메뉴 건너뛰기




Volumn 1859, Issue 5, 2017, Pages 662-668

Glycosylation of voltage-gated calcium channels in health and disease

Author keywords

Ancillary subunit; Calcium channels; Diabetes; N glycosylation; Neuropathic pain; Plasma membrane; Stability; Trafficking; Voltage gated calcium channels

Indexed keywords

CALCIUM CHANNEL L TYPE; CALCIUM CHANNEL T TYPE; CALCIUM ION; VOLTAGE GATED CALCIUM CHANNEL; CALCIUM CHANNEL; PROTEIN SUBUNIT;

EID: 85012113504     PISSN: 00052736     EISSN: 18792642     Source Type: Journal    
DOI: 10.1016/j.bbamem.2017.01.018     Document Type: Review
Times cited : (47)

References (98)
  • 3
    • 84897470727 scopus 로고    scopus 로고
    • Neuronal voltage-gated calcium channels: structure, function, and dysfunction
    • [3] Simms, B.A., Zamponi, G.W., Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron, 2014, 24–45.
    • (2014) Neuron , pp. 24-45
    • Simms, B.A.1    Zamponi, G.W.2
  • 4
    • 0038045158 scopus 로고    scopus 로고
    • Auxiliary subunits: essential components of the voltage-gated calcium channel complex
    • [4] Arikkath, J., Campbell, K.P., Auxiliary subunits: essential components of the voltage-gated calcium channel complex. Curr. Opin. Neurobiol., 2003, 298–307.
    • (2003) Curr. Opin. Neurobiol. , pp. 298-307
    • Arikkath, J.1    Campbell, K.P.2
  • 5
    • 0031811571 scopus 로고    scopus 로고
    • Antisense depletion of beta-subunits fails to affect T-type calcium channels properties in a neuroblastoma cell line
    • [5] Leuranguer, V., Bourinet, E., Lory, P., Nargeot, J., Antisense depletion of beta-subunits fails to affect T-type calcium channels properties in a neuroblastoma cell line. Neuropharmacology, 1998, 701–708.
    • (1998) Neuropharmacology , pp. 701-708
    • Leuranguer, V.1    Bourinet, E.2    Lory, P.3    Nargeot, J.4
  • 6
    • 3142741086 scopus 로고    scopus 로고
    • Plasma membrane expression of T-type calcium channel alpha(1) subunits is modulated by high voltage-activated auxiliary subunits
    • [6] Dubel, S.J., Altier, C., Chaumont, S., Lory, P., Bourinet, E., Nargeot, J., Plasma membrane expression of T-type calcium channel alpha(1) subunits is modulated by high voltage-activated auxiliary subunits. J. Biol. Chem., 2004, 29263–29269.
    • (2004) J. Biol. Chem. , pp. 29263-29269
    • Dubel, S.J.1    Altier, C.2    Chaumont, S.3    Lory, P.4    Bourinet, E.5    Nargeot, J.6
  • 7
    • 78049297400 scopus 로고    scopus 로고
    • Interaction of T-type calcium channel Ca(V)3.3 with the β-subunit
    • [7] Bae, J., Suh, E.J., Lee, C., Interaction of T-type calcium channel Ca(V)3.3 with the β-subunit. Mol. Cell, 2010, 185–191.
    • (2010) Mol. Cell , pp. 185-191
    • Bae, J.1    Suh, E.J.2    Lee, C.3
  • 9
    • 84859912593 scopus 로고    scopus 로고
    • Regulation of voltage-gated calcium channels by synaptic proteins
    • [9] Weiss, N., Zamponi, G.W., Regulation of voltage-gated calcium channels by synaptic proteins. Adv. Exp. Med. Biol., 2012, 759–775.
    • (2012) Adv. Exp. Med. Biol. , pp. 759-775
    • Weiss, N.1    Zamponi, G.W.2
  • 10
    • 84936136177 scopus 로고    scopus 로고
    • G protein regulation of neuronal calcium channels: back to the future
    • [10] Proft, J., Weiss, N., G protein regulation of neuronal calcium channels: back to the future. Mol. Pharmacol., 2015, 890–906.
