-
1
-
-
2042437650
-
Initial sequencing and analysis of the human genome
-
Lander ES, Linton LM, Birren B et al. Initial sequencing and analysis of the human genome. Nature 2001;409:860–921.
-
(2001)
Nature
, vol.409
, pp. 860-921
-
-
Lander, E.S.1
Linton, L.M.2
Birren, B.3
-
2
-
-
0035895505
-
The sequence of the human genome
-
Venter JC, Adams MD, Myers EW et al. The sequence of the human genome. Science 2001;291:1304–1351.
-
(2001)
Science
, vol.291
, pp. 1304-1351
-
-
Venter, J.C.1
Adams, M.D.2
Myers, E.W.3
-
3
-
-
79959503826
-
The international HapMap project
-
International HapMap Consortium. The international HapMap project. Nature 2003; 426:789–796.
-
(2003)
Nature
, vol.426
, pp. 789-796
-
-
-
4
-
-
35348983887
-
A second generation human haplotype map of over 3.1 million SNPs
-
International HapMap Consortium, Frazer KA, Ballinger DG et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 2007;449:851–861.
-
(2007)
Nature
, vol.449
, pp. 851-861
-
-
Frazer, K.A.1
Ballinger, D.G.2
-
5
-
-
84943171338
-
A global reference for human genetic variation
-
1000 Genomes Project Consortium, Auton A, Brooks LD et al. A global reference for human genetic variation. Nature 2015; 526:68–74.
-
(2015)
Nature
, vol.526
, pp. 68-74
-
-
Auton, A.1
Brooks, L.D.2
-
6
-
-
84891790401
-
The NHGRI GWAS Catalog, a curated resource of SNP-trait associations
-
Welter D, MacArthur J, Morales J et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 2014;42:D1001–D1006.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. D1001-D1006
-
-
Welter, D.1
Macarthur, J.2
Morales, J.3
-
7
-
-
84923762812
-
A new initiative on precision medicine
-
Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med 2015;372: 793–795.
-
(2015)
N Engl J Med
, vol.372
, pp. 793-795
-
-
Collins, F.S.1
Varmus, H.2
-
8
-
-
84925581553
-
Obama seeks $213m to fund “precision medicine”
-
McCarthy M. Obama seeks $213m to fund “precision medicine". BMJ 2015; 350:h587.
-
(2015)
BMJ
, vol.350
-
-
McCarthy, M.1
-
9
-
-
84862528505
-
Induced pluripotent stem cells: Past, present, and future
-
Yamanaka S. Induced pluripotent stem cells: Past, present, and future. Cell Stem Cell 2012;10:678–684.
-
(2012)
Cell Stem Cell
, vol.10
, pp. 678-684
-
-
Yamanaka, S.1
-
10
-
-
84928727557
-
Induced pluripotent stem cells
-
Wilson KD, Wu JC. Induced pluripotent stem cells. JAMA 2015;313:1613–1614.
-
(2015)
JAMA
, vol.313
, pp. 1613-1614
-
-
Wilson, K.D.1
Wu, J.C.2
-
11
-
-
84902096048
-
Development and applications of CRISPR-Cas9 for genome engineering
-
Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014;157:1262–1278.
-
(2014)
Cell
, vol.157
, pp. 1262-1278
-
-
Hsu, P.D.1
Lander, E.S.2
Zhang, F.3
-
12
-
-
84898778301
-
A guide to genome engineering with programmable nucleases
-
Kim H, Kim J-S. A guide to genome engineering with programmable nucleases. Nat Rev Genet 2014;15:321–334.
-
(2014)
Nat Rev Genet
, vol.15
, pp. 321-334
-
-
Kim, H.1
Kim, J.-S.2
-
13
-
-
36248966518
-
Induction of pluripotent stem cells from adult human fibroblasts by defined factors
-
Takahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131:861–872.
-
(2007)
Cell
, vol.131
, pp. 861-872
-
-
Takahashi, K.1
Tanabe, K.2
Ohnuki, M.3
-
14
-
-
36749043230
-
Induced pluripotent stem cell lines derived from human somatic cells
-
Yu J, Vodyanik MA, Smuga-Otto K et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007;318: 1917–1920.
