메뉴 건너뛰기




Volumn 16, Issue 4, 2016, Pages 784-794

Rolling bearing fault diagnosis based on partially ensemble empirical mode decomposition and variable predictive model-based class discrimination

Author keywords

Ensemble empirical mode decomposition; Fault diagnosis; Laplacian score; Rolling bearing; Variable predictive model

Indexed keywords

DECOMPOSITION; ELECTRIC FAULT CURRENTS; FAILURE ANALYSIS; FAULT DETECTION; FREQUENCY DOMAIN ANALYSIS; LAPLACE TRANSFORMS; ORTHOGONAL FUNCTIONS; PATTERN RECOGNITION; PREDICTIVE ANALYTICS; SIGNAL PROCESSING;

EID: 84976336466     PISSN: 16449665     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.acme.2016.05.003     Document Type: Article
Times cited : (29)

References (34)
  • 1
    • 84859427324 scopus 로고    scopus 로고
    • Permutation entropy: a nonlinear statistical measure for status characterization of rotary machines
    • Yan R., Liu Y., Gao R.X. Permutation entropy: a nonlinear statistical measure for status characterization of rotary machines. Mechanical Systems and Signal Processing 2012, 29:474-484.
    • (2012) Mechanical Systems and Signal Processing , vol.29 , pp. 474-484
    • Yan, R.1    Liu, Y.2    Gao, R.X.3
  • 2
    • 84861591054 scopus 로고    scopus 로고
    • Multi-scale autocorrelation via morphological wavelet slices for rolling element bearing fault diagnosis
    • Li C., Liang M., Zhang Y., Hou S. Multi-scale autocorrelation via morphological wavelet slices for rolling element bearing fault diagnosis. Mechanical Systems and Signal Processing 2012, 31:428-446.
    • (2012) Mechanical Systems and Signal Processing , vol.31 , pp. 428-446
    • Li, C.1    Liang, M.2    Zhang, Y.3    Hou, S.4
  • 3
    • 33646519024 scopus 로고    scopus 로고
    • A roller bearing fault diagnosis method based on EMD energy entropy and ANN
    • Yu Y., Yu D., Cheng J. A roller bearing fault diagnosis method based on EMD energy entropy and ANN. Journal of Sound and Vibration 2006, 294:269-277.
    • (2006) Journal of Sound and Vibration , vol.294 , pp. 269-277
    • Yu, Y.1    Yu, D.2    Cheng, J.3
  • 4
    • 84876708997 scopus 로고    scopus 로고
    • A kurtosis-guided adaptive demodulation technique for bearing fault detection based on tunable-Q wavelet transform
    • Luo J., Yu D., Liang M. A kurtosis-guided adaptive demodulation technique for bearing fault detection based on tunable-Q wavelet transform. Measurement Science and Technology 2013, 24(5):150-158.
    • (2013) Measurement Science and Technology , vol.24 , Issue.5 , pp. 150-158
    • Luo, J.1    Yu, D.2    Liang, M.3
  • 5
    • 80054980152 scopus 로고    scopus 로고
    • Time-frequency signal analysis for gear box fault diagnosis using a generalized synchrosqueezing transform
    • Li C., Liang M. Time-frequency signal analysis for gear box fault diagnosis using a generalized synchrosqueezing transform. Mechanical Systems and Signal Processing 2012, 26:205-217.
    • (2012) Mechanical Systems and Signal Processing , vol.26 , pp. 205-217
    • Li, C.1    Liang, M.2
  • 6
    • 84876940227 scopus 로고    scopus 로고
    • Recent advances in time-frequency analysis methods for machinery fault diagnosis: a review with application examples
    • Feng Z., Liang M., Chu F. Recent advances in time-frequency analysis methods for machinery fault diagnosis: a review with application examples. Mechanical Systems and Signal Processing 2013, 38(1):165-205.
    • (2013) Mechanical Systems and Signal Processing , vol.38 , Issue.1 , pp. 165-205
    • Feng, Z.1    Liang, M.2    Chu, F.3
  • 7