    • (2015) Mol. Pharmacol. , pp. 890-906
    • Proft, J.1    Weiss, N.2
  • 11
    • 84994235315 scopus 로고    scopus 로고
    • Regulation of voltage gated calcium channels by GPCRs and post-translational modification
    • [11] Huang, J., Zamponi, G.W., Regulation of voltage gated calcium channels by GPCRs and post-translational modification. Curr. Opin. Pharmacol., 2016, 1–8.
    • (2016) Curr. Opin. Pharmacol. , pp. 1-8
    • Huang, J.1    Zamponi, G.W.2
  • 18
    • 79953190397 scopus 로고    scopus 로고
    • Beta-subunits promote the expression of Ca(V)2.2 channels by reducing their proteasomal degradation
    • [18] Waithe, D., Ferron, L., Page, K.M., Chaggar, K., Dolphin, A.C., Beta-subunits promote the expression of Ca(V)2.2 channels by reducing their proteasomal degradation. J. Biol. Chem., 2011, 9598–9611.
    • (2011) J. Biol. Chem. , pp. 9598-9611
    • Waithe, D.1    Ferron, L.2    Page, K.M.3    Chaggar, K.4    Dolphin, A.C.5
  • 19
    • 84988640357 scopus 로고    scopus 로고
    • The CaVβ subunit protects the I-II loop of the voltage-gated calcium channel CaV2.2 from proteasomal degradation but not oligoubiquitination
    • [19] Page, K.M., Rothwell, S.W., Dolphin, A.C., The CaVβ subunit protects the I-II loop of the voltage-gated calcium channel CaV2.2 from proteasomal degradation but not oligoubiquitination. J. Biol. Chem., 2016, 20402–20416.
    • (2016) J. Biol. Chem. , pp. 20402-20416
    • Page, K.M.1    Rothwell, S.W.2    Dolphin, A.C.3
  • 20
    • 85012141253 scopus 로고    scopus 로고
    • 2 + channels and potential pathophysiological implications
    • 2 + channels and potential pathophysiological implications. Gen. Physiol. Biophys., 2016.
    • (2016) Gen. Physiol. Biophys.
    • Felix, R.1    Weiss, N.2
  • 21
    • 0029967950 scopus 로고    scopus 로고
    • Identification of palmitoylation sites within the L-type calcium channel beta2a subunit and effects on channel function
    • [21] Chien, A.J., Carr, K.M., Shirokov, R.E., Rios, E., Hosey, M.M., Identification of palmitoylation sites within the L-type calcium channel beta2a subunit and effects on channel function. J. Biol. Chem., 1996, 26465–26468.
    • (1996) J. Biol. Chem. , pp. 26465-26468
    • Chien, A.J.1    Carr, K.M.2    Shirokov, R.E.3    Rios, E.4    Hosey, M.M.5
  • 24
    • 80053469048 scopus 로고    scopus 로고
    • Mechanisms and principles of N-linked protein glycosylation
    • [24] Schwarz, F., Aebi, M., Mechanisms and principles of N-linked protein glycosylation. Curr. Opin. Struct. Biol., 2011, 576–582.
    • (2011) Curr. Opin. Struct. Biol. , pp. 576-582
    • Schwarz, F.1    Aebi, M.2
  • 25
    • 0025367812 scopus 로고
    • Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/ser acceptor sites: implications for protein engineering
    • [25] Gavel, Y., von Heijne, G., Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/ser acceptor sites: implications for protein engineering. Protein Eng., 1990, 433–442.
    • (1990) Protein Eng. , pp. 433-442
    • Gavel, Y.1    von Heijne, G.2
  • 26
    • 79956357741 scopus 로고    scopus 로고
    • Do N-glycoproteins have preference for specific sequons
    • [26] Rao, R.S., Bernd, W., Do N-glycoproteins have preference for specific sequons. Bioinformation, 2010, 208–212.