-
(2007)
Science
, vol.318
, pp. 1917-1920
-
-
Yu, J.1
Vodyanik, M.A.2
Smuga-Otto, K.3
-
15
-
-
79959770204
-
Induced pluripotent stem cells as a next-generation biomedical interface
-
Hankowski KE, Hamazaki T, Umezawa A et al. Induced pluripotent stem cells as a next-generation biomedical interface. Lab Invest 2011;91:972–977.
-
(2011)
Lab Invest
, vol.91
, pp. 972-977
-
-
Hankowski, K.E.1
Hamazaki, T.2
Umezawa, A.3
-
16
-
-
84856007232
-
The promise of induced pluripotent stem cells in research and therapy
-
Robinton DA, Daley GQ. The promise of induced pluripotent stem cells in research and therapy. Nature 2012;481:295–305.
-
(2012)
Nature
, vol.481
, pp. 295-305
-
-
Robinton, D.A.1
Daley, G.Q.2
-
17
-
-
58249110796
-
Induced pluripotent stem cells from a spinal muscular atrophy patient
-
Ebert AD, Yu J, Rose FF et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 2009;457:277–280.
-
(2009)
Nature
, vol.457
, pp. 277-280
-
-
Ebert, A.D.1
Yu, J.2
Rose, F.F.3
-
18
-
-
79952446402
-
Modelling the long QT syndrome with induced pluripotent stem cells
-
Itzhaki I, Maizels L, Huber I et al. Modelling the long QT syndrome with induced pluripotent stem cells. Nature 2011;471:225–229.
-
(2011)
Nature
, vol.471
, pp. 225-229
-
-
Itzhaki, I.1
Maizels, L.2
Huber, I.3
-
19
-
-
84861203696
-
Astrocytes generated from patient induced pluripotent stem cells recapitulate features of Huntington’s disease patient cells
-
Juopperi TA, Kim WR, Chiang C-H et al. Astrocytes generated from patient induced pluripotent stem cells recapitulate features of Huntington’s disease patient cells. Mol Brain 2012;5:17.
-
(2012)
Mol Brain
, vol.5
, pp. 17
-
-
Juopperi, T.A.1
Kim, W.R.2
Chiang, C.-H.3
-
20
-
-
84888772136
-
Length-dependent CTG.CAG triplet-repeat expansion in myotonic dystrophy patient-derived induced pluripotent stem cells
-
Du J, Campau E, Soragni E et al. Length-dependent CTG.CAG triplet-repeat expansion in myotonic dystrophy patient-derived induced pluripotent stem cells. Hum Mol Genet 2013;22:5276–5287.
-
(2013)
Hum Mol Genet
, vol.22
, pp. 5276-5287
-
-
Du, J.1
Campau, E.2
Soragni, E.3
-
21
-
-
84870495669
-
JD induced pluripotent stem cell-derived hepa-tocytes faithfully recapitulate the pathophysiology of familial hypercholesterolemia
-
Cayo MA, Cai J, DeLaForest A et al. JD induced pluripotent stem cell-derived hepa-tocytes faithfully recapitulate the pathophysiology of familial hypercholesterolemia. Hepatology 2012;56:2163–2171.
-
(2012)
Hepatology
, vol.56
, pp. 2163-2171
-
-
Cayo, M.A.1
Cai, J.2
Delaforest, A.3
-
22
-
-
84864305346
-
Generation of human b-thalassemia induced pluripotent stem cells from amniotic fluid cells using a single excisable lentiviral stem cell cassette
-
Fan Y, Luo Y, Chen X et al. Generation of human b-thalassemia induced pluripotent stem cells from amniotic fluid cells using a single excisable lentiviral stem cell cassette. J Reprod Dev 2012;58:404–409.
-
(2012)
J Reprod Dev
, vol.58
, pp. 404-409
-
-
Fan, Y.1
Luo, Y.2
Chen, X.3
-
23
-
-
84920103442
-
A practical guide to induced pluripotent stem cell research using patient samples
-
Santostefano KE, Hamazaki T, Biel NM et al. A practical guide to induced pluripotent stem cell research using patient samples. Lab Invest 2015;95:4–13.
-
(2015)
Lab Invest
, vol.95
, pp. 4-13
-
-
Santostefano, K.E.1
Hamazaki, T.2
Biel, N.M.3
-
24
-
-
84908571755
-
Statin treatment rescues FGFR3 skeletal dys-plasia phenotypes
-
Yamashita A, Morioka M, Kishi H et al. Statin treatment rescues FGFR3 skeletal dys-plasia phenotypes. Nature 2014;513:507–511.
