메뉴 건너뛰기




Volumn 374, Issue 2065, 2016, Pages

Understanding deep convolutional networks

Author keywords

Deep convolutional neural networks; Learning; Wavelets

Indexed keywords

NEURAL NETWORKS;

EID: 84960344531     PISSN: 1364503X     EISSN: None     Source Type: Journal    
DOI: 10.1098/rsta.2015.0203     Document Type: Review
Times cited : (653)

References (32)
  • 1
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • Le Cun Y., Bengio Y, Hinton G. 2015 Deep learning. Nature 521, 436-444. (doi:10.1038/nature14539)
    • (2015) Nature , vol.521 , pp. 436-444
    • Le Cun, Y.1    Bengio, Y.2    Hinton, G.3
  • 3
    • 85032751458 scopus 로고    scopus 로고
    • Deep neural networks for acoustic modeling in speech recognition
    • Hinton G et al. 2012 Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Process. Mag. 29, 82-97. (doi:10.1109/MSp.2012.2205597)
    • (2012) IEEE Signal Process. Mag , vol.29 , pp. 82-97
    • Hinton, G.1
  • 4
    • 84902462761 scopus 로고    scopus 로고
    • Deep learning of the tissue regulated splicing code
    • Leung MK, Xiong HY, Lee L.J., Frey BJ. 2014 Deep learning of the tissue regulated splicing code. Bioinformatics 30, i121-i129. (doi:10.1093/bioinformatics/btu277)
    • (2014) Bioinformatics , vol.30 , pp. i121-i129
    • Leung, M.K.1    Xiong, H.Y.2    Lee, L.J.3    Frey, B.J.4
  • 7
    • 0346727379 scopus 로고    scopus 로고
    • Ridglets: A key to high-dimensional intermittency?
    • Candès E., Donoho D. 1999 Ridglets: a key to high-dimensional intermittency? Phil. Trans. R. Soc. A 357, 2495-2509. (doi:10.1098/rsta.1999.0444)
    • (1999) Phil. Trans. R. Soc. A , vol.357 , pp. 2495-2509
    • Candès, E.1    Donoho, D.2
  • 9
    • 84864324516 scopus 로고    scopus 로고
    • Group invariant scattering
    • Mallat S. 2012 Group invariant scattering. Commun. Pure Appl. Math. 65, 1331-1398. (doi:10.1002/cpa.21413)
    • (2012) Commun. Pure Appl. Math , vol.65 , pp. 1331-1398
    • Mallat, S.1
  • 10
    • 84906351367 scopus 로고    scopus 로고
    • Analyzing the performance of multilayer neural networks for object recognition
    • (eds D Fleet, T Pajdla, B Schiele, T Tuytelaars). Lecture Notes in Computer Science Cham, Switzerland: Springer
    • Agrawal A, Girshick R, Malik J. 2014 Analyzing the performance of multilayer neural networks for object recognition. In Computer vision - ECCV 2014(eds D Fleet, T Pajdla, B Schiele, T Tuytelaars). Lecture Notes in Computer Science, Vol. 8695, pp. 329-344. Cham, Switzerland: Springer. (doi:10.1007/978-3-319-10584-0-22)
    • (2014) Computer Vision - ECCV 2014 , vol.8695 , pp. 329-344
    • Agrawal, A.1    Girshick, R.2    Malik, J.3
  • 12
    • 85083950271 scopus 로고    scopus 로고
    • Unsupervised representation learning with deep convolutional generative adversarial networks
    • San Juan, Puerto Rico, 2-4 May 2016
    • Radford A, Metz L, Chintala S. 2016 Unsupervised representation learning with deep convolutional generative adversarial networks. In 4th Int. Conf. on Learning Representations (ICLR 2016), San Juan, Puerto Rico, 2-4 May 2016.
    • (2016) 4th Int. Conf. On Learning Representations (ICLR 2016)
    • Radford, A.1    Metz, L.2    Chintala, S.3
  • 13
    • 34047272330 scopus 로고    scopus 로고
