메뉴 건너뛰기




Volumn 4, Issue 5, 2016, Pages

Murine monocytes: Origins, subsets, fates, and functions

Author keywords

[No Author keywords available]

Indexed keywords

ANIMAL; BLOOD; CYTOLOGY; DENDRITIC CELL; MACROPHAGE; MONOCYTE; MOUSE; PHYSIOLOGY;

EID: 85011664447     PISSN: None     EISSN: 21650497     Source Type: Journal    
DOI: 10.1128/microbiolspec.MCHD-0033-2016     Document Type: Article
Times cited : (49)

References (107)
  • 1
    • 34247103287 scopus 로고    scopus 로고
    • Drosophila hemopoiesis and cellular immunity
    • Williams MJ. 2007. Drosophila hemopoiesis and cellular immunity. J Immunol 178:4711-4716.
    • (2007) J Immunol , vol.178 , pp. 4711-4716
    • Williams, M.J.1
  • 17
    • 84904394558 scopus 로고    scopus 로고
    • Lymphoid tissue and plasmacytoid dendritic cells and macrophages do not share a common macrophagedendritic cell-restricted progenitor
    • Sathe P, Metcalf D, Vremec D, Naik SH, Langdon WY, Huntington ND, Wu L, Shortman K. 2014. Lymphoid tissue and plasmacytoid dendritic cells and macrophages do not share a common macrophagedendritic cell-restricted progenitor. Immunity 41:104-115.
    • (2014) Immunity , vol.41 , pp. 104-115
    • Sathe, P.1    Vremec, D.2    Naik, S.H.3    Langdon, W.Y.4    Huntington, N.D.5    Wu, L.6    Shortman, K.7
  • 18
    • 33645902493 scopus 로고    scopus 로고
    • Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2
    • Serbina NV, Pamer EG. 2006. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol 7:311-317.
    • (2006) Nat Immunol , vol.7 , pp. 311-317
    • Serbina, N.V.1    Pamer, E.G.2
  • 19
    • 79954591540 scopus 로고    scopus 로고
    • Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating Toll-like receptor ligands
    • Shi C, Jia T, Mendez-Ferrer S, Hohl TM, Serbina NV, Lipuma L, Leiner I, Li MO, Frenette PS, Pamer EG. 2011. Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating Toll-like receptor ligands. Immunity 34:590-601.
    • (2011) Immunity , vol.34 , pp. 590-601
    • Shi, C.1    Mendez-Ferrer, S.2    Hohl, T.M.3    Serbina, N.V.4    Lipuma, L.5    Leiner, I.6    Li, M.O.7    Frenette, P.S.8    Pamer, E.G.9
  • 20
    • 80355146868 scopus 로고    scopus 로고
    • Monocyte recruitment during infection and inflammation
    • Shi C, Pamer EG. 2011. Monocyte recruitment during infection and inflammation. Nat Rev Immunol 11:762-774.
    • (2011) Nat Rev Immunol , vol.11 , pp. 762-774
    • Shi, C.1    Pamer, E.G.2
  • 22
    • 84870886034 scopus 로고    scopus 로고
    • Dysregulated hematopoietic stem and progenitor cell activity promotes interleukin-23-driven chronic intestinal inflammation
    • Griseri T, McKenzie BS, Schiering C, Powrie F. 2012. Dysregulated hematopoietic stem and progenitor cell activity promotes interleukin-23-driven chronic intestinal inflammation. Immunity 37:1116-1129.
    • (2012) Immunity , vol.37 , pp. 1116-1129
    • Griseri, T.1    Schiering, C.2    Powrie, F.3
  • 24
    • 0029802084 scopus 로고    scopus 로고
    • The marginal blood pool of the rat contains not only granulocytes, but also lymphocytes, NK-cells and monocytes: a second intravascular compartment, its cellular composition, adhesion molecule expression and interaction with the peripheral blood pool
    • Klonz A, Wonigeit K, Pabst R, Westermann J. 1996. The marginal blood pool of the rat contains not only granulocytes, but also lymphocytes, NK-cells and monocytes: a second intravascular compartment, its cellular composition, adhesion molecule expression and interaction with the peripheral blood pool. Scand J Immunol 44:461-469.
