메뉴 건너뛰기




Volumn 22, Issue 46, 2016, Pages 6911-6917

Systems toxicology: Systematic approach to predict toxicity

Author keywords

Drug adverse effects; Network analysis; Predictive modeling; System pharmacology

Indexed keywords

BIOLOGICAL PHENOMENA AND FUNCTIONS CONCERNING THE ENTIRE ORGANISM; COMPUTER MODEL; DRUG EFFICACY; DRUG SAFETY; EXPERT SYSTEM; HUMAN; MACHINE LEARNING; PREDICTION; PRIORITY JOURNAL; QUANTITATIVE STRUCTURE ACTIVITY RELATION; REVIEW; TOXICOLOGY; ADVERSE DRUG REACTION; BIOLOGY; COMPUTER SIMULATION; DRUG DEVELOPMENT;

EID: 85012054785     PISSN: 13816128     EISSN: 18734286     Source Type: Journal    
DOI: 10.2174/1381612822666161003115629     Document Type: Review
Times cited : (10)

References (60)
  • 1
    • 18944401259 scopus 로고    scopus 로고
    • Elucidating mechanisms of druginduced toxicity
    • Liebler DC, Guengerich FP. Elucidating mechanisms of druginduced toxicity. Nat Rev Drug Discov 2005; 4(5): 410-20
    • (2005) Nat Rev Drug Discov , vol.4 , Issue.5 , pp. 410-420
    • Liebler, D.C.1    Guengerich, F.P.2
  • 3
    • 37149050857 scopus 로고    scopus 로고
    • Disease-modifying drugs and Parkinson’s disease
    • Allain H, Bentué-Ferrer D, Akwa Y. Disease-modifying drugs and Parkinson’s disease. Prog Neurobiol 2008; 84: 25-39
    • (2008) Prog Neurobiol , vol.84 , pp. 25-39
    • Allain, H.1    Bentué-Ferrer, D.2    Akwa, Y.3
  • 4
    • 84858195896 scopus 로고    scopus 로고
    • New pharmacological strategies for treatment of Alzheimer’s disease: Focus on disease modifying drugs
    • Salomone S, Caraci F, Leggio GM, Fedotova J, Drago F. New pharmacological strategies for treatment of Alzheimer’s disease: Focus on disease modifying drugs. Br J Clin Pharmacol 2012; 73(4): 504-17
    • (2012) Br J Clin Pharmacol , vol.73 , Issue.4 , pp. 504-517
    • Salomone, S.1    Caraci, F.2    Leggio, G.M.3    Fedotova, J.4    Drago, F.5
  • 5
    • 54249155522 scopus 로고    scopus 로고
    • Network pharmacology: The next paradigm in drug discovery
    • Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 2008; 4(11): 682-90
    • (2008) Nat Chem Biol , vol.4 , Issue.11 , pp. 682-690
    • Hopkins, A.L.1
  • 7
    • 84897528951 scopus 로고    scopus 로고
    • In Silico Toxicology — An Introduction
    • Cronin M, Madden J, Cambridge: Royal Society of Chemistry
    • Madden CC. In Silico Toxicology — An Introduction. In: Cronin M, Madden J, Eds. In silico toxicology: principles and application. Cambridge: Royal Society of Chemistry 2010; pp. 1-10
    • (2010) In Silico Toxicology: Principles and Application , pp. 1-10
    • Madden, C.C.1
  • 10
    • 0025863682 scopus 로고
    • Computer-prediction of possible toxic action from chemical-structure the derek system
    • Sanderson DM, Earnshaw CG. Computer-prediction of possible toxic action from chemical-structure the derek system. Hum Exp Toxicol 1991; 10(4): 261-73
    • (1991) Hum Exp Toxicol , vol.10 , Issue.4 , pp. 261-273
    • Sanderson, D.M.1    Earnshaw, C.G.2
  • 11
    • 18844446770 scopus 로고    scopus 로고
    • Toxicity testing: Creating a revolution based on new technologies
    • Bhogal N, Grindon C, Combes R, Balls M. Toxicity testing: Creating a revolution based on new technologies. Trends Biotechnol 2005; 23: 299-307
    • (2005) Trends Biotechnol , vol.23 , pp. 299-307
    • Bhogal, N.1    Grindon, C.2    Combes, R.3    Balls, M.4
  • 13
    • 0025083966 scopus 로고
    • A prospective toxicity evaluation (COMPACT) on 40 chemicals currently being tested by the National Toxicology Program