    • 5444236478 scopus 로고    scopus 로고
    • The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
    • Huang N.E., Shen Z., Long S.R., et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London A 1998, 454:903-995.
    • (1998) Proceedings of the Royal Society of London A , vol.454 , pp. 903-995
    • Huang, N.E.1    Shen, Z.2    Long, S.R.3
  • 8
    • 1542357546 scopus 로고    scopus 로고
    • A confidence limit for the empirical mode decomposition and Hilbert spectral analysis
    • Huang N.E., Wu M.C., Long S.R., et al. A confidence limit for the empirical mode decomposition and Hilbert spectral analysis. Proceedings of the Royal Society of London A 2003, 459:2317-2345.
    • (2003) Proceedings of the Royal Society of London A , vol.459 , pp. 2317-2345
    • Huang, N.E.1    Wu, M.C.2    Long, S.R.3
  • 9
    • 84875269406 scopus 로고    scopus 로고
    • An improved EEMD with multiwavelet packet for rotating machinery multi-fault diagnosis
    • Jiang H., Li C., Li H. An improved EEMD with multiwavelet packet for rotating machinery multi-fault diagnosis. Mechanical Systems and Signal Processing 2013, 36:225-239.
    • (2013) Mechanical Systems and Signal Processing , vol.36 , pp. 225-239
    • Jiang, H.1    Li, C.2    Li, H.3
  • 10
    • 4344660716 scopus 로고    scopus 로고
    • Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings
    • Yu D., Cheng J., Yang Y. Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings. Mechanical Systems and Signal Processing 2005, 19(2):259-270.
    • (2005) Mechanical Systems and Signal Processing , vol.19 , Issue.2 , pp. 259-270
    • Yu, D.1    Cheng, J.2    Yang, Y.3
  • 11
    • 84870404381 scopus 로고    scopus 로고
    • A review on empirical mode decomposition in fault diagnosis of rotating machinery
    • Lei Y., Lin J., He Z., Zuo M.J. A review on empirical mode decomposition in fault diagnosis of rotating machinery. Mechanical Systems and Signal Processing 2013, 35(1-2):108-126.
    • (2013) Mechanical Systems and Signal Processing , vol.35 , Issue.1-2 , pp. 108-126
    • Lei, Y.1    Lin, J.2    He, Z.3    Zuo, M.J.4
  • 12
    • 84876128026 scopus 로고    scopus 로고
    • Filtering of surface EMG using ensemble empirical mode decomposition
    • Zhang X., Zhou P. Filtering of surface EMG using ensemble empirical mode decomposition. Medical Engineering and Physics 2013, 35(4):537-542.
    • (2013) Medical Engineering and Physics , vol.35 , Issue.4 , pp. 537-542
    • Zhang, X.1    Zhou, P.2
  • 13
    • 79151483819 scopus 로고    scopus 로고
    • Speaker identification system using empirical mode decomposition and an artificial neural network
    • Wu J., Tsai Y. Speaker identification system using empirical mode decomposition and an artificial neural network. Expert Systems with Applications 2011, 38(5):6112-6117.
    • (2011) Expert Systems with Applications , vol.38 , Issue.5 , pp. 6112-6117
    • Wu, J.1    Tsai, Y.2
  • 14
    • 84879020550 scopus 로고    scopus 로고
    • Ensemble empirical mode decomposition based feature enhancement of cardio signals
    • Janusauskas A., Marozas V., Lukoseviciu A. Ensemble empirical mode decomposition based feature enhancement of cardio signals. Medical Engineering and Physics 2013, 35(8):1059-1069.
    • (2013) Medical Engineering and Physics , vol.35 , Issue.8 , pp. 1059-1069
    • Janusauskas, A.1    Marozas, V.2    Lukoseviciu, A.3
  • 15
    • 80054736879 scopus 로고    scopus 로고
    • The complex bidimensional empirical mode decomposition
    • Yeh M.H. The complex bidimensional empirical mode decomposition. Signal Processing 2012, 92(2):523-541.
