메뉴 건너뛰기




Volumn 18, Issue 1, 2017, Pages

Controlling bias and inflation in epigenome- and transcriptome-wide association studies using the empirical null distribution

(51)  van Iterson, Maarten a   van Zwet, Erik W a   Heijmans, Bastiaan T a   't Hoen, Peter A C a   van Meurs, Joyce b   Jansen, Rick b,c   Franke, Lude d   Boomsma, Dorret I e   Pool, René e   van Dongen, Jenny e   Hottenga, Jouke J e   van Greevenbroek, Marleen M J f   Stehouwer, Coen D A f   van der Kallen, Carla J H f   Schalkwijk, Casper G f   Wijmenga, Cisca d   Zhernakova, Sasha d   Tigchelaar, Ettje F d   Eline Slagboom, P a   Beekman, Marian a   more..


Author keywords

Bias; Empirical null distribution; Epigenome and transcriptome wide association studies; Gibbs sampler; Inflation; Meta analysis

Indexed keywords

AGE; ARTICLE; BAYES THEOREM; DNA METHYLATION; EPIGENOME WIDE ASSOCIATION STUDY; GENETIC ASSOCIATION STUDY; GENOME-WIDE ASSOCIATION STUDY; GENOMIC INFLATION FACTOR; LEUKOCYTE COUNT; PREDICTION; RNA SEQUENCE; SIMULATION; SMOKING; STATISTICAL BIAS; STATISTICAL PARAMETERS; TRANSCRIPTOME WIDE ASSOCIATION STUDY; EPIGENETICS; GENETIC EPIGENESIS; HUMAN; META ANALYSIS (TOPIC); PROCEDURES; STANDARDS;

EID: 85011072560     PISSN: 14747596     EISSN: 1474760X     Source Type: Journal    
DOI: 10.1186/s13059-016-1131-9     Document Type: Article
Times cited : (249)

