automatic bearing fault diagnosis based on one-class ν-SVM. Comput. Ind. Eng. 64 (2013), 357–365.
-
(2013)
Comput. Ind. Eng.
, vol.64
, pp. 357-365
-
-
Fernández-Francos, D.1
Martínez-Rego, D.2
Fontenla-Romero, O.3
Alonso-Betanzos, A.4
-
9
-
-
84961051737
-
Fault diagnosis in spur gears based on genetic algorithm and random forest
-
[9] Cerrada, M., Zurita, G., Cabrera, D., Sanchez, R., Artes, M., Li, C., Fault diagnosis in spur gears based on genetic algorithm and random forest. Mech. Syst. Signal Pr. 70–71 (2016), 87–103.
-
(2016)
Mech. Syst. Signal Pr.
, vol.70-71
, pp. 87-103
-
-
Cerrada, M.1
Zurita, G.2
Cabrera, D.3
Sanchez, R.4
Artes, M.5
Li, C.6
-
10
-
-
84908092471
-
Fault diagnosis based on dependent feature vector and probability neural network for rolling element bearings
-
[10] Chen, X., Zhou, J., Xiao, J., Zhang, X., Xiao, H., Zhu, W., Fu, W., Fault diagnosis based on dependent feature vector and probability neural network for rolling element bearings. Appl. Math. Comput. 247 (2014), 835–847.
-
(2014)
Appl. Math. Comput.
, vol.247
, pp. 835-847
-
-
Chen, X.1
Zhou, J.2
Xiao, J.3
Zhang, X.4
Xiao, H.5
Zhu, W.6
Fu, W.7
-
11
-
-
84976336466
-
Rolling bearing fault diagnosis based on partially ensemble empirical mode decomposition and variable predictive model-based class discrimination
-
[11] Zheng, J., Rolling bearing fault diagnosis based on partially ensemble empirical mode decomposition and variable predictive model-based class discrimination. Arch. Civ. Mech. Eng. 16 (2016), 784–794.
-
(2016)
Arch. Civ. Mech. Eng.
, vol.16
, pp. 784-794
-
-
Zheng, J.1
-
12
-
-
84979463234
-
A new rolling bearing fault diagnosis method based on GFT impulse component extraction
-
[12] Ou, L., Yu, D., Yang, H., A new rolling bearing fault diagnosis method based on GFT impulse component extraction. Mech. Syst. Signal Pr. 81 (2016), 162–182.
-
(2016)
Mech. Syst. Signal Pr.
, vol.81
, pp. 162-182
-
-
Ou, L.1
Yu, D.2
Yang, H.3
-
13
-
-
84907854703
-
Fault diagnosis of rolling bearings using a genetic algorithm optimized neural network
-
[13] Unal, M., Onat, M., Demetgul, M., Kucuk, H., Fault diagnosis of rolling bearings using a genetic algorithm optimized neural network. Measurement 58 (2014), 187–196.
-
(2014)
Measurement
, vol.58
, pp. 187-196
-
-
Unal, M.1
Onat, M.2
Demetgul, M.3
Kucuk, H.4
-
14
-
-
84889096899
-
Multiwavelet transform and its applications in mechanical fault diagnosis - a review
-
[14] Sun, H., He, Z., Zi, Y., Yuan, J., Wang, X., Chen, J., He, S., Multiwavelet transform and its applications in mechanical fault diagnosis - a review. Mech. Syst. Signal Pr. 43 (2014), 1–24.
-
(2014)
Mech. Syst. Signal Pr.
, vol.43
, pp. 1-24
-
-
Sun, H.1
He, Z.2
Zi, Y.3
Yuan, J.4
Wang, X.5
Chen, J.6
He, S.7
-
15
-
-
84876940227
-
Recent advances in time-frequency analysis methods for machinery fault diagnosis: a review with application examples
-
[15] Feng, Z., Liang, M., Chu, F., Recent advances in time-frequency analysis methods for machinery fault diagnosis: a review with application examples. Mech. Syst. Signal Pr. 38 (2013), 165–205.
-
(2013)
Mech. Syst. Signal Pr.
, vol.38
, pp. 165-205
-
-
Feng, Z.1
Liang, M.2
Chu, F.3
-
16
-
-
5044244532
-
Enhanced diagnostic certainty using information entropy theory
-
[16] Qu, L.S., Li, L.M., Lee, J., Enhanced diagnostic certainty using information entropy theory. Adv. Eng. Inform. 17 (2003), 141–150.
-
(2003)
Adv. Eng. Inform.