-
(2014)
Nature
, vol.513
, pp. 507-511
-
-
Yamashita, A.1
Morioka, M.2
Kishi, H.3
-
25
-
-
84884414984
-
Cerebral organoids model human brain development and microcephaly
-
Lancaster M, A Renner M, Martin C-A et al. Cerebral organoids model human brain development and microcephaly. Nature 2013; 501:373–379.
-
(2013)
Nature
, vol.501
, pp. 373-379
-
-
Lancaster, M.1
A Renner, M.2
Martin, C.-A.3
-
26
-
-
84862526635
-
Self-formation of optic cups and storable stratified neural retina from human ESCs
-
Nakano T, Ando S, Takata N et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 2012;10:771–785.
-
(2012)
Cell Stem Cell
, vol.10
, pp. 771-785
-
-
Nakano, T.1
Ando, S.2
Takata, N.3
-
27
-
-
84954138949
-
Functional anterior pituitary generated in self-organizing culture of human embryonic stem cells
-
Ozone C, Suga H, Eiraku M et al. Functional anterior pituitary generated in self-organizing culture of human embryonic stem cells. Nat Commun 2016;7:10351.
-
(2016)
Nat Commun
, vol.7
-
-
Ozone, C.1
Suga, H.2
Eiraku, M.3
-
28
-
-
4244206245
-
-
Accessed August 18, 2016
-
Pastores GM, Hughes DA. Gaucher disease. 1993. Available at http://www.ncbi.nlm.nih.gov/pubmed/20301446. Accessed August 18, 2016.
-
(1993)
Gaucher Disease
-
-
Pastores, G.M.1
Hughes, D.A.2
-
29
-
-
0037371235
-
Reciprocal and nonreciprocal recombination at the glucocerebrosidase gene region: Implications for complexity in Gaucher disease
-
Tayebi N, Stubblefield BK, Park JK et al. Reciprocal and nonreciprocal recombination at the glucocerebrosidase gene region: Implications for complexity in Gaucher disease. Am J Hum Genet 2003;72:519–534.
-
(2003)
Am J Hum Genet
, vol.72
, pp. 519-534
-
-
Tayebi, N.1
Stubblefield, B.K.2
Park, J.K.3
-
30
-
-
1842834057
-
Twin pairs showing discordance of phenotype in adult Gaucher’s disease
-
Lachmann RH, Grant IR, Halsall D et al. Twin pairs showing discordance of phenotype in adult Gaucher’s disease. QJM 2004;97:199–204.
-
(2004)
QJM
, vol.97
, pp. 199-204
-
-
Lachmann, R.H.1
Grant, I.R.2
Halsall, D.3
-
31
-
-
84897520098
-
Glucocerebrosidase 2 gene deletion rescues type 1 Gaucher disease
-
Mistry PK, Liu J, Sun L et al. Glucocerebrosidase 2 gene deletion rescues type 1 Gaucher disease. Proc Natl Acad Sci USA 2014;111:4934–4939.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. 4934-4939
-
-
Mistry, P.K.1
Liu, J.2
Sun, L.3
-
32
-
-
84943773762
-
Altered TFEB-mediated lysosomal biogenesis in Gaucher disease iPSC-derived neuronal cells
-
Awad O, Sarkar C, Panicker LM et al. Altered TFEB-mediated lysosomal biogenesis in Gaucher disease iPSC-derived neuronal cells. Hum Mol Genet 2015;24:5775–5788.
-
(2015)
Hum Mol Genet
, vol.24
, pp. 5775-5788
-
-
Awad, O.1
Sarkar, C.2
Panicker, L.M.3
-
33
-
-
84969213492
-
Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls
-
WTCCC. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007;447: 661–678.
-
(2007)
Nature
, vol.447
, pp. 661-678
-
-
-
35
-
-
84921845885
-
Cost-effectiveness of hypertension therapy according to 2014 guidelines
-
Moran AE, Odden MC, Thanataveerat A et al. Cost-effectiveness of hypertension therapy according to 2014 guidelines. N Engl J Med 2015;372:447–455.