    • (2010) Bioinformation , pp. 208-212
    • Rao, R.S.1    Bernd, W.2
  • 27
    • 84880586512 scopus 로고    scopus 로고
    • N-linked protein glycosylation in the ER
    • [27] Aebi, M., N-linked protein glycosylation in the ER. Biochim. Biophys. Acta, 2013, 2430–2437.
    • (2013) Biochim. Biophys. Acta , pp. 2430-2437
    • Aebi, M.1
  • 28
    • 44849102178 scopus 로고    scopus 로고
    • Getting in and out from calnexin/calreticulin cycles
    • [28] Caramelo, J.J., Parodi, A.J., Getting in and out from calnexin/calreticulin cycles. J. Biol. Chem., 2008, 10221–10225.
    • (2008) J. Biol. Chem. , pp. 10221-10225
    • Caramelo, J.J.1    Parodi, A.J.2
  • 29
    • 84941249224 scopus 로고    scopus 로고
    • Glycoprotein quality control and endoplasmic reticulum stress
    • [29] Wang, Q., Groenendyk, J., Michalak, M., Glycoprotein quality control and endoplasmic reticulum stress. Molecules, 2015, 13689–13704.
    • (2015) Molecules , pp. 13689-13704
    • Wang, Q.1    Groenendyk, J.2    Michalak, M.3
  • 31
    • 85014847875 scopus 로고    scopus 로고
    • Bridging the gap between glycosylation and vesicle traffic
    • [31] Fisher, P., Ungar, D., Bridging the gap between glycosylation and vesicle traffic. Front. Cell Dev. Biol., 15, 2016.
    • (2016) Front. Cell Dev. Biol. , vol.15
    • Fisher, P.1    Ungar, D.2
  • 33
    • 66049115017 scopus 로고    scopus 로고
    • Role of N-glycosylation in trafficking of apical membrane proteins in epithelia
    • [33] Vagin, O., Kraut, J.A., Sachs, G., Role of N-glycosylation in trafficking of apical membrane proteins in epithelia. Am. J. Physiol. Ren. Physiol., 2009, F459–F469.
    • (2009) Am. J. Physiol. Ren. Physiol. , pp. F459-F469
    • Vagin, O.1    Kraut, J.A.2    Sachs, G.3
  • 34
    • 84897130414 scopus 로고    scopus 로고
    • Glycoprotein folding and quality-control mechanisms in protein-folding diseases
    • [34] Ferris, S.P., Kodali, V.K., Kaufman, R.J., Glycoprotein folding and quality-control mechanisms in protein-folding diseases. Dis. Model. Mech., 2014, 331–341.
    • (2014) Dis. Model. Mech. , pp. 331-341
    • Ferris, S.P.1    Kodali, V.K.2    Kaufman, R.J.3
  • 35
    • 84862728161 scopus 로고    scopus 로고
    • Vertebrate protein glycosylation: diversity, synthesis and function
    • [35] Moremen, K.W., Tiemeyer, M., Nairn, A.V., Vertebrate protein glycosylation: diversity, synthesis and function. Nat. Rev. Mol. Cell Biol., 2012, 448–462.
    • (2012) Nat. Rev. Mol. Cell Biol. , pp. 448-462
    • Moremen, K.W.1    Tiemeyer, M.2    Nairn, A.V.3
  • 36
    • 1342282941 scopus 로고    scopus 로고
    • The three-dimensional structure of the cardiac L-type voltage-gated calcium channel: comparison with the skeletal muscle form reveals a common architectural motif
    • [36] Wang, M.C., Collins, R.F., Ford, R.C., Berrow, N.S., Dolphin, A.C., Kitmitto, A., The three-dimensional structure of the cardiac L-type voltage-gated calcium channel: comparison with the skeletal muscle form reveals a common architectural motif. J. Biol. Chem., 2004, 7159–7168.