    • (1996) Scand J Immunol , vol.44 , pp. 461-469
    • Klonz, A.1    Pabst, R.2    Westermann, J.3
  • 27
    • 79956080152 scopus 로고    scopus 로고
    • Trained immunity: a memory for innate host defense
    • Netea MG, Quintin J, van der Meer JW. 2011. Trained immunity: a memory for innate host defense. Cell Host Microbe. 9:355-361.
    • (2011) Cell Host Microbe , vol.9 , pp. 355-361
    • Netea, M.G.1    van der Meer, J.W.2
  • 31
    • 0024450489 scopus 로고
    • Identification and characterization of a novel monocyte subpopulation in human peripheral blood
    • Passlick B, Flieger D, Ziegler-Heitbrock HW. 1989. Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood 74:2527-2534.
    • (1989) Blood , vol.74 , pp. 2527-2534
    • Passlick, B.1    Ziegler-Heitbrock, H.W.2
  • 32
    • 84941286399 scopus 로고    scopus 로고
    • Blood monocytes and their subsets: established features and open questions
    • Ziegler-Heitbrock L. 2015. Blood monocytes and their subsets: established features and open questions. Front Immunol 6:423. doi:10.3389/fimmu.2015.00423.
    • (2015) Front Immunol , vol.6 , pp. 423
    • Ziegler-Heitbrock, L.1
  • 33
    • 0035158575 scopus 로고    scopus 로고
    • Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues
    • Palframan RT, Jung S, Cheng G, Weninger W, Luo Y, Dorf M, Littman DR, Rollins BJ, Zweerink H, Rot A, von Andrian UH. 2001. Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J Exp Med 194:1361-1373.
    • (2001) J Exp Med , vol.194 , pp. 1361-1373
    • Palframan, R.T.1    Cheng, G.2    Weninger, W.3    Luo, Y.4    Dorf, M.5    Littman, D.R.6    Rollins, B.J.7    Zweerink, H.8    Rot, A.9    von Andrian, U.H.10
  • 34
    • 0037963473 scopus 로고    scopus 로고
    • Blood monocytes consist of two principal subsets with distinct migratory properties
    • Geissmann F, Jung S, Littman DR. 2003. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19:71-82.
    • (2003) Immunity , vol.19 , pp. 71-82
    • Geissmann, F.1    Littman, D.R.2
  • 37
  • 41
    • 45949099415 scopus 로고    scopus 로고
    • Kruppel-like factor 4 is essential for inflammatory monocyte differentiation in vivo
    • Alder JK, Georgantas RW, III, Hildreth RL, Kaplan IM, Morisot S, Yu X, McDevitt M, Civin CI. 2008. Kruppel-like factor 4 is essential for inflammatory monocyte differentiation in vivo. J Immunol 180:5645-5652.
    • (2008) J Immunol , vol.180 , pp. 5645-5652
    • Alder, J.K.1    Hildreth, R.L.2    Kaplan, I.M.3    Morisot, S.4    Yu, X.5    McDevitt, M.6    Civin, C.I.7
  • 42
    • 80051959957 scopus 로고    scopus 로고
    • The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C-monocytes
    • Hanna RN, Carlin LM, Hubbeling HG, Nackiewicz D, Green AM, Punt JA, Geissmann F, Hedrick CC. 2011. The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C-monocytes. Nat Immunol 12:778-785.
    • (2011) Nat Immunol , vol.12 , pp. 778-785
    • Hanna, R.N.1    Hubbeling, H.G.2    Nackiewicz, D.3    Green, A.M.4    Punt, J.A.5    Geissmann, F.6    Hedrick, C.C.7
  • 44
    • 84920724791 scopus 로고    scopus 로고
    • Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment
    • Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, Merad M, Jung S, Amit I. 2014. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159:1312-1326.