-
(2015)
N Engl J Med
, vol.372
, pp. 447-455
-
-
Moran, A.E.1
Odden, M.C.2
Thanataveerat, A.3
-
36
-
-
84901808693
-
Blood pressure and incidence of twelve cardiovascular diseases: Lifetime risks, healthy life-years lost, and age-specific associations in 1.25 million people
-
Rapsomaniki E, Timmis A, George J et al. Blood pressure and incidence of twelve cardiovascular diseases: Lifetime risks, healthy life-years lost, and age-specific associations in 1.25 million people. Lancet 2014;383:1899–1911.
-
(2014)
Lancet
, vol.383
, pp. 1899-1911
-
-
Rapsomaniki, E.1
Timmis, A.2
George, J.3
-
37
-
-
21644466324
-
Pharmacogenomics of blood pressure response to antihypertensive treatment
-
Mellen PB, Herrington DM. Pharmacogenomics of blood pressure response to antihypertensive treatment. J Hypertens 2005;23: 1311–1325.
-
(2005)
J Hypertens
, vol.23
, pp. 1311-1325
-
-
Mellen, P.B.1
Herrington, D.M.2
-
38
-
-
84949655013
-
Vascular smooth muscle cells from hypertensive patient-derived induced pluripotent stem cells to advance hypertension pharmacogenomics
-
Biel NM, Santostefano KE, DiVita BB et al. Vascular smooth muscle cells from hypertensive patient-derived induced pluripotent stem cells to advance hypertension pharmacogenomics. Stem Cells Transl Med 2015;4:1380–1390.
-
(2015)
Stem Cells Transl Med
, vol.4
, pp. 1380-1390
-
-
Biel, N.M.1
Santostefano, K.E.2
Divita, B.B.3
-
39
-
-
60649094697
-
Pharmacogenomics of antihypertensive drugs: Rationale and design of the Pharma-cogenomic Evaluation of Antihypertensive Responses (PEAR) study
-
Johnson JA, Boerwinkle E, Zineh I et al. Pharmacogenomics of antihypertensive drugs: Rationale and design of the Pharma-cogenomic Evaluation of Antihypertensive Responses (PEAR) study. Am Heart J 2009; 157:442–449.
-
(2009)
Am Heart J
, vol.157
, pp. 442-449
-
-
Johnson, J.A.1
Boerwinkle, E.2
Zineh, I.3
-
40
-
-
84908377652
-
Characterization of the molecular mechanisms underlying increased ischemic damage in the aldehyde dehydrogenase 2 genetic polymor-phism using a human induced pluripotent stem cell model system
-
Ebert AD, Kodo K, Liang P et al. Characterization of the molecular mechanisms underlying increased ischemic damage in the aldehyde dehydrogenase 2 genetic polymor-phism using a human induced pluripotent stem cell model system. Sci Transl Med 2014;6:255ra130.
-
(2014)
Sci Transl Med
, vol.6
-
-
Ebert, A.D.1
Kodo, K.2
Liang, P.3
-
41
-
-
84944769086
-
Derivation of ethnically diverse human induced pluripotent stem cell lines
-
Chang EA, Tomov ML, Suhr ST et al. Derivation of ethnically diverse human induced pluripotent stem cell lines. Sci Rep 2015;5: 15234.
-
(2015)
Sci Rep
, vol.5
-
-
Chang, E.A.1
Tomov, M.L.2
Suhr, S.T.3
-
42
-
-
84966930890
-
Induced pluripotent stem cells meet genome editing
-
Hockemeyer D, Jaenisch R. Induced pluripotent stem cells meet genome editing. Cell Stem Cell 2016;18:573–586.
-
(2016)
Cell Stem Cell
, vol.18
, pp. 573-586
-
-
Hockemeyer, D.1
Jaenisch, R.2
-
43
-
-
84960971321
-
Genome editing in pluripotent stem cells: Research and therapeutic applications
-
Deleidi M, Yu C. Genome editing in pluripotent stem cells: Research and therapeutic applications. Biochem Biophys Res Commun 2016;473:665–674.
-
(2016)
Biochem Biophys Res Commun
, vol.473
, pp. 665-674
-
-
Deleidi, M.1
Yu, C.2
-
44
-
-
84971238775
-
Parkinson-associated risk variant in distal enhancer of a-synuclein modulates target gene expression
-
Soldner F, Stelzer Y, Shivalila CS et al. Parkinson-associated risk variant in distal enhancer of a-synuclein modulates target gene expression. Nature 2016;533:95–99.