References (56)
  • 1
    • 79960556965 scopus 로고    scopus 로고
    • Epigenome-wide association studies for common human diseases
    • Rakyan VK, Down TA, Balding DJ, Beck S. Epigenome-wide association studies for common human diseases. Nat Rev Genet. 2011; 12(8):529-41.
    • (2011) Nat Rev Genet , vol.12 , Issue.8 , pp. 529-541
    • Rakyan, V.K.1    Down, T.A.2    Balding, D.J.3    Beck, S.4
  • 2
    • 84880924522 scopus 로고    scopus 로고
    • From promises to practical strategies in epigenetic epidemiology
    • Mill J, Heijmans BT. From promises to practical strategies in epigenetic epidemiology. Nat Rev Genet. 2013; 14(8):585-94.
    • (2013) Nat Rev Genet , vol.14 , Issue.8 , pp. 585-594
    • Mill, J.1    Heijmans, B.T.2
  • 3
    • 63549135460 scopus 로고    scopus 로고
    • Meta-analysis of age-related gene expression profiles identifies common signatures of aging
    • de Magalhaes JP, Curado J, Church GM. Meta-analysis of age-related gene expression profiles identifies common signatures of aging. Bioinformatics. 2009; 25(7):875-81.
    • (2009) Bioinformatics , vol.25 , Issue.7 , pp. 875-881
    • de Magalhaes, J.P.1    Curado, J.2    Church, G.M.3
  • 4
    • 84945143930 scopus 로고    scopus 로고
    • The transcriptional landscape of age in human peripheral blood
    • Peters MJ, et al. The transcriptional landscape of age in human peripheral blood. Nat Commun. 2015; 6:8570.
    • (2015) Nat Commun , vol.6 , pp. 8570
    • Peters, M.J.1
  • 5
    • 84872806231 scopus 로고    scopus 로고
    • Genome-wide methylation profiles reveal quantitative views of human aging rates
    • Hannum G, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013; 49(2):359-67.
    • (2013) Mol Cell , vol.49 , Issue.2 , pp. 359-367
    • Hannum, G.1
  • 6
    • 84870294886 scopus 로고    scopus 로고
    • A whole blood gene expression-based signature for smoking status
    • Beineke P, et al.A whole blood gene expression-based signature for smoking status. BMC Med Genomics. 2012; 5:58. doi: 10.1186/1755-8794-5-58.
    • (2012) BMC Med Genomics , vol.5 , pp. 58
    • Beineke, P.1
  • 7
    • 84944259040 scopus 로고    scopus 로고
    • DNA methylation changes of whole blood cells in response to active smoking exposure in adults: a systematic review of DNA methylation studies
    • Gao X, Jia M, Zhang Y, Breitling LP, Brenner H. DNA methylation changes of whole blood cells in response to active smoking exposure in adults: a systematic review of DNA methylation studies. Clin Epigenetics. 2015; 7:113. doi: 10.1186/s13148-015-0148-3.
    • (2015) Clin Epigenetics , vol.7 , pp. 113
    • Gao, X.1    Jia, M.2    Zhang, Y.3    Breitling, L.P.4    Brenner, H.5
  • 8
    • 77956873627 scopus 로고    scopus 로고
    • Tackling the widespread and critical impact of batch effects in high-throughput data
    • Leek JT, et al.Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet. 2010; 11(10):733-9.
    • (2010) Nat Rev Genet , vol.11 , Issue.10 , pp. 733-739
    • Leek, J.T.1
  • 9
    • 0032714352 scopus 로고    scopus 로고
    • Genomic control for association studies
    • Devlin B, Roeder K. Genomic control for association studies. Biometrics. 1999; 55(4):997-1004.
    • (1999) Biometrics , vol.55 , Issue.4 , pp. 997-1004
    • Devlin, B.1    Roeder, K.2
  • 10
    • 84934441142 scopus 로고    scopus 로고
    • A coherent approach for analysis of the Illumina HumanMethylation450 BeadChip improves data quality and performance in epigenome-wide association studies
    • Lehne B, et al.A coherent approach for analysis of the Illumina HumanMethylation450 BeadChip improves data quality and performance in epigenome-wide association studies. Genome Biol. 2015; 16:37. doi: 10.1186/s13059-015-0600-x.
    • (2015) Genome Biol. , vol.16 , pp. 37
    • Lehne, B.1
  • 11
    • 84895540377 scopus 로고    scopus 로고
    • Epigenome-wide association studies without the need for cell-type composition
    • Zou J, Lippert C, Heckerman D, Aryee M, Listgarten J. Epigenome-wide association studies without the need for cell-type composition. Nat Methods. 2014; 11(3):309-11.
    • (2014) Nat Methods , vol.11 , Issue.3 , pp. 309-311
    • Zou, J.1    Lippert, C.2    Heckerman, D.3    Aryee, M.4    Listgarten, J.5
  • 12
    • 84962129337 scopus 로고    scopus 로고
    • DNA Methylation in Newborns and Maternal Smoking in Pregnancy: Genome-wide Consortium Meta-analysis
    • Joubert BR, et al.DNA Methylation in Newborns and Maternal Smoking in Pregnancy: Genome-wide Consortium Meta-analysis. Am J Hum Genet. 2016; 98(4):680-96.