    • (2014) Cell , vol.159 , pp. 1312-1326
    • Lavin, Y.1    Blecher-Gonen, R.2    David, E.3    Keren-Shaul, H.4    Merad, M.5    Jung, S.6    Amit, I.7
  • 45
    • 84964754401 scopus 로고    scopus 로고
    • MicroRNAs as regulatory elements in immune system logic
    • Mehta A, Baltimore D. 2016. MicroRNAs as regulatory elements in immune system logic. Nat Rev Immunol 16:279-294.
    • (2016) Nat Rev Immunol , vol.16 , pp. 279-294
    • Mehta, A.1    Baltimore, D.2
  • 46
    • 84951304572 scopus 로고    scopus 로고
    • The role of the local environment and epigenetics in shaping macrophage identity and their effect on tissue homeostasis
    • Amit I, Winter DR, Jung S. 2016. The role of the local environment and epigenetics in shaping macrophage identity and their effect on tissue homeostasis. Nat Immunol 17:18-25.
    • (2016) Nat Immunol , vol.17 , pp. 18-25
    • Amit, I.1    Jung, S.2
  • 48
    • 84928705633 scopus 로고    scopus 로고
    • Each cell counts: hematopoiesis and immunity research in the era of single cell genomics
    • Jaitin DA, Keren-Shaul H, Elefant N, Amit I. 2015. Each cell counts: hematopoiesis and immunity research in the era of single cell genomics. Semin Immunol 27:67-71.
    • (2015) Semin Immunol , vol.27 , pp. 67-71
    • Jaitin, D.A.1    Elefant, N.2    Amit, I.3
  • 49
    • 84946554097 scopus 로고    scopus 로고
    • Transcriptional regulation of mononuclear phagocyte development
    • Tussiwand R, Gautier EL. 2015. Transcriptional regulation of mononuclear phagocyte development. Front Immunol 6:533. doi:10.3389/fimmu.2015.00533.
    • (2015) Front Immunol , vol.6 , pp. 533
    • Tussiwand, R.1    Gautier, E.L.2
  • 50
    • 84951320292 scopus 로고    scopus 로고
    • Molecular control of activation and priming in macrophages
    • Glass CK, Natoli G. 2016. Molecular control of activation and priming in macrophages. Nat Immunol 17:26-33.
    • (2016) Nat Immunol , vol.17 , pp. 26-33
    • Glass, C.K.1    Natoli, G.2
  • 51
    • 35348875999 scopus 로고    scopus 로고
    • Transcriptional control of granulocyte and monocyte development
    • Friedman AD. 2007. Transcriptional control of granulocyte and monocyte development. Oncogene 26:6816-6828.
    • (2007) Oncogene , vol.26 , pp. 6816-6828
    • Friedman, A.D.1
  • 53
    • 84908507825 scopus 로고    scopus 로고
    • Molecular control of monocyte development
    • Terry RL, Miller SD. 2014. Molecular control of monocyte development. Cell Immunol 291:16-21.
    • (2014) Cell Immunol , vol.291 , pp. 16-21
    • Terry, R.L.1    Miller, S.D.2
  • 56
    • 0014325451 scopus 로고
    • The origin and kinetics of mononuclear phagocytes
    • van Furth R, Cohn ZA. 1968. The origin and kinetics of mononuclear phagocytes. J Exp Med 128:415-435.
    • (1968) J Exp Med , vol.128 , pp. 415-435
    • van Furth, R.1    Cohn, Z.A.2
  • 57
    • 0037625155 scopus 로고    scopus 로고
    • TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection
    • Serbina NV, Salazar-Mather TP, Biron CA, Kuziel WA, Pamer EG. 2003. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19:59-70.
    • (2003) Immunity , vol.19 , pp. 59-70
    • Serbina, N.V.1    Biron, C.A.2    Kuziel, W.A.3    Pamer, E.G.4
  • 58
    • 84883830692 scopus 로고    scopus 로고
    • Inflammatory dendritic cells in mice and humans
    • Segura E, Amigorena S. 2013. Inflammatory dendritic cells in mice and humans. Trends Immunol 34:440-445.
