메뉴 건너뛰기




Volumn 64, Issue 1, 2013, Pages 357-365

Automatic bearing fault diagnosis based on one-class m-SVM

Author keywords

Bearing SVM; Envelope spectrum; Fault diagnosis; Novelty detection; Vibration analysis

Indexed keywords

BANDPASS FILTERS; BEARINGS (MACHINE PARTS); CONDITION MONITORING; DEFECTS; FAILURE ANALYSIS; MACHINE COMPONENTS; MACHINERY; MATHEMATICAL TRANSFORMATIONS; ROLLER BEARINGS; VIBRATION ANALYSIS;

EID: 84870669188     PISSN: 03608352     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cie.2012.10.013     Document Type: Article
Times cited : (179)

References (30)
  • 1
    • 81255142837 scopus 로고    scopus 로고
    • Rolling bearing fault diagnostics using artificial neural networks based on laplace wavelet analysis
    • Al-Raheem, K., &Abdul-Karem, W. (2010). Rolling bearing fault diagnostics using artificial neural networks based on laplace wavelet analysis. International Journal of Engineering, Science and Technology, 2, 278-290.
    • (2010) International Journal of Engineering, Science and Technology , vol.2 , pp. 278-290
    • Al-Raheem, K.1    Abdul-Karem, W.2
  • 2
    • 78951484172 scopus 로고    scopus 로고
    • Increasing availability of industrial systems through data stream mining
    • Alzghoul, A., &Löfstrand, M. (2011). Increasing availability of industrial systems through data stream mining. Computers &Industrial Engineering, 60, 195-205.
    • (2011) Computers &Industrial Engineering , vol.60 , pp. 195-205
    • Alzghoul, A.1    Löfstrand, M.2
  • 3
    • 37749042393 scopus 로고    scopus 로고
    • Rolling bearing fault diagnosis based on wavelet packet and RBF neural network
    • Chinese IEEE
    • Fang, S., &Zijie, W. (2007). Rolling bearing fault diagnosis based on wavelet packet and RBF neural network. In Control conference, 2007. CCC 2007. Chinese (pp. 451-455). IEEE.
    • (2007) Control Conference 2007. CCC 2007 , pp. 451-455
    • Fang, S.1    Zijie, W.2
  • 4
    • 0003768769 scopus 로고
    • (2nd ed.,). Chichester, NY: Wiley, A Wiley Interscience Publication
    • IEEE. Fletcher, R. (1987). Practical methods of optimization (2nd ed., Vol. 1). Chichester, NY: Wiley, A Wiley Interscience Publication.
    • (1987) Practical Methods of Optimization , vol.1
    • Fletcher, R.1
  • 6
    • 78049528234 scopus 로고    scopus 로고
    • Fault diagnosis of ball bearings using machine learning methods
    • Kankar, P., Sharma, S., &Harsha, S. (2010). Fault diagnosis of ball bearings using machine learning methods. Expert Systems with Applications, 38, 1876-1886.
    • (2010) Expert Systems with Applications , vol.38 , pp. 1876-1876
    • Kankar, P.1    Sharma, S.2    Harsha, S.3
  • 7
    • 78651346442 scopus 로고    scopus 로고
    • IMS, University of Cincinnati, NASA Ames Prognostics Data Repository, Rexnord Technical Services
    • Lee, J., Qiu, H., Yu, G., &Lin, J. (2007). Bearing data set. IMS, University of Cincinnati, NASA Ames Prognostics Data Repository, Rexnord Technical Services.
    • (2007) Bearing Data Set
    • Lee, J.1    Qiu, H.2    Yu, G.3    Lin, J.4
  • 10
    • 8844281752 scopus 로고    scopus 로고
    • Novelty detection in learning systems
    • Marsland, S. (2002). Novelty detection in learning systems. Neural Computing Surveys, 3, 1-39.
    • (2002) Neural Computing Surveys , vol.3 , pp. 1-39
    • Marsland, S.1
  • 11
    • 79952320406 scopus 로고    scopus 로고
    • Feature extraction for novelty detection as applied to fault detection in machinery
    • McBain, J., &Timusk, M. (2011). Feature extraction for novelty detection as applied to fault detection in machinery. Pattern Recognition Letters, 32, 1054-1061.
    • (2011) Pattern Recognition Letters , vol.32 , pp. 1054-1061
    • McBain, J.1    Timusk, M.2
  • 12
    • 0021758020 scopus 로고
    • Model for the vibration produced by a single point defect in a rolling element bearing
    • DOI 10.1016/0022-460X(84)90595-9
    • McFadden, P., &Smith, J. (1984). Model for the vibration produced by a single point defect in a rolling element bearing. Journal of Sound and Vibration, 96, 69-82. (Pubitemid 15421328)
