메뉴 건너뛰기




Volumn 18, Issue 3, 2008, Pages 237-285

A simulation-based experience in learning structures of bayesian networks to represent how students learn composite concepts

Author keywords

Bayesian networks; Computer assisted cognitive modelling; Computer assisted learning; Learning patterns; Machine learning; Student modelling

Indexed keywords


EID: 85013587043     PISSN: 15604292     EISSN: 15604306     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (7)

References (71)
  • 5
    • 35048869651 scopus 로고    scopus 로고
    • Using Knowledge Tracing to Measure Student Reading Proficiencies
    • In, Lecture Notes in Computer Science 3220. Berlin: Springer
    • Beck, J. E., & Sison, J. (2004). Using Knowledge Tracing to Measure Student Reading Proficiencies. In In Proceedings of the Seventh International Conference on Intelligent Tutoring Systems (pp. 624-634). Lecture Notes in Computer Science 3220. Berlin: Springer.
    • (2004) Proceedings of the Seventh International Conference on Intelligent Tutoring Systems , pp. 624-634
    • Beck, J.E.1    Sison, J.2
  • 12
    • 0036671996 scopus 로고    scopus 로고
    • Probabilistic assessment of user’s emotions in educational games
    • Conati, C. (2002). Probabilistic assessment of user’s emotions in educational games. Applied Artificial Intelligence, 16(7-8), 555-575.
    • (2002) Applied Artificial Intelligence , vol.16 , Issue.7-8 , pp. 555-575
    • Conati, C.1
  • 15
    • 0011725472 scopus 로고    scopus 로고
    • An overview of the representation and discovery of causal relationships using Bayesian networks
    • C. Glymour & G. F. Cooper (Eds.), MA, USA: AAAI Press/The MIT Press
    • Cooper, G. F. (1999). An overview of the representation and discovery of causal relationships using Bayesian networks. In C. Glymour & G. F. Cooper (Eds.) Computation, Causation, and Discovery (pp. 3-62). MA, USA: AAAI Press/The MIT Press.
    • (1999) Computation, Causation, and Discovery , pp. 3-62
    • Cooper, G.F.1
  • 16
    • 34249753618 scopus 로고
    • Support-vector network
    • Cortes, C., & Vapnik, V. (1995). Support-vector network. Machine Learning, 20(3), 273-297.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 20
    • 0003271432 scopus 로고
    • Unified cognitive/psychometric diagnostic assessment likelihood-based classification techniques
    • P. D. Nichols, S. F. Chipman, & R. L. Brennan (Eds.), Hove, UK: Lawrence Erlbaum Associates
    • DiBello, L. V., Stout, W. F., & Roussos, L. A. (1995). Unified cognitive/psychometric diagnostic assessment likelihood-based classification techniques. In P. D. Nichols, S. F. Chipman, & R. L. Brennan (Eds.) Cognitively Diagnostic Assessment (pp. 361-389). Hove, UK: Lawrence Erlbaum Associates.
    • (1995) Cognitively Diagnostic Assessment , pp. 361-389
    • DiBello, L.V.1    Stout, W.F.2    Roussos, L.A.3
  • 24
    • 36349005622 scopus 로고    scopus 로고
    • Using the attribute hierarchy method to make diagnostic inferences about examinees’ cognitive skills
    • J. P. Leighton and M. J. Gierl (Eds.), NY, USA: Cambridge University Press
    • Gierl, M. J., Leighton, J. P., & Hunka, S. M. (2007). Using the attribute hierarchy method to make diagnostic inferences about examinees’ cognitive skills. In J. P. Leighton and M. J. Gierl (Eds.) Cognitive Diagnostic Assessment for Education (pp. 242-274). NY, USA: Cambridge University Press.
    • (2007) Cognitive Diagnostic Assessment for Education , pp. 242-274
    • Gierl, M.J.1    Leighton, J.P.2    Hunka, S.M.3
  • 25
    • 0037219403 scopus 로고    scopus 로고
    • Learning, prediction and causal Bayes nets
    • Glymour, C. (2003). Learning, prediction and causal Bayes nets. Trends in Cognitive Sciences, 7(1), 43-46.
    • (2003) Trends in Cognitive Sciences , vol.7 , Issue.1 , pp. 43-46
    • Glymour, C.1
  • 29
    • 29144510111 scopus 로고    scopus 로고
    • Causes and explanations: A structural-model approach. Part I: Causes
    • Halpern, J. Y., & Pearl, J. (2005). Causes and explanations: A structural-model approach. Part I: Causes. British Journal for the Philosophy of Science, 56(4), 843-887.
    • (2005) British Journal for the Philosophy of Science , vol.56 , Issue.4 , pp. 843-887
    • Halpern, J.Y.1    Pearl, J.2
  • 30
    • 0002370418 scopus 로고    scopus 로고
    • A tutorial on learning with Bayesian networks
    • M. I. Jordan (Ed.), MA, USA: The MIT Press
    • Heckerman, D. (1999). A tutorial on learning with Bayesian networks. In M. I. Jordan (Ed.) Learning in Graphical Models (pp. 301-354). MA, USA: The MIT Press.
    • (1999) Learning in Graphical Models , pp. 301-354
    • Heckerman, D.1
  • 31
    • 47749115516 scopus 로고    scopus 로고
    • The demand for cognitive diagnostic assessment
    • J. P. Leighton and M. J. Gierl (Eds.), NY, USA: Cambridge University Press
    • Huff, K., & Goodman D. P. (2007). The demand for cognitive diagnostic assessment. In J. P. Leighton and M. J. Gierl (Eds.) Cognitive Diagnostic Assessment for Education (pp. 19-60). NY, USA: Cambridge University Press.