    • (2004) J. Biol. Chem. , pp. 7159-7168
    • Wang, M.C.1    Collins, R.F.2    Ford, R.C.3    Berrow, N.S.4    Dolphin, A.C.5    Kitmitto, A.6
  • 38
    • 0037459820 scopus 로고    scopus 로고
    • Immunological characterization of T-type voltage-dependent calcium channel CaV3.1 (alpha 1G) and CaV3.3 (alpha 1I) isoforms reveal differences in their localization, expression, and neural development
    • [38] Yunker, A.M., Sharp, A.H., Sundarraj, S., Ranganathan, V., Copeland, T.D., McEnery, M.W., Immunological characterization of T-type voltage-dependent calcium channel CaV3.1 (alpha 1G) and CaV3.3 (alpha 1I) isoforms reveal differences in their localization, expression, and neural development. Neuroscience, 2003, 321–335.
    • (2003) Neuroscience , pp. 321-335
    • Yunker, A.M.1    Sharp, A.H.2    Sundarraj, S.3    Ranganathan, V.4    Copeland, T.D.5    McEnery, M.W.6
  • 39
    • 33947307787 scopus 로고    scopus 로고
    • Site-directed antibodies to low-voltage-activated calcium channel CaV3.3 (alpha1I) subunit also target neural cell adhesion molecule-180
    • [39] Chen, Y., Sharp, A.H., Hata, K., Yunker, A.M., Polo-Parada, L., Landmesser, L.T., McEnery, M.W., Site-directed antibodies to low-voltage-activated calcium channel CaV3.3 (alpha1I) subunit also target neural cell adhesion molecule-180. Neuroscience, 2007, 981–996.
    • (2007) Neuroscience , pp. 981-996
    • Chen, Y.1    Sharp, A.H.2    Hata, K.3    Yunker, A.M.4    Polo-Parada, L.5    Landmesser, L.T.6    McEnery, M.W.7
  • 42
    • 84881481188 scopus 로고    scopus 로고
    • Surface expression and function of Cav3.2 T-type calcium channels are controlled by asparagine-linked glycosylation
    • [42] Weiss, N., Black, S.A., Bladen, C., Chen, L., Zamponi, G.W., Surface expression and function of Cav3.2 T-type calcium channels are controlled by asparagine-linked glycosylation. Pflugers Arch., 2013, 1159–1170.
    • (2013) Pflugers Arch. , pp. 1159-1170
    • Weiss, N.1    Black, S.A.2    Bladen, C.3    Chen, L.4    Zamponi, G.W.5
  • 43
    • 84988723398 scopus 로고    scopus 로고
    • Cooperative roles of glucose and asparagine-linked glycosylation in T-type calcium channel expression
    • [43] Lazniewska, J., Rzhepetskyy, Y., Zhang, F.X., Zamponi, G.W., Weiss, N., Cooperative roles of glucose and asparagine-linked glycosylation in T-type calcium channel expression. Pflugers Arch., 2016, 1837–1851.
    • (2016) Pflugers Arch. , pp. 1837-1851
    • Lazniewska, J.1    Rzhepetskyy, Y.2    Zhang, F.X.3    Zamponi, G.W.4    Weiss, N.5
  • 44
    • 84978393937 scopus 로고    scopus 로고
    • Modulation of Cav3.2 T-type calcium channel permeability by asparagine-linked glycosylation
    • [44] Ondacova, K., Karmazinova, M., Lazniewska, J., Weiss, N., Lacinova, L., Modulation of Cav3.2 T-type calcium channel permeability by asparagine-linked glycosylation. Channels (Austin), 2016, 175–184.
    • (2016) Channels (Austin) , pp. 175-184
    • Ondacova, K.1    Karmazinova, M.2    Lazniewska, J.3    Weiss, N.4    Lacinova, L.5
  • 45
    • 84977522726 scopus 로고    scopus 로고
    • Genetic alteration of the metal/redox modulation of Cav3.2 T-type calcium channel reveals its role in neuronal excitability
    • [45] Voisin, T., Bourinet, E., Lory, P., Genetic alteration of the metal/redox modulation of Cav3.2 T-type calcium channel reveals its role in neuronal excitability. J. Physiol., 2016, 3561–3574.