, vol.17
, pp. 141-150
-
-
Qu, L.S.1
Li, L.M.2
Lee, J.3
-
17
-
-
60349128109
-
Empirical mode decomposition, an adaptive approach for interpreting shaft vibratory signals of large rotating machinery
-
[17] Yang, W., Tavner, P.J., Empirical mode decomposition, an adaptive approach for interpreting shaft vibratory signals of large rotating machinery. J. Sound. Vib. 321 (2009), 1144–1170.
-
(2009)
J. Sound. Vib.
, vol.321
, pp. 1144-1170
-
-
Yang, W.1
Tavner, P.J.2
-
18
-
-
84865110324
-
Fault diagnosis of main engine journal bearing based on vibration analysis using Fisher linear discriminant. K-nearest neighbor and support vector machine
-
[18] Moosavian, A., Ahmadi, H., Tabatabaeefar, A., Fault diagnosis of main engine journal bearing based on vibration analysis using Fisher linear discriminant. K-nearest neighbor and support vector machine. J. Vibroeng. 14 (2012), 894–906.
-
(2012)
J. Vibroeng.
, vol.14
, pp. 894-906
-
-
Moosavian, A.1
Ahmadi, H.2
Tabatabaeefar, A.3
-
19
-
-
84887056149
-
Prognostics and health management design for rotary machinery systems-reviews, methodology and applications
-
[19] Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., Siegel, D., Prognostics and health management design for rotary machinery systems-reviews, methodology and applications. Mech. Syst. Signal Pr. 42 (2014), 314–334.
-
(2014)
Mech. Syst. Signal Pr.
, vol.42
, pp. 314-334
-
-
Lee, J.1
Wu, F.2
Zhao, W.3
Ghaffari, M.4
Liao, L.5
Siegel, D.6
-
20
-
-
84862824347
-
Novel method for rolling element bearing health assessment-A tachometer-less synchronously averaged envelope feature extraction technique
-
[20] Siegel, D., Al-Atat, H., Shauche, V., Liao, L., Snyder, J., Lee, J., Novel method for rolling element bearing health assessment-A tachometer-less synchronously averaged envelope feature extraction technique. Mech. Syst. Signal Pr. 29 (2012), 362–376.
-
(2012)
Mech. Syst. Signal Pr.
, vol.29
, pp. 362-376
-
-
Siegel, D.1
Al-Atat, H.2
Shauche, V.3
Liao, L.4
Snyder, J.5
Lee, J.6
-
21
-
-
84879397113
-
Using continuous wavelet transform of generalized flexibility matrix in damage identification
-
[21] Ashory, M.R., Masoumi, M., Jamshidi, E., Khalili, B., Using continuous wavelet transform of generalized flexibility matrix in damage identification. J. Vibroeng. 15 (2013), 512–519.
-
(2013)
J. Vibroeng.
, vol.15
, pp. 512-519
-
-
Ashory, M.R.1
Masoumi, M.2
Jamshidi, E.3
Khalili, B.4
-
22
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
[22] Hinton, G.E., Salakhutdinov, R.R., Reducing the dimensionality of data with neural networks. Science 313 (2006), 504–507.
-
(2006)
Science
, vol.313
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
23
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
[23] Hinton, G.E., Osindero, S., Teh, Y., A fast learning algorithm for deep belief nets. Neural. Comput. 18 (2006), 1527–1554.
-
(2006)
Neural. Comput.
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.3
-
26
-
-
84878409063
-
-
Recurrent Neural Networks for Noise Reduction in Robust ASR,2012, pp. 22-25.
-
[26] A.L. Maas, Q.V. Le, T.M. O'Neil, O. Vinyals, P. Nguyen, A.Y. Ng, Recurrent Neural Networks for Noise Reduction in Robust ASR,2012, pp. 22-25.
-
-
-
Maas, A.L.1
Le, Q.V.2
O'Neil, T.M.3
Vinyals, O.4
Nguyen, P.5
Ng, A.Y.6
-
27
-
-
84988325385
-
Connectionist temporal classification: labelling unsegmented sequence data with recurrent
-
[27] Graves, S.F.F.G.A., Connectionist temporal classification: labelling unsegmented sequence data with recurrent. Neural Networks, 2006.
-
(2006)
Neural Networks
-
-
Graves, S.F.F.G.A.1
-
28
-
-
0030737097
-
Face recognition: a convolutional neural-network approach
-
(a publication of the IEEE Neural Networks Council)
-
[28] Lawrence, S., Giles, C.L., Tsoi, A.C., Back, A.D., Face recognition: a convolutional neural-network approach. IEEE Trans. Neural Networks 8 (1997), 98–113 (a publication of the IEEE Neural Networks Council).