    • (2013) Trends Immunol , vol.34 , pp. 440-445
    • Segura, E.1    Amigorena, S.2
  • 59
    • 84876800337 scopus 로고    scopus 로고
    • Macrophage biology in development, homeostasis and disease
    • Wynn TA, Chawla A, Pollard JW. 2013. Macrophage biology in development, homeostasis and disease. Nature 496:445-455.
    • (2013) Nature , vol.496 , pp. 445-455
    • Wynn, T.A.1    Pollard, J.W.2
  • 60
    • 84884375843 scopus 로고    scopus 로고
    • A close encounter of the third kind: monocyte-derived cells
    • Mildner A, Yona S, Jung S. 2013. A close encounter of the third kind: monocyte-derived cells. Adv Immunol 120:69-103.
    • (2013) Adv Immunol , vol.120 , pp. 69-103
    • Mildner, A.1    Jung, S.2
  • 62
    • 0028289244 scopus 로고
    • Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor a
    • Sallusto F, Lanzavecchia A. 1994. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor a. J Exp Med 179:1109-1118.
    • (1994) J Exp Med , vol.179 , pp. 1109-1118
    • Sallusto, F.1    Lanzavecchia, A.2
  • 66
    • 84875528275 scopus 로고    scopus 로고
    • The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting
    • Merad M, Sathe P, Helft J, Miller J, Mortha A. 2013. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 31:563-604.
    • (2013) Annu Rev Immunol , vol.31 , pp. 563-604
    • Merad, M.1    Helft, J.2    Miller, J.3    Mortha, A.4
  • 67
    • 84900461408 scopus 로고    scopus 로고
    • Development and function of dendritic cell subsets
    • Mildner A, Jung S. 2014. Development and function of dendritic cell subsets. Immunity 40:642-656.
    • (2014) Immunity , vol.40 , pp. 642-656
    • Mildner, A.1    Jung, S.2
  • 68
    • 73849152201 scopus 로고    scopus 로고
    • Monocytes: subsets, origins, fates and functions
    • Yona S, Jung S. 2010. Monocytes: subsets, origins, fates and functions. Curr Opin Hematol 17:53-59.
    • (2010) Curr Opin Hematol , vol.17 , pp. 53-59
    • Yona, S.1    Jung, S.2
  • 73
    • 84901358607 scopus 로고    scopus 로고
    • Monocytes and macrophages: developmental pathways and tissue homeostasis
    • Ginhoux F, Jung S. 2014. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 14:392-404.
    • (2014) Nat Rev Immunol , vol.14 , pp. 392-404
    • Ginhoux, F.1    Jung, S.2
  • 75
    • 84875830139 scopus 로고    scopus 로고
    • Intestinal macrophages: well educated exceptions from the rule
    • Zigmond E, Jung S. 2013. Intestinal macrophages: well educated exceptions from the rule. Trends Immunol 34:162-168.
    • (2013) Trends Immunol , vol.34 , pp. 162-168
    • Zigmond, E.1    Jung, S.2
  • 77
    • 84901368457 scopus 로고    scopus 로고
    • The origins and functions of dendritic cells and macrophages in the skin
    • Malissen B, Tamoutounour S, Henri S. 2014. The origins and functions of dendritic cells and macrophages in the skin. Nat Rev Immunol 14:417-428.
    • (2014) Nat Rev Immunol , vol.14 , pp. 417-428
    • Malissen, B.1    Henri, S.2
  • 78
    • 84960354901 scopus 로고    scopus 로고
    • Tissue-resident macrophage ontogeny and homeostasis
    • Ginhoux F, Guilliams M. 2016. Tissue-resident macrophage ontogeny and homeostasis. Immunity 44:439-449.