    • (2016) J. Physiol. , pp. 3561-3574
    • Voisin, T.1    Bourinet, E.2    Lory, P.3
  • 49
    • 84864153599 scopus 로고    scopus 로고
    • Calcium channel auxiliary α2δ and β subunits: trafficking and one step beyond
    • [49] Dolphin, A.C., Calcium channel auxiliary α2δ and β subunits: trafficking and one step beyond. Nat. Rev. Neurosci., 2012, 542–555.
    • (2012) Nat. Rev. Neurosci. , pp. 542-555
    • Dolphin, A.C.1
  • 50
    • 85003052331 scopus 로고    scopus 로고
    • Emerging evidence for specific neuronal functions of auxiliary calcium channel α₂δ subunits
    • [50] Geisler, S., Schöpf, C.L., Obermair, G.J., Emerging evidence for specific neuronal functions of auxiliary calcium channel α₂δ subunits. Gen. Physiol. Biophys., 2015, 105–118.
    • (2015) Gen. Physiol. Biophys. , pp. 105-118
    • Geisler, S.1    Schöpf, C.L.2    Obermair, G.J.3
  • 52
    • 0035032465 scopus 로고    scopus 로고
    • Calcium channel alpha(2)delta subunits-structure and gabapentin binding
    • [52] Marais, E., Klugbauer, N., Hofmann, F., Calcium channel alpha(2)delta subunits-structure and gabapentin binding. Mol. Pharmacol., 2001, 1243–1248.
    • (2001) Mol. Pharmacol. , pp. 1243-1248
    • Marais, E.1    Klugbauer, N.2    Hofmann, F.3
  • 53
    • 0030050832 scopus 로고    scopus 로고
    • 2 + channel alpha 2 delta subunit in current stimulation and subunit interaction
    • 2 + channel alpha 2 delta subunit in current stimulation and subunit interaction. Neuron, 1996, 431–440.
    • (1996) Neuron , pp. 431-440
    • Gurnett, C.A.1    De Waard, M.2    Campbell, K.P.3
  • 55
    • 70349807751 scopus 로고    scopus 로고
    • The alpha(2)delta subunit augments functional expression and modifies the pharmacology of Ca(V)1.3 L-type channels
    • [55] Andrade, A., Sandoval, A., González-Ramírez, R., Lipscombe, D., Campbell, K.P., Felix, R., The alpha(2)delta subunit augments functional expression and modifies the pharmacology of Ca(V)1.3 L-type channels. Cell Calcium, 2009, 282–292.
    • (2009) Cell Calcium , pp. 282-292
    • Andrade, A.1    Sandoval, A.2    González-Ramírez, R.3    Lipscombe, D.4    Campbell, K.P.5    Felix, R.6
  • 56
    • 84964773925 scopus 로고    scopus 로고
    • Identification of glycosylation sites essential for surface expression of the CaVα2δ1 subunit and modulation of the cardiac CaV1.2 channel activity
    • [56] Tétreault, M.P., Bourdin, B., Briot, J., Segura, E., Lesage, S., Fiset, C., Parent, L., Identification of glycosylation sites essential for surface expression of the CaVα2δ1 subunit and modulation of the cardiac CaV1.2 channel activity. J. Biol. Chem., 2016, 4826–4843.
    • (2016) J. Biol. Chem. , pp. 4826-4843
    • Tétreault, M.P.1    Bourdin, B.2    Briot, J.3    Segura, E.4    Lesage, S.5    Fiset, C.6    Parent, L.7
  • 57
    • 84974626042 scopus 로고    scopus 로고
    • Glycosylation of α2δ1 subunit: a sweet talk with Cav1.2 channels
    • [57] Lazniewska, J., Weiss, N., Glycosylation of α2δ1 subunit: a sweet talk with Cav1.2 channels. Gen. Physiol. Biophys., 2016, 239–242.