    • Lewis DF, Ioannides C, Parke DV. A prospective toxicity evaluation (COMPACT) on 40 chemicals currently being tested by the National Toxicology Program. Mutagenesis 1990; 5(5): 433-5
    • (1990) Mutagenesis , vol.5 , Issue.5 , pp. 433-435
    • Lewis, D.F.1    Ioannides, C.2    Parke, D.V.3
  • 15
    • 30144443169 scopus 로고    scopus 로고
    • Systems-ADME/Tox: Resources and network approaches
    • Ekins S. Systems-ADME/Tox: Resources and network approaches. J Pharmacol Toxicol Methods 2006; 53: 38-66
    • (2006) J Pharmacol Toxicol Methods , vol.53 , pp. 38-66
    • Ekins, S.1
  • 16
    • 15944425080 scopus 로고    scopus 로고
    • Techniques: Application of systems biology to absorption, distribution, metabolism, excretion and toxicity
    • Ekins S, Nikolsky Y, Nikolskaya T. Techniques: Application of systems biology to absorption, distribution, metabolism, excretion and toxicity. Trends Pharmacol Sci 2005; 26: 202-9
    • (2005) Trends Pharmacol Sci , vol.26 , pp. 202-209
    • Ekins, S.1    Nikolsky, Y.2    Nikolskaya, T.3
  • 18
    • 9444256954 scopus 로고    scopus 로고
    • Toxicogenomics and systems toxicology: Aims and prospects
    • Waters M, Fostel J. Toxicogenomics and systems toxicology: aims and prospects. Nat Rev Genet 2004; 5(12): 936-48
    • (2004) Nat Rev Genet , vol.5 , Issue.12 , pp. 936-948
    • Waters, M.1    Fostel, J.2
  • 19
    • 70449528780 scopus 로고    scopus 로고
    • In silico toxicology for the pharmaceutical sciences
    • Valerio LG. In silico toxicology for the pharmaceutical sciences. Toxicol Appl Pharmacol 2009; 241: 356-70
    • (2009) Toxicol Appl Pharmacol , vol.241 , pp. 356-370
    • Valerio, L.G.1
  • 20
    • 40949159249 scopus 로고    scopus 로고
    • An evaluation of global QSAR models for the prediction of the toxicity of phenols to Tetrahymena pyriformis
    • Enoch SJ, Cronin MTD, Schultz TW, Madden JC. An evaluation of global QSAR models for the prediction of the toxicity of phenols to Tetrahymena pyriformis. Chemosphere 2008; 71(7): 1225-32
    • (2008) Chemosphere , vol.71 , Issue.7 , pp. 1225-1232
    • Enoch, S.J.1    Cronin, M.2    Schultz, T.W.3    Madden, J.C.4
  • 22
    • 0642336892 scopus 로고    scopus 로고
    • Ecotoxicity prediction using mechanismand nonmechanism-based QSARs: A preliminary study
    • Ren S. Ecotoxicity prediction using mechanismand nonmechanism-based QSARs: A preliminary study. Chemosphere 2003; 53(9): 1053-65
    • (2003) Chemosphere , vol.53 , Issue.9 , pp. 1053-1065
    • Ren, S.1
  • 23
    • 84918807466 scopus 로고    scopus 로고
    • OpenVirtualToxLab-A platform for generating and exchanging in silico toxicity data
    • Vedani A, Dobler M, Hu Z, Smieko M. OpenVirtualToxLab-A platform for generating and exchanging in silico toxicity data. Toxicol Lett 2015; 232(2): 519-32
    • (2015) Toxicol Lett , vol.232 , Issue.2 , pp. 519-532
    • Vedani, A.1    Dobler, M.2    Hu, Z.3    Smieko, M.4
  • 24
    • 84865485155 scopus 로고    scopus 로고
    • ToxAlerts: A web server of structural alerts for toxic chemicals and compounds with potential adverse reactions
    • Sushko I, Salmina E, Potemkin VA, Poda G, Tetko I V. ToxAlerts: A web server of structural alerts for toxic chemicals and compounds with potential adverse reactions. J Chem Inf Mode 2012; 52(8): 2310-6
    • (2012) J Chem Inf Mode , vol.52 , Issue.8 , pp. 2310-2316
    • Sushko, I.1    Salmina, E.2    Potemkin, V.A.3    Poda, G.4    Tetko, I.V.5
  • 25
    • 0042355457 scopus 로고    scopus 로고