-
(1997)
IEEE Trans. Neural Networks
, vol.8
, pp. 98-113
-
-
Lawrence, S.1
Giles, C.L.2
Tsoi, A.C.3
Back, A.D.4
-
29
-
-
84875848937
-
Failure diagnosis using deep belief learning based health state classification
-
[29] Tamilselvan, P., Wang, P., Failure diagnosis using deep belief learning based health state classification. Reliab. Eng. Syst. Safe 115 (2013), 124–135.
-
(2013)
Reliab. Eng. Syst. Safe
, vol.115
, pp. 124-135
-
-
Tamilselvan, P.1
Wang, P.2
-
30
-
-
79551544230
-
Convolutional neural networks for P300 detection with application to brain-computer interfaces
-
[30] Cecotti, H., Graeser, A., Convolutional neural networks for P300 detection with application to brain-computer interfaces. IEEE Trans. Pattern. Anal. 33 (2011), 433–445.
-
(2011)
IEEE Trans. Pattern. Anal.
, vol.33
, pp. 433-445
-
-
Cecotti, H.1
Graeser, A.2
-
31
-
-
84864073449
-
-
Greedy layer-wise training of deep networks. In: Editor edito. Advances in Neural Information Processing Systems 19 (NIPS’06), Pub Place, 2007.
-
[31] B. Yoshua, L. Pascal, P. Dan, L. Hugo, Greedy layer-wise training of deep networks. In: Editor edito. Advances in Neural Information Processing Systems 19 (NIPS’06), Pub Place, 2007.
-
-
-
Yoshua, B.1
Pascal, L.2
Dan, P.3
Hugo, L.4
-
32
-
-
84930630277
-
Deep learning
-
[32] LeCun, Y., Bengio, Y., Hinton, G., Deep learning. Nature 521 (2015), 436–444.
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
33
-
-
84926030663
-
Adaptive convolutional neural network and its application in face recognition
-
[33] Zhang, Y., Zhao, D., Sun, J., Zou, G., Li, W., Adaptive convolutional neural network and its application in face recognition. Neural. Process. Lett. 43 (2016), 389–399.
-
(2016)
Neural. Process. Lett.
, vol.43
, pp. 389-399
-
-
Zhang, Y.1
Zhao, D.2
Sun, J.3
Zou, G.4
Li, W.5
-
34
-
-
84960344531
-
Understanding deep convolutional networks
-
[34] Mallat, S., Understanding deep convolutional networks. Philos. Trans. R. Soc. A, 374, 2016.
-
(2016)
Philos. Trans. R. Soc. A
, vol.374
-
-
Mallat, S.1
-
35
-
-
84864069017
-
Efficient learning of sparse representations with an energy-based model
-
[35] Ranzato, C.P.S.C.M., Efficient learning of sparse representations with an energy-based model. Adv. Neural Inf. Process. Syst. 19:NIPS’06 (2007), 1137–1144.
-
(2007)
Adv. Neural Inf. Process. Syst.
, vol.19
, Issue.NIPS’06
, pp. 1137-1144
-
-
Ranzato, C.P.S.C.M.1
-
36
-
-
84956858756
-
String representations and distances in deep Convolutional Neural Networks for image classification
-
[36] Barat, C., Ducottet, C., String representations and distances in deep Convolutional Neural Networks for image classification. Pattern. Recogn. 54 (2016), 104–115.
-
(2016)
Pattern. Recogn.
, vol.54
, pp. 104-115
-
-
Barat, C.1
Ducottet, C.2
-
37
-
-
84924515207
-
The Mathematics of Signal Processing
-
Cambridge University Press
-
[37] Damelin, S., Miller, W., The Mathematics of Signal Processing. 2011, Cambridge University Press.
-
(2011)
-
-
Damelin, S.1
Miller, W.2
-
38
-
-
84907340164
-
Improved automatic speech recognition system using sparse decomposition by basis pursuit with deep rectifier neural networks and compressed sensing recomposition of speech signals
-
[38] Gavrilescu, M., Improved automatic speech recognition system using sparse decomposition by basis pursuit with deep rectifier neural networks and compressed sensing recomposition of speech signals. 2014 10th International Conference on Communications (COMM), 2014.
-
(2014)
2014 10th International Conference on Communications (COMM)
-
-
Gavrilescu, M.1
-
39
-
-
84969940648
-
DropSample: a new training method to enhance deep convolutional neural networks for large-scale unconstrained handwritten Chinese character recognition
-
[39] Yang, W., Jin, L., Tao, D., Xie, Z., Feng, Z., DropSample: a new training method to enhance deep convolutional neural networks for large-scale unconstrained handwritten Chinese character recognition. Pattern. Recogn. 58 (2016), 190–203.