    • (2016) Gen. Physiol. Biophys. , pp. 239-242
    • Lazniewska, J.1    Weiss, N.2
  • 59
    • 84950282257 scopus 로고    scopus 로고
    • Structure of the voltage-gated calcium channel Cav1.1 complex
    • [59] Wu, J., Yan, Z., Li, Z., Yan, C., Lu, S., Dong, M., Yan, N., Structure of the voltage-gated calcium channel Cav1.1 complex. Science, 2015, aad2395.
    • (2015) Science , pp. aad2395
    • Wu, J.1    Yan, Z.2    Li, Z.3    Yan, C.4    Lu, S.5    Dong, M.6    Yan, N.7
  • 61
    • 0038691678 scopus 로고    scopus 로고
    • Gamma subunit of voltage-activated calcium channels
    • [61] Kang, M.G., Campbell, K.P., Gamma subunit of voltage-activated calcium channels. J. Biol. Chem., 2003, 21315–21318.
    • (2003) J. Biol. Chem. , pp. 21315-21318
    • Kang, M.G.1    Campbell, K.P.2
  • 62
    • 21244498977 scopus 로고    scopus 로고
    • The alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate receptor trafficking regulator “stargazin” is related to the claudin family of proteins by its ability to mediate cell-cell adhesion
    • [62] Price, M.G., Davis, C.F., Deng, F., Burgess, D.L., The alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate receptor trafficking regulator “stargazin” is related to the claudin family of proteins by its ability to mediate cell-cell adhesion. J. Biol. Chem., 2005, 19711–19720.
    • (2005) J. Biol. Chem. , pp. 19711-19720
    • Price, M.G.1    Davis, C.F.2    Deng, F.3    Burgess, D.L.4
  • 63
    • 33947514867 scopus 로고    scopus 로고
    • Inhibition of recombinant N-type Ca(V) channels by the gamma 2 subunit involves unfolded protein response (UPR)-dependent and UPR-independent mechanisms
    • [63] Sandoval, A., Andrade, A., Beedle, A.M., Campbell, K.P., Felix, R., Inhibition of recombinant N-type Ca(V) channels by the gamma 2 subunit involves unfolded protein response (UPR)-dependent and UPR-independent mechanisms. J. Neurosci., 2007, 3317–3327.
    • (2007) J. Neurosci. , pp. 3317-3327
    • Sandoval, A.1    Andrade, A.2    Beedle, A.M.3    Campbell, K.P.4    Felix, R.5
  • 65
    • 85026587338 scopus 로고    scopus 로고
    • Gamma1 subunit renders Cav1. 2 channels dependent on cell cycle
    • [65] Angelova, A., Ulyanova, A., Shirokov, R., Gamma1 subunit renders Cav1. 2 channels dependent on cell cycle. Biophys. J., 2010, 694a.
    • (2010) Biophys. J. , pp. 694a
    • Angelova, A.1    Ulyanova, A.2    Shirokov, R.3
  • 67
    • 84956710207 scopus 로고    scopus 로고
    • Pathologies of Calcium Channels
    • [67] Weiss, N., Koschak, A., Pathologies of Calcium Channels. 2014.
    • (2014)
    • Weiss, N.1    Koschak, A.2
  • 68
    • 84941892486 scopus 로고    scopus 로고
    • The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential
    • [68] Zamponi, G.W., Striessnig, J., Koschak, A., Dolphin, A.C., The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol. Rev., 2015, 821–870.
    • (2015) Pharmacol. Rev. , pp. 821-870
    • Zamponi, G.W.1    Striessnig, J.2    Koschak, A.3    Dolphin, A.C.4
  • 69
    • 84955186743 scopus 로고    scopus 로고
    • Targeting voltage-gated calcium channels in neurological and psychiatric diseases
    • [69] Zamponi, G.W., Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat. Rev. Drug Discov., 2016, 19–34.
    • (2016) Nat. Rev. Drug Discov. , pp. 19-34
    • Zamponi, G.W.1
  • 70
    • 0141850350 scopus 로고    scopus 로고
    • Reversal of experimental neuropathic pain by T-type calcium channel blockers
    • [70] Dogrul, A., Gardell, L.R., Ossipov, M.H., Tulunay, F.C., Lai, J., Porreca, F., Reversal of experimental neuropathic pain by T-type calcium channel blockers. Pain, 2003, 159–168.