-
(2016)
Nature
, vol.533
, pp. 95-99
-
-
Soldner, F.1
Stelzer, Y.2
Shivalila, C.S.3
-
45
-
-
84945401367
-
Standardized phenotyping enhances Mendelian disease gene identification
-
Vissers LELM, Veltman JA. Standardized phenotyping enhances Mendelian disease gene identification. Nat Genet 2015;47:1222–1224.
-
(2015)
Nat Genet
, vol.47
, pp. 1222-1224
-
-
Vissers, L.1
Veltman, J.A.2
-
46
-
-
84945319215
-
Discovery of four recessive developmental disorders using probabilistic genotype and phenotype matching among 4,125 families
-
Akawi N, McRae J, Ansari M et al. Discovery of four recessive developmental disorders using probabilistic genotype and phenotype matching among 4,125 families. Nat Genet 2015;47:1363–1369.
-
(2015)
Nat Genet
, vol.47
, pp. 1363-1369
-
-
Akawi, N.1
McRae, J.2
Ansari, M.3
-
47
-
-
84976597028
-
Prodromal clinical markers of Parkinson disease in Gaucher disease individuals
-
Gatto EM, Etcheverry JL, Sanguinetti A et al. Prodromal clinical markers of Parkinson disease in Gaucher disease individuals. Eur Neurol 2016;76:19–21.
-
(2016)
Eur Neurol
, vol.76
, pp. 19-21
-
-
Gatto, E.M.1
Etcheverry, J.L.2
Sanguinetti, A.3
-
48
-
-
84975110901
-
Strong association between glucocerebrosidase mutations and Parkinson’s disease in Sweden
-
Ran C, Brodin L, Forsgren L et al. Strong association between glucocerebrosidase mutations and Parkinson’s disease in Sweden. Neurobiol Aging 2016;45:212.e5-212.e11.
-
(2016)
Neurobiol Aging
, vol.45
, pp. 212.e5-212.e11
-
-
Ran, C.1
Brodin, L.2
Forsgren, L.3
-
49
-
-
70350319531
-
Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease
-
Sidransky E, Nalls MA, Aasly JO et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med 2009;361:1651–1661.
-
(2009)
N Engl J Med
, vol.361
, pp. 1651-1661
-
-
Sidransky, E.1
Nalls, M.A.2
Aasly, J.O.3
-
50
-
-
33751183948
-
In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion
-
Chimienti F, Devergnas S, Pattou F et al. In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. J Cell Sci 2006;119:4199–4206.
-
(2006)
J Cell Sci
, vol.119
, pp. 4199-4206
-
-
Chimienti, F.1
Devergnas, S.2
Pattou, F.3
-
51
-
-
75749086085
-
New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk
-
Dupuis J, Langenberg C, Prokopenko I et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 2010;42:105–116.
-
(2010)
Nat Genet
, vol.42
, pp. 105-116
-
-
Dupuis, J.1
Langenberg, C.2
Prokopenko, I.3
-
52
-
-
80053405321
-
Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes
-
Strawbridge RJ, Dupuis J, Prokopenko I et al. Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes. Diabetes 2011;60:2624–2634.
-
(2011)
Diabetes
, vol.60
, pp. 2624-2634
-
-
Strawbridge, R.J.1
Dupuis, J.2
Prokopenko, I.3
-
53
-
-
84868337361
-
Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes
-
Morris AP, Voight BF, Teslovich TM et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 2012;44:981–990.
-
(2012)
Nat Genet
, vol.44
, pp. 981-990
-
-
Morris, A.P.1
Voight, B.F.2
Teslovich, T.M.3
-
54
-
-
84897407583
-
Loss-of-function mutations in SLC30A8 protect against type 2 diabetes
-
Flannick J, Thorleifsson G, Beer NL et al. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat Genet 2014;46:357–363.
-
(2014)
Nat Genet
, vol.46
, pp. 357-363
-
-
Flannick, J.1
Thorleifsson, G.2
Beer, N.L.3
-
55
-
-
84969941163
-
Analysis of 589,306 genomes identifies individuals resilient to severe Mendelian childhood diseases
-
Chen R, Shi L, Hakenberg J et al. Analysis of 589,306 genomes identifies individuals resilient to severe Mendelian childhood diseases. Nat Biotechnol 2016;34:531–538.
-
(2016)
Nat Biotechnol
, vol.34
, pp. 531-538
-
-
Chen, R.1
Shi, L.2
Hakenberg, J.3
|