    • (1984) Journal of Sound and Vibration , vol.96 , Issue.1 , pp. 69-82
    • McFadden, P.D.1    Smith, J.D.2
  • 13
    • 0037302970 scopus 로고    scopus 로고
    • Basic vibration signal processing for bearing fault detection
    • McInerny, S., &Dai, Y. (2003). Basic vibration signal processing for bearing fault detection. IEEE Transactions on Education, 46, 149-156.
    • (2003) IEEE Transactions on Education , vol.46 , pp. 149-156
    • McInerny, S.1    Dai, Y.2
  • 15
    • 55449086893 scopus 로고    scopus 로고
    • Fault diagnosis and condition surveillance for plant rotating machinery using partially-linearized neural network
    • Mitoma, T., Wang, H., &Chen, P. (2008). Fault diagnosis and condition surveillance for plant rotating machinery using partially-linearized neural network. Computers &Industrial Engineering, 55, 783-794.
    • (2008) Computers &Industrial Engineering , vol.55 , pp. 783-794
    • Mitoma, T.1    Wang, H.2    Chen, P.3
  • 16
    • 58049182562 scopus 로고    scopus 로고
    • Robust bearing performance degradation assessment method based on improved wavelet packet-support vector data description
    • Pan, Y., Chen, J., &Guo, L. (2009). Robust bearing performance degradation assessment method based on improved wavelet packet-support vector data description. Mechanical Systems and Signal Processing, 23, 669-681.
    • (2009) Mechanical Systems and Signal Processing , vol.23 , pp. 669-669
    • Pan, Y.1    Chen, J.2    Guo, L.3
  • 17
    • 33644547646 scopus 로고    scopus 로고
    • Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics
    • Qiu, H., Lee, J., Lin, J., &Yu, G. (2006). Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics. Journal of Sound and Vibration, 289, 1066-1090.
    • (2006) Journal of Sound and Vibration , vol.289 , pp. 1066-1090
    • Qiu, H.1    Lee, J.2    Lin, J.3    Yu, G.4
  • 20
  • 24
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • Tax, D., &Duin, R. (2004). Support vector data description. Machine Learning, 54, 45-66.
    • (2004) Machine Learning , vol.54 , pp. 45-66
    • Tax, D.1    Duin, R.2
  • 27
    • 79952630284 scopus 로고    scopus 로고
    • Intelligent diagnosis method for rolling element bearing faults using possibility theory and neural network
    • Wang, H., &Chen, P. (2011). Intelligent diagnosis method for rolling element bearing faults using possibility theory and neural network. Computers &Industrial Engineering, 60, 511-518.
    • (2011) Computers &Industrial Engineering , vol.60 , pp. 511-518
    • Wang, H.1    Chen, P.2
  • 28
    • 84867606873 scopus 로고    scopus 로고
    • Bearing fault diagnosis based on multiscale permutation entropy and support vector machine
    • Wu, S., Wu, P., Wu, C., Ding, J., &Wang, C. (2012). Bearing fault diagnosis based on multiscale permutation entropy and support vector machine. Entropy, 14, 1343-1356.
    • (2012) Entropy , vol.14 , pp. 1343-1356
    • Wu, S.1    Wu, P.2    Wu, C.3    Ding, J.4    Wang, C.5
  • 29
    • 34047275789 scopus 로고    scopus 로고
    • Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension
    • DOI 10.1016/j.ymssp.2006.10.005, PII S0888327006002251
    • Yang, J., Zhang, Y., &Zhu, Y. (2007a). Intelligent fault diagnosis of rolling element bearing based on SVMS and fractal dimension. Mechanical Systems and Signal Processing, 21, 2012-2024. (Pubitemid 46550771)
    • (2007) Mechanical Systems and Signal Processing , vol.21 , Issue.5 , pp. 2012-2024
    • Yang, J.1    Zhang, Y.2    Zhu, Y.3
  • 30
    • 34848858238 scopus 로고    scopus 로고
    • A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM
    • DOI 10.1016/j.measurement.2006.10.010, PII S0263224106002077
    • Yang, Y., Yu, D., &Cheng, J. (2007b). A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM. Measurement, 40, 943-950. (Pubitemid 47503473)
    • (2007) Measurement: Journal of the International Measurement Confederation , vol.40 , Issue.9-10 , pp. 943-950
    • Yang, Y.1    Yu, D.2    Cheng, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.