    • (2003) Pain , pp. 159-168
    • Dogrul, A.1    Gardell, L.R.2    Ossipov, M.H.3    Tulunay, F.C.4    Lai, J.5    Porreca, F.6
  • 73
    • 84961353213 scopus 로고    scopus 로고
    • T-type calcium channels in neuropathic pain
    • [73] Bourinet, E., Francois, A., Laffray, S., T-type calcium channels in neuropathic pain. Pain, 2016, S15–S22.
    • (2016) Pain , pp. S15-S22
    • Bourinet, E.1    Francois, A.2    Laffray, S.3
  • 74
    • 84863494346 scopus 로고    scopus 로고
    • Presynaptic Cav3.2 channels regulate excitatory neurotransmission in nociceptive dorsal horn neurons
    • [74] Jacus, M.O., Uebele, V.N., Renger, J.J., Todorovic, S.M., Presynaptic Cav3.2 channels regulate excitatory neurotransmission in nociceptive dorsal horn neurons. J. Neurosci., 2012, 9374–9382.
    • (2012) J. Neurosci. , pp. 9374-9382
    • Jacus, M.O.1    Uebele, V.N.2    Renger, J.J.3    Todorovic, S.M.4
  • 76
    • 84876926362 scopus 로고    scopus 로고
    • Control of low-threshold exocytosis by T-type calcium channels
    • [76] Weiss, N., Zamponi, G.W., Control of low-threshold exocytosis by T-type calcium channels. Biochim. Biophys. Acta, 2013, 1579–1586.
    • (2013) Biochim. Biophys. Acta , pp. 1579-1586
    • Weiss, N.1    Zamponi, G.W.2
  • 78
    • 84929379761 scopus 로고    scopus 로고
    • Expression and regulation of Cav3.2 T-type calcium channels during inflammatory hyperalgesia in mouse dorsal root ganglion neurons
    • [78] Watanabe, M., Ueda, T., Shibata, Y., Kumamoto, N., Shimada, S., Ugawa, S., Expression and regulation of Cav3.2 T-type calcium channels during inflammatory hyperalgesia in mouse dorsal root ganglion neurons. PLoS One, 2015, e0127572.
    • (2015) PLoS One , pp. e0127572
    • Watanabe, M.1    Ueda, T.2    Shibata, Y.3    Kumamoto, N.4    Shimada, S.5    Ugawa, S.6
  • 81
  • 84
    • 84879838705 scopus 로고    scopus 로고
    • Neuropathic pain: role for presynaptic T-type channels in nociceptive signaling
    • [84] Todorovic, S.M., Jevtovic-Todorovic, V., Neuropathic pain: role for presynaptic T-type channels in nociceptive signaling. Pflugers Arch., 2013, 921–927.
    • (2013) Pflugers Arch. , pp. 921-927
    • Todorovic, S.M.1    Jevtovic-Todorovic, V.2
  • 85
    • 84899416991 scopus 로고    scopus 로고
    • CaV3.2 T-type calcium channels in peripheral sensory neurons are important for mibefradil-induced reversal of hyperalgesia and allodynia in rats with painful diabetic neuropathy
    • [85] Obradovic, A.L., Hwang, S.M., Scarpa, J., Hong, S.J., Todorovic, S.M., Jevtovic-Todorovic, V., CaV3.2 T-type calcium channels in peripheral sensory neurons are important for mibefradil-induced reversal of hyperalgesia and allodynia in rats with painful diabetic neuropathy. PLoS One, 2014, e91467.
    • (2014) PLoS One , pp. e91467
    • Obradovic, A.L.1    Hwang, S.M.2    Scarpa, J.3    Hong, S.J.4    Todorovic, S.M.5    Jevtovic-Todorovic, V.6
  • 87
    • 84896544452 scopus 로고    scopus 로고
    • Targeting of CaV3.2 T-type calcium channels in peripheral sensory neurons for the treatment of painful diabetic neuropathy
    • [87] Todorovic, S.M., Jevtovic-Todorovic, V., Targeting of CaV3.2 T-type calcium channels in peripheral sensory neurons for the treatment of painful diabetic neuropathy. Pflugers Arch., 2014, 701–706.
