-
1
-
-
77952359259
-
Semiconductor nanowire: what's next?
-
Yang P., Yan R., and Fardy M.: Semiconductor nanowire: what's next? Nano Lett. 10, 1529–1536 (2010).
-
(2010)
Nano Lett.
, vol.10
, pp. 1529-1536
-
-
Yang, P.1
Yan, R.2
Fardy, M.3
-
2
-
-
33645810366
-
Piezoelectric nanogenerators based on zinc oxide nanowire arrays
-
Wang Z.L. and Song J.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006).
-
(2006)
Science
, vol.312
, pp. 242-246
-
-
Wang, Z.L.1
Song, J.2
-
3
-
-
58149263348
-
Power generation with laterally packaged piezoelectric fine wires
-
Yang R., Qin Y., Dai L., and Wang Z.L.: Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 4, 34–39 (2009).
-
(2009)
Nat. Nanotechnol.
, vol.4
, pp. 34-39
-
-
Yang, R.1
Qin, Y.2
Dai, L.3
Wang, Z.L.4
-
4
-
-
79952597094
-
Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons
-
Qi Y., Kim J., Nguyen T.D., Lisko B., Purohit P.K., and McAlpine M.C.: Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett. 11, 1331–1336 (2011).
-
(2011)
Nano Lett.
, vol.11
, pp. 1331-1336
-
-
Qi, Y.1
Kim, J.2
Nguyen, T.D.3
Lisko, B.4
Purohit, P.K.5
McAlpine, M.C.6
-
5
-
-
58149290194
-
Elasticity size effects in ZnO nanowires—a combined experimental-computational approach
-
Agrawal R., Peng B., Gdoutos E.E., and Espinosa H.D.: Elasticity size effects in ZnO nanowires—a combined experimental-computational approach. Nano Lett. 8, 3668–3674 (2008).
-
(2008)
Nano Lett.
, vol.8
, pp. 3668-3674
-
-
Agrawal, R.1
Peng, B.2
Gdoutos, E.E.3
Espinosa, H.D.4
-
6
-
-
79851475624
-
Effect of growth orientation and diameter on the elasticity of GaN Nanowires. A combined in situ TEM and atomistic modeling investigation
-
Bernal R.A., Agrawal R., Peng B., Bertness K.A., Sanford N.A., Davydov A.V., and Espinosa H.D.: Effect of growth orientation and diameter on the elasticity of GaN Nanowires. A combined in situ TEM and atomistic modeling investigation. Nano Lett. 11, 548–555 (2011).
-
(2011)
Nano Lett.
, vol.11
, pp. 548-555
-
-
Bernal, R.A.1
Agrawal, R.2
Peng, B.3
Bertness, K.A.4
Sanford, N.A.5
Davydov, A.V.6
Espinosa, H.D.7
-
7
-
-
0000823384
-
Gallium nitride nanowire nanodevices
-
Huang Y., Duan X., Cui Y., and Lieber C.M.: Gallium nitride nanowire nanodevices. Nano Lett. 2, 101–104 (2002).
-
(2002)
Nano Lett.
, vol.2
, pp. 101-104
-
-
Huang, Y.1
Duan, X.2
Cui, Y.3
Lieber, C.M.4
-
8
-
-
0043143147
-
Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices
-
Zhong Z., Qian F., Wang D., and Lieber C.M.: Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Lett. 3, 343–346 (2003).
-
(2003)
Nano Lett.
, vol.3
, pp. 343-346
-
-
Zhong, Z.1
Qian, F.2
Wang, D.3
Lieber, C.M.4
-
9
-
-
0038137285
-
Single gallium nitride nanowire lasers
-
Johnson J.C., Choi H.-J., Knutsen K.P., Schaller R.D., Yang P., and Saykally R.J.: Single gallium nitride nanowire lasers. Nat. Mater. 1, 106–110 (2002).
-
(2002)
Nat. Mater.
, vol.1
, pp. 106-110
-
-
Johnson, J.C.1
Choi, H.-J.2
Knutsen, K.P.3
Schaller, R.D.4
Yang, P.5
Saykally, R.J.6
-
10
-
-
77950837003
-
GaN nanowire arrays for high-output nanogenerators
-
Huang C.-T., Song J., Lee W.-F., Ding Y., Gao Z., Hao Y., Chen L.-J., and Wang Z.L.: GaN nanowire arrays for high-output nanogenerators. J. Am. Chem. Soc. 132(13), 4766–4771 (2010).