    • (2007) Cognitive Diagnostic Assessment for Education , pp. 19-60
    • Huff, K.1    Goodman, D.P.2
  • 38
    • 27844476024 scopus 로고    scopus 로고
    • Using mutual information for adaptive item comparison and student assessment
    • Liu, C.-L. (2005). Using mutual information for adaptive item comparison and student assessment. Journal of Educational Technology & Society, 8(4), 100-119.
    • (2005) Journal of Educational Technology & Society , vol.8 , Issue.4 , pp. 100-119
    • Liu, C.-L.1
  • 41
    • 33750301284 scopus 로고    scopus 로고
    • Learning students’ learning patterns with support vector machines
    • Lecture Notes in Computer Science 4203. Berlin: Springer
    • Liu, C.-L. (2006c). Learning students’ learning patterns with support vector machines. In Proceedings of the Sixteenth International Symposium on Methodologies for Intelligent Systems (pp. 601-611). Lecture Notes in Computer Science 4203. Berlin: Springer.
    • (2006) Proceedings of the Sixteenth International Symposium on Methodologies for Intelligent Systems , pp. 601-611
    • Liu, C.-L.1
  • 47
    • 0036255474 scopus 로고    scopus 로고
    • A Bayesian diagnostic algorithm for student modeling and its evaluation
    • Millán, E., & Pérez-de-la-Cruz, J. L. (2002). A Bayesian diagnostic algorithm for student modeling and its evaluation. User Modeling and User-Adapted Interaction, 12(2-3), 281-330.
    • (2002) User Modeling and User-Adapted Interaction , vol.12 , Issue.2-3 , pp. 281-330
    • Millán, E.1    Pérez-de-la-Cruz, J.L.2
  • 49
    • 0029332418 scopus 로고    scopus 로고
    • The role of probability-based inference in an intelligent tutoring system
    • Mislevy, R. J., & Gitomer, D. H. (1996). The role of probability-based inference in an intelligent tutoring system. User Modeling and User-Adapted Interaction, 5(4), 253-282.
    • (1996) User Modeling and User-Adapted Interaction , vol.5 , Issue.4 , pp. 253-282
    • Mislevy, R.J.1    Gitomer, D.H.2
  • 50
    • 0000082513 scopus 로고
    • Inferring students’ cognitive structures and their development using the "fill-in-the-structure" (FITS) technique
    • P. D. Nichols, S. F. Chipman, & R. L. Brennan (Eds.), Hove, UK: Lawrence Erlbaum Associates
    • Naveh-Benjamin, M., Lin, Y.-G., & McKeachie, W. J. (1995). Inferring students’ cognitive structures and their development using the "fill-in-the-structure" (FITS) technique. In P. D. Nichols, S. F. Chipman, & R. L. Brennan (Eds.) Cognitively Diagnostic Assessment (pp. 279-304). Hove, UK: Lawrence Erlbaum Associates.
    • (1995) Cognitively Diagnostic Assessment , pp. 279-304
    • Naveh-Benjamin, M.1    Lin, Y.-G.2    McKeachie, W.J.3
  • 53
    • 0002914557 scopus 로고
    • Concept maps and Vee diagrams: Two metacognitive tools to facilitate meaningful learning
    • Novak, J. D. (1990). Concept maps and Vee diagrams: Two metacognitive tools to facilitate meaningful learning. Instructional Science, 19(1), 29-52.
    • (1990) Instructional Science , vol.19 , Issue.1 , pp. 29-52
    • Novak, J.D.1
  • 59
    • 0024038570 scopus 로고
    • Probabilistic inference and influence diagrams
    • Shachter, R. D. (1988). Probabilistic inference and influence diagrams. Operation Research, 36(4), 589-604.
    • (1988) Operation Research , vol.36 , Issue.4 , pp. 589-604
    • Shachter, R.D.1
  • 61
    • 85024968994 scopus 로고
    • Rule space: An approach for dealing with misconceptions based on item response theory
    • Tatsuoka, K. K. (1983). Rule space: An approach for dealing with misconceptions based on item response theory. Journal of Educational Measurement, 20(345), 354-.
    • (1983) Journal of Educational Measurement , vol.20 , Issue.345 , pp. 354
    • Tatsuoka, K.K.1
  • 67
    • 49549099192 scopus 로고    scopus 로고
    • A Bayesian procedure in the context of sequential mastery testing
    • Vos, H. J. (2000). A Bayesian procedure in the context of sequential mastery testing. Psicolögica, 21(191), 211-.
    • (2000) Psicolögica , vol.21 , Issue.191 , pp. 211
    • Vos, H.J.1
  • 69
    • 33846076080 scopus 로고    scopus 로고
    • Mutual information item selection in adaptive classification testing
    • Weissman, A. (2007). Mutual information item selection in adaptive classification testing. Educational and Psychological Measurement, 67(1), 41-58.
    • (2007) Educational and Psychological Measurement , vol.67 , Issue.1 , pp. 41-58
    • Weissman, A.1
  • 70
    • 33748107862 scopus 로고    scopus 로고
    • From neural networks to the brain: Autonomous mental development
    • Weng, J., & Hwang, W.-S. (2006). From neural networks to the brain: Autonomous mental development. IEEE Computational Intelligence Magazine, 1(3), 15-31.
    • (2006) IEEE Computational Intelligence Magazine , vol.1 , Issue.3 , pp. 15-31
    • Weng, J.1    Hwang, W.-S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.