    • (2016) Immunity , vol.44 , pp. 439-449
    • Ginhoux, F.1    Guilliams, M.2
  • 79
    • 84940984138 scopus 로고    scopus 로고
    • Most tissue-resident macrophages except microglia are derived from fetal hematopoietic stem cells
    • Sheng J, Ruedl C, Karjalainen K. 2015. Most tissue-resident macrophages except microglia are derived from fetal hematopoietic stem cells. Immunity 43:382-393.
    • (2015) Immunity , vol.43 , pp. 382-393
    • Sheng, J.1    Karjalainen, K.2
  • 84
    • 77950365906 scopus 로고    scopus 로고
    • Nonresolving inflammation
    • Nathan C, Ding A. 2010. Nonresolving inflammation. Cell 140:871-882.
    • (2010) Cell , vol.140 , pp. 871-882
    • Nathan, C.1    Ding, A.2
  • 86
    • 84921284050 scopus 로고    scopus 로고
    • Liver-resident macrophage necroptosis orchestrates type 1 microbicidal inflammation and type-2-mediated tissue repair during bacterial infection
    • Blériot C, Dupuis T, Jouvion G, Eberl G, Disson O, Lecuit M. 2015. Liver-resident macrophage necroptosis orchestrates type 1 microbicidal inflammation and type-2-mediated tissue repair during bacterial infection. Immunity 42:145-158.
    • (2015) Immunity , vol.42 , pp. 145-158
    • Blériot, C.1    Jouvion, G.2    Eberl, G.3    Disson, O.4    Lecuit, M.5
  • 89
    • 80052246111 scopus 로고    scopus 로고
    • Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool
    • Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FMV. 2011. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci 14:1142-1149.
    • (2011) Nat Neurosci , vol.14 , pp. 1142-1149
    • Ajami, B.1    Krieger, C.2    McNagny, K.M.3    Rossi, F.M.V.4
  • 97
    • 34248997759 scopus 로고    scopus 로고
    • Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis
    • Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, Gherardi RK, Chazaud B. 2007. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 204:1057-1069.
    • (2007) J Exp Med , vol.204 , pp. 1057-1069
    • Arnold, L.1    Poron, F.2    Baba-Amer, Y.3    van Rooijen, N.4    Plonquet, A.5    Gherardi, R.K.6    Chazaud, B.7
  • 101
    • 84864152036 scopus 로고    scopus 로고
    • IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia
    • Wang Y, Szretter KJ, Vermi W, Gilfillan S, Rossini C, Cella M, Barrow AD, Diamond MS, Colonna M. 2012. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat Immunol 13:753-760.
    • (2012) Nat Immunol , vol.13 , pp. 753-760
    • Wang, Y.1    Vermi, W.2    Gilfillan, S.3    Rossini, C.4    Cella, M.5    Barrow, A.D.6    Diamond, M.S.7    Colonna, M.8
  • 102
  • 103
    • 0023404771 scopus 로고
    • Macrophages specifically regulate the concentration of their own growth factor in the circulation
    • Bartocci A, Mastrogiannis DS, Migliorati G, Stockert RJ, Wolkoff AW, Stanley ER. 1987. Macrophages specifically regulate the concentration of their own growth factor in the circulation. Proc Natl Acad Sci U S A 84:6179-6183.
    • (1987) Proc Natl Acad Sci U S A , vol.84 , pp. 6179-6183
    • Bartocci, A.1    Migliorati, G.2    Stockert, R.J.3    Wolkoff, A.W.4    Stanley, E.R.5
  • 105
    • 84887611153 scopus 로고    scopus 로고
    • Realtime in vivo imaging reveals the ability of monocytes to clear vascular amyloid beta
    • Michaud JP, Bellavance MA, Préfontaine P, Rivest S. 2013. Realtime in vivo imaging reveals the ability of monocytes to clear vascular amyloid beta. Cell Rep 5:646-653.
    • (2013) Cell Rep , vol.5 , pp. 646-653
    • Michaud, J.P.1    Préfontaine, P.2    Rivest, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.