    • In silico prediction of drug toxicity
    • Dearden C.J. In silico prediction of drug toxicity. J Comput aided Mol Des 2003; 17(5): 119-27
    • (2003) J Comput Aided Mol Des , vol.17 , Issue.5 , pp. 119-127
    • Dearden, C.J.1
  • 28
    • 39049167553 scopus 로고    scopus 로고
    • Computational chemistry approach for the early detection of drug-induced idiosyncratic liver toxicity
    • Cruz-Monteagudo M, Cordeiro MNDS, Borges F. Computational chemistry approach for the early detection of drug-induced idiosyncratic liver toxicity. J Comput Chem 2008; 29(4): 533-49
    • (2008) J Comput Chem , vol.29 , Issue.4 , pp. 533-549
    • Cruz-Monteagudo, M.1    Cordeiro, M.2    Borges, F.3
  • 29
    • 0842280719 scopus 로고    scopus 로고
    • The utility of structure-activity relationship (SAR) models for prediction and covariate selection in developmental toxicity: Comparative analysis of logistic regression and decision tree models
    • Arena VC, Sussman NB, Mazumdar S, Yu S, Macina OT. The utility of structure-activity relationship (SAR) models for prediction and covariate selection in developmental toxicity: comparative analysis of logistic regression and decision tree models. SAR QSAR Environ Res 2004; 15(1): 1-18
    • (2004) SAR QSAR Environ Res , vol.15 , Issue.1 , pp. 1-18
    • Arena, V.C.1    Sussman, N.B.2    Mazumdar, S.3    Yu, S.4    Macina, O.T.5
  • 30
    • 84930643618 scopus 로고    scopus 로고
    • Acute toxicity-supported chronic toxicity prediction: A k-nearest neighbor coupled readacross strategy
    • Chavan S, Friedman R, Nicholls IA. Acute toxicity-supported chronic toxicity prediction: a k-nearest neighbor coupled readacross strategy. Int J Mol Sci 2015; 16(5): 11659-77
    • (2015) Int J Mol Sci , vol.16 , Issue.5 , pp. 11659-11677
    • Chavan, S.1    Friedman, R.2    Nicholls, I.A.3
  • 31
    • 84906997312 scopus 로고    scopus 로고
    • Adverse drug reaction prediction using scores produced by large-scale drug-protein target docking on high-performance computing machines
    • Labute MX, Zhang X, Lenderman J, Bennion BJ, Wong SE, Lightstone FC. Adverse drug reaction prediction using scores produced by large-scale drug-protein target docking on high-performance computing machines. PLoS One 2014; 9(9): e106298
    • (2014) Plos One , vol.9 , Issue.9
    • Labute, M.X.1    Zhang, X.2    Lenderman, J.3    Bennion, B.J.4    Wong, S.E.5    Lightstone, F.C.6
  • 32
    • 84896366331 scopus 로고    scopus 로고
    • Systems toxicology: From basic research to risk assessment
    • Sturla SJ, Boobis AR, Fitzgerald RE, et al. Systems toxicology: From basic research to risk assessment. Chem Res Toxicol 2014; 27(3): 314-29
    • (2014) Chem Res Toxicol , vol.27 , Issue.3 , pp. 314-329
    • Sturla, S.J.1    Boobis, A.R.2    Fitzgerald, R.E.3
  • 33
    • 45249108875 scopus 로고    scopus 로고
    • Systems toxicology: Using the systems biology approach to assess chemical pollutants in the environment
    • Handy RD. Systems toxicology: using the systems biology approach to assess chemical pollutants in the environment. Adv Exp Biol 2008; 2: 249-81
    • (2008) Adv Exp Biol , vol.2 , pp. 249-281
    • Handy, R.D.1
  • 34
    • 79959380528 scopus 로고    scopus 로고
    • Predicting adverse drug reactions using publicly available PubChem BioAssay data
    • Pouliot Y, Chiang AP, Butte AJ. Predicting adverse drug reactions using publicly available PubChem BioAssay data. Clin Pharmacol Ther 2011; 90(1): 90-9
    • (2011) Clin Pharmacol Ther , vol.90 , Issue.1 , pp. 90-99