    • Discrimination of speech from nonspeech based on multiscale spectro-temporal modulations
    • Mesgarani M, Slaney M, Shamma S. 2006 Discrimination of speech from nonspeech based on multiscale spectro-temporal modulations. IEEE Trans. Audio Speech Lang. Process. 14, 920-930. (doi:10.1109/TSA.2005.858055)
    • (2006) IEEE Trans. Audio Speech Lang. Process , vol.14 , pp. 920-930
    • Mesgarani, M.1    Slaney, M.2    Shamma, S.3
  • 14
    • 3042535216 scopus 로고    scopus 로고
    • SIFT: Scale invariant feature transform
    • Lowe DG. 2004 SIFT: scale invariant feature transform. J. Comput. Vision 60, 91-110.
    • (2004) J. Comput. Vision , vol.60 , pp. 91-110
    • Lowe, D.G.1
  • 15
    • 0001238977 scopus 로고
    • A fast adaptive multipole algorithm for particle simulations
    • Carrier J, Greengard L, Rokhlin V. 1988 A fast adaptive multipole algorithm for particle simulations. SIAM J. Sci. Stat. Comput. 9, 669-686.
    • (1988) SIAM J. Sci. Stat. Comput , vol.9 , pp. 669-686
    • Carrier, J.1    Greengard, L.2    Rokhlin, V.3
  • 19
    • 84879877798 scopus 로고    scopus 로고
    • Invariant scattering convolution networks
    • Bruna J, Mallat S. 2013 Invariant scattering convolution networks. IEEE Trans. PAMI 35, 1872-1886. (doi:10.1109/TPAMI.2012.230)
    • (2013) IEEE Trans. PAMI , vol.35 , pp. 1872-1886
    • Bruna, J.1    Mallat, S.2
  • 20
    • 84896734479 scopus 로고    scopus 로고
    • Deep scattering spectrum
    • Andèn J., Mallat S. 2014 Deep scattering spectrum. IEEE Trans. Signal Process. 62, 4114-4128. (doi:10.1109/TSp.2014.2326991)
    • (2014) IEEE Trans. Signal Process , vol.62 , pp. 4114-4128
    • Andèn, J.1    Mallat, S.2
  • 21
    • 84887372433 scopus 로고    scopus 로고
    • Rotation, scaling and deformation invariant scattering for texture discrimination
    • Sifre L, Mallat S. 2013 Rotation, scaling and deformation invariant scattering for texture discrimination. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 1233-1240. (doi:10.1109/CVPR.2013.163)
    • (2013) Proc. IEEE Conf. On Computer Vision and Pattern Recognition , pp. 1233-1240
    • Sifre, L.1    Mallat, S.2
  • 23
    • 84922511550 scopus 로고    scopus 로고
    • Intermittent process analysis with scattering moments
    • Bruna J, Mallat S, Bacry E., Muzy JF. 2015 Intermittent process analysis with scattering moments. Ann. Stat. 43, 323-351. (doi:10.1214/14-AOS1276)
    • (2015) Ann. Stat , vol.43 , pp. 323-351
    • Bruna, J.1    Mallat, S.2    Bacry, E.3    Muzy, J.F.4
  • 26
    • 77950842330 scopus 로고    scopus 로고
    • Paris, France: Éditions de l'École Polytechnique
    • Petitot J. 2008 Neurogémétrie de la vision. Paris, France: Éditions de l'École Polytechnique.
    • (2008) Neurogémétrie de la Vision
    • Petitot, J.1
  • 28
    • 85020717798 scopus 로고    scopus 로고
    • Learning stable group invariant representations with convolutional networks
    • Banff, Canada, 14-16 April 2014
    • Bruna J, Szlam A, Le Cun Y. 2014 Learning stable group invariant representations with convolutional networks. In Int. Conf. on Learning Representations (ICLR 2014), Banff, Canada, 14-16 April 2014.
    • (2014) Int. Conf. On Learning Representations (ICLR 2014)
    • Bruna, J.1    Szlam, A.2    Le Cun, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.