-
(2016)
Pattern. Recogn.
, vol.58
, pp. 190-203
-
-
Yang, W.1
Jin, L.2
Tao, D.3
Xie, Z.4
Feng, Z.5
-
40
-
-
77953183471
-
What is the best multi-stage architecture for object recognition?
-
[40] Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y., What is the best multi-stage architecture for object recognition?. IEEE Int. Conf. Comput. Vision, 2009, 2146–2153.
-
(2009)
IEEE Int. Conf. Comput. Vision
, pp. 2146-2153
-
-
Jarrett, K.1
Kavukcuoglu, K.2
Ranzato, M.3
LeCun, Y.4
-
41
-
-
0009282621
-
Shape, Contour and Grouping in Computer Vision
-
Springer Berlin Heidelberg
-
[41] Forsyth, D.A., Mundy, J.L., di Gesú, V., Cipolla, R., Shape, Contour and Grouping in Computer Vision. 1999, Springer, Berlin Heidelberg.
-
(1999)
-
-
Forsyth, D.A.1
Mundy, J.L.2
di Gesú, V.3
Cipolla, R.4
-
42
-
-
84937459583
-
An adaptive conjugate gradient algorithm for large-scale unconstrained optimization
-
[42] Andrei, N., An adaptive conjugate gradient algorithm for large-scale unconstrained optimization. J. Comput. Appl. Math. 292 (2016), 83–91.
-
(2016)
J. Comput. Appl. Math.
, vol.292
, pp. 83-91
-
-
Andrei, N.1
-
43
-
-
84945898896
-
Scene classification via a gradient boosting random convolutional network framework
-
[43] Zhang, F., Du, B., Zhang, L., Scene classification via a gradient boosting random convolutional network framework. IEEE. Trans. Geosci. Remote 54 (2016), 1793–1802.
-
(2016)
IEEE. Trans. Geosci. Remote
, vol.54
, pp. 1793-1802
-
-
Zhang, F.1
Du, B.2
Zhang, L.3
-
44
-
-
85013742510
-
-
Noise-enhanced convolutional neural networks, Neural Networks.
-
[44] K. Audhkhasi, O. Osoba, B. Kosko, Noise-enhanced convolutional neural networks, Neural Networks.
-
-
-
Audhkhasi, K.1
Osoba, O.2
Kosko, B.3
-
45
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
[45] Yann Lecun, L.B.Y.B., Gradient-based learning applied to document recognition. P IEEE, 1998, 2278–2324.
-
(1998)
P IEEE
, pp. 2278-2324
-
-
Yann Lecun, L.B.Y.B.1
-
46
-
-
84937975641
-
Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study
-
[46] Smith, W.A., Randall, R.B., Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study. Mech. Syst. Signal Pr. 64–65 (2015), 100–131.
-
(2015)
Mech. Syst. Signal Pr.
, vol.64-65
, pp. 100-131
-
-
Smith, W.A.1
Randall, R.B.2
-
47
-
-
33750135479
-
A convolutional neural network approach for objective video quality assessment
-
[47] Le Callet, P., Viard-Gaudin, C., Barba, D., A convolutional neural network approach for objective video quality assessment. IEEE Trans. Neural Networks 17 (2006), 1316–1327.
-
(2006)
IEEE Trans. Neural Networks
, vol.17
, pp. 1316-1327
-
-
Le Callet, P.1
Viard-Gaudin, C.2
Barba, D.3
-
48
-
-
84901948826
-
Health assessment and fault diagnosis for centrifugal pumps using Softmax regression
-
[48] Ma, J., Lu, C., Zhang, W., Tang, Y., Health assessment and fault diagnosis for centrifugal pumps using Softmax regression. J. Vibroeng. 16 (2014), 1464–1474.
-
(2014)
J. Vibroeng.
, vol.16
, pp. 1464-1474
-
-
Ma, J.1
Lu, C.2
Zhang, W.3
Tang, Y.4
-
49
-
-
34848858238
-
A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM
-
[49] Yang, Y., Yu, D., Cheng, J., A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM. Measurement 40 (2007), 943–950.
-
(2007)
Measurement
, vol.40
, pp. 943-950
-
-
Yang, Y.1
Yu, D.2
Cheng, J.3
-
50
-
-
78650170620
-
Novel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks
-
[50] Hsieh, C., Lu, R., Lee, N., Chiu, W., Hsu, M., Li, Y.J., Novel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks. Surgery 149 (2011), 87–93.
-
(2011)
Surgery
, vol.149
, pp. 87-93
-
-
Hsieh, C.1
Lu, R.2
Lee, N.3
Chiu, W.4
Hsu, M.5
Li, Y.J.6
|