-
(2010)
J. Am. Chem. Soc.
, vol.132
, Issue.13
, pp. 4766-4771
-
-
Huang, C.-T.1
Song, J.2
Lee, W.-F.3
Ding, Y.4
Gao, Z.5
Hao, Y.6
Chen, L.-J.7
Wang, Z.L.8
-
11
-
-
79751502625
-
An improved AFM cross-sectional method for piezoelectric nanostructures properties investigation: application to GaN nanowires
-
AMBIGUOUS (48 citations)
-
Xu X., Potie A., Songmuang R., Lee J., Bercu B., Baron T., Salem B., and Montes L.: An improved AFM cross-sectional method for piezoelectric nanostructures properties investigation: application to GaN nanowires. Nanotechnology 22, 105704 (2011).AMBIGUOUS (48 citations)
-
(2011)
Nanotechnology
, vol.22
-
-
Xu, X.1
Potie, A.2
Songmuang, R.3
Lee, J.4
Bercu, B.5
Baron, T.6
Salem, B.7
Montes, L.8
-
12
-
-
21544462077
-
Local poling of ferroelectric polymers by scanning force microscopy
-
Güthner P. and Dransfeld K.: Local poling of ferroelectric polymers by scanning force microscopy. Appl. Phys. Lett. 61, 1137 (1992).
-
(1992)
Appl. Phys. Lett.
, vol.61
-
-
Güthner, P.1
Dransfeld, K.2
-
13
-
-
0000060492
-
Nanoscale visualization and control of ferroelectric domains by atomic force microscopy
-
Kolosov O., Gruverman A., Hatano J., Takahashi K., and Tokumoto H.: Nanoscale visualization and control of ferroelectric domains by atomic force microscopy. Phys. Rev. Lett. 74, 4309–4312 (1995).
-
(1995)
Phys. Rev. Lett.
, vol.74
, pp. 4309-4312
-
-
Kolosov, O.1
Gruverman, A.2
Hatano, J.3
Takahashi, K.4
Tokumoto, H.5
-
14
-
-
2342507053
-
Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope
-
Zhao M.-H., Wang Z.-L., and Mao S.X.: Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope. Nano Lett. 4, 587–590 (2004).
-
(2004)
Nano Lett.
, vol.4
, pp. 587-590
-
-
Zhao, M.-H.1
Wang, Z.-L.2
Mao, S.X.3
-
15
-
-
34047164486
-
Ferroelectric domains and piezoelectricity in monocrystalline Pb(Zr,Ti)O3 nanowires
-
Wang J., Sandu C.S., Colla E., Wang Y., Ma W., Gysel R., Trodahl H.J., Setterb N., and Kuball M.: Ferroelectric domains and piezoelectricity in monocrystalline Pb(Zr,Ti)O3 nanowires. Appl. Phys. Lett. 90, 133107 (2007).
-
(2007)
Appl. Phys. Lett.
, vol.90
-
-
Wang, J.1
Sandu, C.S.2
Colla, E.3
Wang, Y.4
Ma, W.5
Gysel, R.6
Trodahl, H.J.7
Setterb, N.8
Kuball, M.9
-
16
-
-
0000823274
-
Ferroelectric properties of individual barium titanate nanowires investigated by scanned probe microscopy
-
Yun W.S., Urban J.J., Gu Q., and Park H.: Ferroelectric properties of individual barium titanate nanowires investigated by scanned probe microscopy. Nano Lett. 2, 447–450 (2002).
-
(2002)
Nano Lett.
, vol.2
, pp. 447-450
-
-
Yun, W.S.1
Urban, J.J.2
Gu, Q.3
Park, H.4
-
17
-
-
33846067667
-
One-dimensional ferroelectric monodomain formation in single crystalline BaTiO3 nanowire
-
Wang Z., Hu J., and Yua M.-F.: One-dimensional ferroelectric monodomain formation in single crystalline BaTiO3 nanowire. Appl. Phys. Lett. 89, 263119 (2006).17492058
-
(2006)
Appl. Phys. Lett.