    • Pouliot, Y.1    Chiang, A.P.2    Butte, A.J.3
  • 35
    • 84864801155 scopus 로고    scopus 로고
    • Drug discovery in the age of systems biology: The rise of computational approaches for data integration
    • Iskar M, Zeller G, Zhao XM, van Noort V, Bork P. Drug discovery in the age of systems biology: The rise of computational approaches for data integration. Curr Opin Biotechnol 2012; 23: 609-16
    • (2012) Curr Opin Biotechnol , vol.23 , pp. 609-616
    • Iskar, M.1    Zeller, G.2    Zhao, X.M.3    Van Noort, V.4    Bork, P.5
  • 36
    • 84872243783 scopus 로고    scopus 로고
    • Systems pharmacology to predict drug toxicity: Integration across levels of biological organization
    • Bai JPF, Abernethy DR. Systems pharmacology to predict drug toxicity: integration across levels of biological organization. Annu Rev Pharmacol Toxicol 2013; 53(1): 451-73
    • (2013) Annu Rev Pharmacol Toxicol , vol.53 , Issue.1 , pp. 451-473
    • Bai, J.1    Abernethy, D.R.2
  • 37
    • 84949235014 scopus 로고    scopus 로고
    • ARWAR: A network approach for predicting Adverse Drug Reactions
    • Rahmani H, Weiss G, Méndez-Lucio O, Bender A. ARWAR: A network approach for predicting Adverse Drug Reactions. Comput Biol Med 2016; 68: 101-8
    • (2016) Comput Biol Med , vol.68 , pp. 101-108
    • Rahmani, H.1    Weiss, G.2    Méndez-Lucio, O.3    Bender, A.4
  • 38
    • 84862510972 scopus 로고    scopus 로고
    • Large-scale prediction and testing of drug activity on side-effect targets
    • Lounkine E, Keiser MJ, Whitebread S, et al. Large-scale prediction and testing of drug activity on side-effect targets. Nature 2012; 486(7403): 361-7
    • (2012) Nature , vol.486 , Issue.7403 , pp. 361-367
    • Lounkine, E.1    Keiser, M.J.2    Whitebread, S.3
  • 39
    • 67049100457 scopus 로고    scopus 로고
    • Drug discovery using chemical systems biology: Identification of the protein-ligand binding network to explain the side effects of CETP inhibitors
    • Xie LL, Li J, Xie LL, Bourne PE. Drug discovery using chemical systems biology: Identification of the protein-ligand binding network to explain the side effects of CETP inhibitors. PLoS Comput Biol 2009; 5(5): e1000387
    • (2009) Plos Comput Biol , vol.5 , Issue.5
    • Xie, L.L.1    Li, J.2    Xie, L.L.3    Bourne, P.E.4
  • 40
    • 77957954504 scopus 로고    scopus 로고
    • A structure-based approach for mapping adverse drug reactions to the perturbation of underlying biological pathways
    • Wallach I, Jaitly N, Lilien R. A structure-based approach for mapping adverse drug reactions to the perturbation of underlying biological pathways. PLoS One 2010; 5(8): e12063
    • (2010) Plos One , vol.5 , Issue.8
    • Wallach, I.1    Jaitly, N.2    Lilien, R.3
  • 41
    • 65249092595 scopus 로고    scopus 로고
    • Gaining insight into off-target mediated effects of drug candidates with a comprehensive systems chemical biology analysis
    • Scheiber J, Chen B, Milik M, et al. Gaining insight into off-target mediated effects of drug candidates with a comprehensive systems chemical biology analysis. J Chem Inf Model 2009; 49(2): 308-17
    • (2009) J Chem Inf Model , vol.49 , Issue.2 , pp. 308-317
    • Scheiber, J.1    Chen, B.2    Milik, M.3
  • 42
    • 79952394490 scopus 로고    scopus 로고
    • An algorithmic framework for predicting side effects of drugs
    • Atias N, Sharan R. An algorithmic framework for predicting side effects of drugs. J Comput Biol 2011; 18(3): 207-18