    • (2012) Signal Processing , vol.92 , Issue.2 , pp. 523-541
    • Yeh, M.H.1
  • 16
    • 80052078099 scopus 로고    scopus 로고
    • Ensemble empirical mode decomposition: a noise assisted data analysis method
    • Wu Z., Huang N.E. Ensemble empirical mode decomposition: a noise assisted data analysis method. Advances in Adaptive Data Analysis 2009, 1(1):1-41.
    • (2009) Advances in Adaptive Data Analysis , vol.1 , Issue.1 , pp. 1-41
    • Wu, Z.1    Huang, N.E.2
  • 17
    • 79951581707 scopus 로고    scopus 로고
    • EEMD method and WNN for fault diagnosis of locomotive roller bearings
    • Lei Y., He Z., Zi Y. EEMD method and WNN for fault diagnosis of locomotive roller bearings. Expert Systems with Applications 2011, 38(6):7334-7341.
    • (2011) Expert Systems with Applications , vol.38 , Issue.6 , pp. 7334-7341
    • Lei, Y.1    He, Z.2    Zi, Y.3
  • 18
    • 48749115318 scopus 로고    scopus 로고
    • A new approach to intelligent fault diagnosis of rotating machinery
    • Lei Y., He Z., Zi Y. A new approach to intelligent fault diagnosis of rotating machinery. Expert Systems with Applications 2008, 35(4):1593-1600.
    • (2008) Expert Systems with Applications , vol.35 , Issue.4 , pp. 1593-1600
    • Lei, Y.1    He, Z.2    Zi, Y.3
  • 19
    • 79956369785 scopus 로고    scopus 로고
    • Complementary ensemble empirical mode decomposition: a noise enhanced data analysis method
    • Yeh J.R., Shieh J.S. Complementary ensemble empirical mode decomposition: a noise enhanced data analysis method. Advances in Adaptive Data Analysis 2010, 2(2):135-156.
    • (2010) Advances in Adaptive Data Analysis , vol.2 , Issue.2 , pp. 135-156
    • Yeh, J.R.1    Shieh, J.S.2
  • 20
    • 84887305871 scopus 로고    scopus 로고
    • Partly ensemble empirical mode decomposition: an improved noise-assisted method for eliminating mode mixing
    • Zheng J., Cheng J., Yang Y. Partly ensemble empirical mode decomposition: an improved noise-assisted method for eliminating mode mixing. Signal Processing 2014, 96(B):362-374.
    • (2014) Signal Processing , vol.96 , Issue.B , pp. 362-374
    • Zheng, J.1    Cheng, J.2    Yang, Y.3
  • 22
    • 84867066922 scopus 로고    scopus 로고
    • Supervised and unsupervised parallel subspace learning for large-scale image recognition
    • Jing X.Y., Li S., Zhang D., et al. Supervised and unsupervised parallel subspace learning for large-scale image recognition. IEEE Transactions on Circuits and Systems for Video Technology 2012, 22(10):1497-1511.
    • (2012) IEEE Transactions on Circuits and Systems for Video Technology , vol.22 , Issue.10 , pp. 1497-1511
    • Jing, X.Y.1    Li, S.2    Zhang, D.3
  • 23
    • 71749111101 scopus 로고    scopus 로고
    • Applications of fault diagnosis in rotating machinery by using time series analysis with neural network
    • Wang C.C., Yuan K., Shen P.C., et al. Applications of fault diagnosis in rotating machinery by using time series analysis with neural network. Expert Systems with Applications 2010, 37(2):1696-1702.
    • (2010) Expert Systems with Applications , vol.37 , Issue.2 , pp. 1696-1702
    • Wang, C.C.1    Yuan, K.2    Shen, P.C.3
  • 24
    • 58749108109 scopus 로고    scopus 로고
    • A novel technique for selecting mother wavelet function using an intelligent fault diagnosis system
    • Rafiee J., Tse P.W., Harifi A., et al. A novel technique for selecting mother wavelet function using an intelligent fault diagnosis system. Expert Systems with Applications 2009, 36(3):4862-4875.