, vol.89
-
-
Wang, Z.1
Hu, J.2
Yua, M.-F.3
-
18
-
-
68749109861
-
Uncovering nanoscale electromechanical heterogeneity in the subfibrillar structure of collagen fibrils responsible for the piezoelectricity of bone
-
Minary-Jolandan M. and Yu M.-F.: Uncovering nanoscale electromechanical heterogeneity in the subfibrillar structure of collagen fibrils responsible for the piezoelectricity of bone. ACS Nano 3, 1859–1863 (2009).
-
(2009)
ACS Nano
, vol.3
, pp. 1859-1863
-
-
Minary-Jolandan, M.1
Yu, M.-F.2
-
19
-
-
0037121636
-
Piezoresponse force microscopy for piezoelectric measurements of III-nitride materials
-
Rodriguez B.J., Gruverman A., Kingon A.I., and Nemanich R.J.: Piezoresponse force microscopy for piezoelectric measurements of III-nitride materials. J. Crystal Growth 246, 252–258 (2002).
-
(2002)
J. Crystal Growth
, vol.246
, pp. 252-258
-
-
Rodriguez, B.J.1
Gruverman, A.2
Kingon, A.I.3
Nemanich, R.J.4
-
20
-
-
79851500108
-
Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires. A first principles investigation
-
Agrawal R. and Espinosa H.D.: Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires. A first principles investigation. Nano Lett. 11(2), 786–790 (2011).
-
(2011)
Nano Lett.
, vol.11
, Issue.2
, pp. 786-790
-
-
Agrawal, R.1
Espinosa, H.D.2
-
21
-
-
77952400610
-
Local piezoelectric properties of ZnO thin films prepared by RF-plasma-assisted pulsed-laser deposition method
-
Bdikin I.K., Gracio J., Ayouchi R., Schwarz R., and Kholkin A.L.: Local piezoelectric properties of ZnO thin films prepared by RF-plasma-assisted pulsed-laser deposition method. Nanotechnology 21, 235703 (2010).
-
(2010)
Nanotechnology
, vol.21
-
-
Bdikin, I.K.1
Gracio, J.2
Ayouchi, R.3
Schwarz, R.4
Kholkin, A.L.5
-
22
-
-
44549087553
-
Mechanism for spontaneous growth of GaN nanowires with molecular beam epitaxy
-
Bertness K.A., Roshko A., Mansfield L.M., Harvey T.E., and Sanford N.A.: Mechanism for spontaneous growth of GaN nanowires with molecular beam epitaxy. J. Crystal Growth 310, 3154–3158 (2008).
-
(2008)
J. Crystal Growth
, vol.310
, pp. 3154-3158
-
-
Bertness, K.A.1
Roshko, A.2
Mansfield, L.M.3
Harvey, T.E.4
Sanford, N.A.5
-
23
-
-
65549155356
-
Nanoscale characterization of isolated individual type I collagen fibrils: Polarization and piezoelectricity
-
Minary-Jolandan M. and Yu M.-F.: Nanoscale characterization of isolated individual type I collagen fibrils: Polarization and piezoelectricity. Nanotechnology 20, 085706 (2009).
-
(2009)
Nanotechnology
, vol.20
-
-
Minary-Jolandan, M.1
Yu, M.-F.2
-
24
-
-
79956006530
-
First-principles calculation of the piezoelectric tensor
-
Bernardini F. and Fiorentini V.: First-principles calculation of the piezoelectric tensor d of III–V nitrides. Appl. Phys. Lett. 80, 4145 (2002).
-
(2002)
Appl. Phys. Lett.
, vol.80
-
-
Bernardini, F.1
Fiorentini, V.2
-
25
-
-
0001152514
-
Shear piezoelectric coefficients of gallium nitride and aluminum nitride
-
Muensit S., Goldys E.M., and Guy I.L.: Shear piezoelectric coefficients of gallium nitride and aluminum nitride. Appl. Phys. Lett. 75, 3965 (1999).
-
(1999)
Appl. Phys. Lett.
, vol.75
-
-
Muensit, S.1
Goldys, E.M.2
Guy, I.L.3
|