    • (2011) J Comput Biol , vol.18 , Issue.3 , pp. 207-218
    • Atias, N.1    Sharan, R.2
  • 43
    • 84255172340 scopus 로고    scopus 로고
    • Predicting adverse drug events using pharmacological network models
    • Cami A, Arnold A, Manzi S, Reis B. Predicting adverse drug events using pharmacological network models. Sci Transl Med 2011; 3(114): 114-27
    • (2011) Sci Transl Med , vol.3 , Issue.114 , pp. 114-127
    • Cami, A.1    Arnold, A.2    Manzi, S.3    Reis, B.4
  • 44
    • 84866460840 scopus 로고    scopus 로고
    • Relating drug-protein interaction network with drug side effects
    • Mizutani S, Pauwels E, Stoven V, Goto S, Yamanishi Y. Relating drug-protein interaction network with drug side effects. Bioinformatics 2012; 28(18): 522-8
    • (2012) Bioinformatics , vol.28 , Issue.18 , pp. 522-528
    • Mizutani, S.1    Pauwels, E.2    Stoven, V.3    Goto, S.4    Yamanishi, Y.5
  • 45
    • 84901236897 scopus 로고    scopus 로고
    • Integrating systems biology sources illuminates drug action
    • Gottlieb A, Altman RB. Integrating systems biology sources illuminates drug action. Clin Pharmacol Ther 2014; 95(2): 1-7
    • (2014) Clin Pharmacol Ther , vol.95 , Issue.2 , pp. 1-7
    • Gottlieb, A.1    Altman, R.B.2
  • 46
    • 84872523213 scopus 로고    scopus 로고
    • Clarifying off-target effects for torcetrapib using network pharmacology and reverse docking approach
    • Fan S, Geng Q, Pan Z, et al. Clarifying off-target effects for torcetrapib using network pharmacology and reverse docking approach. BMC Syst Biol 2012; 6(38): 152
    • (2012) BMC Syst Biol , vol.6 , Issue.38 , pp. 152
    • Fan, S.1    Geng, Q.2    Pan, Z.3
  • 47
    • 84857644340 scopus 로고    scopus 로고
    • Drug-target network in myocardial infarction reveals multiple side effects of unrelated drugs
    • Azuaje FJ, Zhang L, Devaux Y, Wagner DR. Drug-target network in myocardial infarction reveals multiple side effects of unrelated drugs. Sci Rep 2011; 1: 1-10
    • (2011) Sci Rep , vol.1 , pp. 1-10
    • Azuaje, F.J.1    Zhang, L.2    Devaux, Y.3    Wagner, D.R.4
  • 48
    • 79960238966 scopus 로고    scopus 로고
    • Network neighbors of drug targets contribute to drug side-effect similarity
    • Brouwers L, Iskar M, Zeller G, van Noort V, Bork P. Network neighbors of drug targets contribute to drug side-effect similarity. PLoS One 2011; 6(7): e22187
    • (2011) Plos One , vol.6 , Issue.7
    • Brouwers, L.1    Iskar, M.2    Zeller, G.3    Van Noort, V.4    Bork, P.5
  • 49
    • 84255163374 scopus 로고    scopus 로고
    • Predicting adverse side effects of drugs
    • Huang L-C, Wu X, Chen JY. Predicting adverse side effects of drugs. BMC Genomics 2011; 12(Suppl 5): S11
    • (2011) BMC Genomics , vol.12
    • Huang, L.-C.1    Wu, X.2    Chen, J.Y.3
  • 50
    • 84875992866 scopus 로고    scopus 로고
    • Systematic prediction of pharmacodynamic drug-drug interactions through protein-protein-interaction network
    • Huang J, Niu C, Green CD, Yang L, Mei H, Han JDJ. Systematic prediction of pharmacodynamic drug-drug interactions through protein-protein-interaction network. PLoS Comput Biol 2013; 9(3): e1002998
    • (2013) Plos Comput Biol , vol.9 , Issue.3
    • Huang, J.1    Niu, C.2    Green, C.D.3    Yang, L.4    Mei, H.5    Han, J.D.J.6
  • 51
    • 84896508914 scopus 로고    scopus 로고
    • Predicting drugtarget interactions using probabilistic matrix factorization
    • Cobanoglu MC, Liu C, Hu F, Oltvai ZN, Bahar I. Predicting drugtarget interactions using probabilistic matrix factorization. J Chem Inf Model 2013; 53(12): 3399-409