    • (2014) Pflugers Arch. , pp. 701-706
    • Todorovic, S.M.1    Jevtovic-Todorovic, V.2
  • 90
    • 84890158776 scopus 로고    scopus 로고
    • The availability of glucose to CHO cells affects the intracellular lipid-linked oligosaccharide distribution, site occupancy and the N-glycosylation profile of a monoclonal antibody
    • [90] Liu, B., Spearman, M., Doering, J., Lattová, E., Perreault, H., Butler, M., The availability of glucose to CHO cells affects the intracellular lipid-linked oligosaccharide distribution, site occupancy and the N-glycosylation profile of a monoclonal antibody. J. Biotechnol., 2014, 17–27.
    • (2014) J. Biotechnol. , pp. 17-27
    • Liu, B.1    Spearman, M.2    Doering, J.3    Lattová, E.4    Perreault, H.5    Butler, M.6
  • 91
    • 84935713928 scopus 로고    scopus 로고
    • Low glucose depletes glycan precursors, reduces site occupancy and galactosylation of a monoclonal antibody in CHO cell culture
    • [91] Villacrés, C., Tayi, V.S., Lattová, E., Perreault, H., Butler, M., Low glucose depletes glycan precursors, reduces site occupancy and galactosylation of a monoclonal antibody in CHO cell culture. Biotechnol. J., 2015, 1051–1066.
    • (2015) Biotechnol. J. , pp. 1051-1066
    • Villacrés, C.1    Tayi, V.S.2    Lattová, E.3    Perreault, H.4    Butler, M.5
  • 94
    • 84992110479 scopus 로고    scopus 로고
    • A rare schizophrenia risk variant of CACNA1I disrupts CaV3.3 channel activity
    • [94] Andrade, A., Hope, J., Allen, A., Yorgan, V., Lipscombe, D., Pan, J.Q., A rare schizophrenia risk variant of CACNA1I disrupts CaV3.3 channel activity. Sci. Rep., 2016, 34233.
    • (2016) Sci. Rep. , pp. 34233
    • Andrade, A.1    Hope, J.2    Allen, A.3    Yorgan, V.4    Lipscombe, D.5    Pan, J.Q.6
  • 95
    • 84863838923 scopus 로고    scopus 로고
    • N-glycosylation promotes the cell surface expression of Kv1.3 potassium channels
    • [95] Zhu, J., Yan, J., Thornhill, W.B., N-glycosylation promotes the cell surface expression of Kv1.3 potassium channels. FEBS J., 2012, 2632–2644.
    • (2012) FEBS J. , pp. 2632-2644
    • Zhu, J.1    Yan, J.2    Thornhill, W.B.3
  • 96
    • 0030953071 scopus 로고    scopus 로고
    • Dolichol-mediated enhanced protein N-glycosylation in experimental diabetes—a possible additional deleterious effect of hyperglycemia
    • [96] Bar-On, H., Nesher, G., Teitelbaum, A., Ziv, E., Dolichol-mediated enhanced protein N-glycosylation in experimental diabetes—a possible additional deleterious effect of hyperglycemia. J. Diabetes Complicat., 1997, 236–242.
    • (1997) J. Diabetes Complicat. , pp. 236-242
    • Bar-On, H.1    Nesher, G.2    Teitelbaum, A.3    Ziv, E.4
  • 98
    • 84904111497 scopus 로고    scopus 로고
    • Congenital disorders of glycosylation: new defects and still counting
    • [98] Scott, K., Gadomski, T., Kozicz, T., Morava, E., Congenital disorders of glycosylation: new defects and still counting. J. Inherit. Metab. Dis., 2014, 609–617.
    • (2014) J. Inherit. Metab. Dis. , pp. 609-617
    • Scott, K.1    Gadomski, T.2    Kozicz, T.3    Morava, E.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.