    • (2009) Expert Systems with Applications , vol.36 , Issue.3 , pp. 4862-4875
    • Rafiee, J.1    Tse, P.W.2    Harifi, A.3
  • 25
    • 67349288151 scopus 로고    scopus 로고
    • Fault diagnosis of power transformer based on support vector machine with genetic algorithm
    • Fei S., Zhang X. Fault diagnosis of power transformer based on support vector machine with genetic algorithm. Expert Systems with Applications 2009, 36(8):11352-11357.
    • (2009) Expert Systems with Applications , vol.36 , Issue.8 , pp. 11352-11357
    • Fei, S.1    Zhang, X.2
  • 26
  • 27
    • 77951207585 scopus 로고    scopus 로고
    • Bearing fault diagnosis using multi-scale entropy and adaptive neuro-fuzzy inference
    • Zhang L., Xiong G., Liu H., et al. Bearing fault diagnosis using multi-scale entropy and adaptive neuro-fuzzy inference. Expert Systems with Applications 2010, 37(8):6077-6085.
    • (2010) Expert Systems with Applications , vol.37 , Issue.8 , pp. 6077-6085
    • Zhang, L.1    Xiong, G.2    Liu, H.3
  • 28
    • 78649823076 scopus 로고    scopus 로고
    • Fault detection and diagnosis of an industrial steam turbine using fusion of SVM (support vector machine) and ANFIS (adaptive neuro-fuzzy inference system) classifiers
    • Salahshoor K., Kordestani M., Khoshro M.S. Fault detection and diagnosis of an industrial steam turbine using fusion of SVM (support vector machine) and ANFIS (adaptive neuro-fuzzy inference system) classifiers. Energy 2010, 35(12):5472-5482.
    • (2010) Energy , vol.35 , Issue.12 , pp. 5472-5482
    • Salahshoor, K.1    Kordestani, M.2    Khoshro, M.S.3
  • 29
    • 45549092463 scopus 로고    scopus 로고
    • Variable predictive model based classification algorithm for effective separation of protein structural classes
    • Raghuraj R., Lakshminarayanan S. Variable predictive model based classification algorithm for effective separation of protein structural classes. Computational Biology and Chemistry 2008, 32(4):302-306.
    • (2008) Computational Biology and Chemistry , vol.32 , Issue.4 , pp. 302-306
    • Raghuraj, R.1    Lakshminarayanan, S.2
  • 30
    • 33847147151 scopus 로고    scopus 로고
    • VPMCD: variable interaction modeling approach for class discrimination in biological systems
    • Raghuraj R., Lakshminarayanan S. VPMCD: variable interaction modeling approach for class discrimination in biological systems. FEBS Letters 2007, 581(5-6):826-830.
    • (2007) FEBS Letters , vol.581 , Issue.5-6 , pp. 826-830
    • Raghuraj, R.1    Lakshminarayanan, S.2
  • 31
    • 57849119711 scopus 로고    scopus 로고
    • Measuring complexity using FuzzyEn, ApEn, and SampEn
    • Chen W., Zhuang J., Yu W. Measuring complexity using FuzzyEn, ApEn, and SampEn. Medical Engineering and Physics 2009, 31:61-68.
    • (2009) Medical Engineering and Physics , vol.31 , pp. 61-68
    • Chen, W.1    Zhuang, J.2    Yu, W.3
  • 33
    • 34848863970 scopus 로고    scopus 로고
    • Application of time-frequency entropy method based on Hilbert-Huang transform to gear fault diagnosis
    • Yu D., Yang Y., Cheng J. Application of time-frequency entropy method based on Hilbert-Huang transform to gear fault diagnosis. Measurement 2007, 40(9-10):823-830.
    • (2007) Measurement , vol.40 , Issue.9-10 , pp. 823-830
    • Yu, D.1    Yang, Y.2    Cheng, J.3
  • 34
    • 84976269481 scopus 로고    scopus 로고
    • Case Western Reserve University.
    • Bearing Data Center, Case Western Reserve University. http://csegroups.case.edu/bearingdatacenter/pages/download-data-file.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.