    • (2013) J Chem Inf Model , vol.53 , Issue.12 , pp. 3399-3409
    • Cobanoglu, M.C.1    Liu, C.2    Hu, F.3    Oltvai, Z.N.4    Bahar, I.5
  • 52
    • 84944729372 scopus 로고    scopus 로고
    • Large-scale predictive drug safety: From structural alerts to biological mechanisms
    • Garcia-Serna R, Vidal D, Remez N, Mestres J. Large-scale predictive drug safety: from structural alerts to biological mechanisms. Chem Res Toxicol 2015; 28(10): 1875-87
    • (2015) Chem Res Toxicol , vol.28 , Issue.10 , pp. 1875-1887
    • Garcia-Serna, R.1    Vidal, D.2    Remez, N.3    Mestres, J.4
  • 53
    • 84964669273 scopus 로고    scopus 로고
    • The in vitro pharmacological profile of drugs as a proxy indicator of potential in vivo organ toxicities
    • Remez N, Garcia-Serna R, Vidal D, Mestres J. The in vitro pharmacological profile of drugs as a proxy indicator of potential in vivo organ toxicities. Chem Res Toxicol 2016; 29(4): 637-48
    • (2016) Chem Res Toxicol , vol.29 , Issue.4 , pp. 637-648
    • Remez, N.1    Garcia-Serna, R.2    Vidal, D.3    Mestres, J.4
  • 54
    • 84881116194 scopus 로고    scopus 로고
    • Systematic identification of proteins that elicit drug side effects
    • Kuhn M, Al Banchaabouchi M, Campillos M, et al. Systematic identification of proteins that elicit drug side effects. Mol Syst Biol 2014; 9(1): 663
    • (2014) Mol Syst Biol , vol.9 , Issue.1 , pp. 663
    • Kuhn, M.1    Al Banchaabouchi, M.2    Campillos, M.3
  • 55
    • 79955969387 scopus 로고    scopus 로고
    • Predicting drug side-effect profiles: A chemical fragment-based approach
    • Pauwels E, Stoven V, Yamanishi Y. Predicting drug side-effect profiles: a chemical fragment-based approach. BMC Bioinformatics 2011; 12(1): 169
    • (2011) BMC Bioinformatics , vol.12 , Issue.1 , pp. 169
    • Pauwels, E.1    Stoven, V.2    Yamanishi, Y.3
  • 56
    • 85012038673 scopus 로고    scopus 로고
    • In silico assessment of adverse drug reactions and associated mechanisms
    • Ivanov SM, Lagunin AA, Poroikov V V. In silico assessment of adverse drug reactions and associated mechanisms. Drug Discov Today 2015; 1: 1-14
    • (2015) Drug Discov Today , vol.1 , pp. 1-14
    • Ivanov, S.M.1    Lagunin, A.A.2    Poroikov, V.V.3
  • 58
    • 84959548116 scopus 로고    scopus 로고
    • Advances in Computational Structure-Based Drug Design and Application in Drug Discovery
    • Wang T, Wu MB, Zhang RH, et al. Advances in Computational Structure-Based Drug Design and Application in Drug Discovery. Curr Top Med Chem 2016; 16(9): 901-16
    • (2016) Curr Top Med Chem , vol.16 , Issue.9 , pp. 901-916
    • Wang, T.1    Wu, M.B.2    Zhang, R.H.3
  • 59
    • 67649259165 scopus 로고    scopus 로고
    • Computational disease modeling fact or fiction? BMC Syst Biol
    • Tegnér JN, Compte A, Auffray C, et al. Computational disease modeling fact or fiction? BMC Syst Biol. BioMed Central 2009; 3(1): 56
    • (2009) Biomed Central , vol.3 , Issue.1 , pp. 56
    • Tegnér, J.N.1    Compte, A.2    Auffray, C.3
  • 60
    • 84857647761 scopus 로고    scopus 로고
    • Workflow for generating competing hypothesis from models with parameter uncertainty
    • mez-Cabrero D, Compte A, Tegner J. Workflow for generating competing hypothesis from models with parameter uncertainty. Interf Focus 2011; 1(3): 438-49
    • (2011) Interf Focus , vol.1 , Issue.3 , pp. 438-449
    • Mez-Cabrero, D.1    Compte, A.2    Tegner, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.