    • (2016) Am J Hum Genet. , vol.98 , Issue.4 , pp. 680-696
    • Joubert, B.R.1
  • 13
    • 79959241413 scopus 로고    scopus 로고
    • Genomic inflation factors under polygenic inheritance
    • Yang J, et al.Genomic inflation factors under polygenic inheritance. Eur J Hum Genet. 2011; 19(7):807-12.
    • (2011) Eur J Hum Genet , vol.19 , Issue.7 , pp. 807-812
    • Yang, J.1
  • 14
    • 79955936872 scopus 로고    scopus 로고
    • Behavior of QQ-plots and genomic control in studies of gene-environment interaction
    • Voorman A, Lumley T, McKnight B, Rice K. Behavior of QQ-plots and genomic control in studies of gene-environment interaction. PLoS ONE. 2011; 6(5):19416.
    • (2011) PLoS ONE , vol.6 , Issue.5 , pp. 19416
    • Voorman, A.1    Lumley, T.2    McKnight, B.3    Rice, K.4
  • 15
    • 0042419312 scopus 로고
    • Some notes on misspecification in multiple regression
    • Rao P. Some notes on misspecification in multiple regression. Am Stat. 1971; 25(5). doi: 10.2307/2686082.
    • (1971) Am Stat , vol.25 , Issue.5
    • Rao, P.1
  • 16
    • 2142732441 scopus 로고    scopus 로고
    • Large-scale simultaneous hypothesis testing: the choice of a null hypothesis
    • Efron B. Large-scale simultaneous hypothesis testing: the choice of a null hypothesis. JASA. 2004; 99(465):96-104.
    • (2004) JASA , vol.99 , Issue.465 , pp. 96-104
    • Efron, B.1
  • 18
    • 0035528921 scopus 로고    scopus 로고
    • Genomic control, a new approach to genetic-based association studies
    • Devlin B, Roeder K, Wasserman L. Genomic control, a new approach to genetic-based association studies. Theor Popul Biol. 2001; 60(3). doi: 10.1006/tpbi.2001.1542.
    • (2001) Theor Popul Biol , vol.60 , Issue.3
    • Devlin, B.1    Roeder, K.2    Wasserman, L.3
  • 19
    • 16544380910 scopus 로고    scopus 로고
    • Genomic Control to the extreme
    • Devlin B, Bacanu SA, Roeder K. Genomic Control to the extreme. Nat Genet. 2004; 36(11):1129-30.
    • (2004) Nat Genet. , vol.36 , Issue.11 , pp. 1129-1130
    • Devlin, B.1    Bacanu, S.A.2    Roeder, K.3
  • 20
    • 0001013280 scopus 로고
    • Bayesian analysis of outlier problems using the Gibbs sampler
    • Verdinelli I, Wasserman L. "Bayesian analysis of outlier problems using the Gibbs sampler". Stat Comput. 1991; 1. doi: 10.1007/BF01889985.
    • (1991) Stat Comput , pp. 1
    • Verdinelli, I.1    Wasserman, L.2
  • 21
    • 38949198791 scopus 로고    scopus 로고
    • Size, power and false discovery rates
    • Efron B. Size, power and false discovery rates. Ann Stat. 2007; 34(4). doi: 10.1214/009053606000001460.
    • (2007) Ann Stat. , vol.34 , Issue.4
    • Efron, B.1
  • 22
    • 74849105720 scopus 로고    scopus 로고
    • Empirical null and false discovery rate inference for exponential families
    • Schwartzman A. Empirical null and false discovery rate inference for exponential families. Ann Appl Stat. 2008; 2(4). doi: 10.1214/08-AOAS184.
    • (2008) Ann Appl Stat. , vol.2 , Issue.4
    • Schwartzman, A.1
  • 23
    • 84890240053 scopus 로고    scopus 로고
    • Interpreting observational studies: why empirical calibration is needed to correct p-values
    • Schuemie MJ, Ryan PB, DuMouchel W, Suchard MA, Madigan D. Interpreting observational studies: why empirical calibration is needed to correct p-values. Stat Med. 2014; 33(2):209-18.
    • (2014) Stat Med , vol.33 , Issue.2 , pp. 209-218
    • Schuemie, M.J.1    Ryan, P.B.2    DuMouchel, W.3    Suchard, M.A.4    Madigan, D.5
  • 24
    • 85002486916 scopus 로고    scopus 로고
    • Identification of context-dependent expression quantitative trait loci in whole blood
    • Zhernakova DV, et al.Identification of context-dependent expression quantitative trait loci in whole blood. Nat Genet. 2016. doi: 10.1038/ng.3737.
    • (2016) Nat Genet
    • Zhernakova, D.V.1
  • 25
    • 85002263457 scopus 로고    scopus 로고
    • Disease variants alter transcription factor levels and methylation of their binding sites
    • Bonder MJ, et al.Disease variants alter transcription factor levels and methylation of their binding sites. Nat Genet. 2016. doi: 10.1038/ng.3721.
    • (2016) Nat Genet
    • Bonder, M.J.1
  • 26
    • 34848914038 scopus 로고    scopus 로고
    • Capturing heterogeneity in gene expression studies by surrogate variable analysis
    • Leek JT, Storey JD. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet. 2007; 3(9):1724-35.
    • (2007) PLoS Genet. , vol.3 , Issue.9 , pp. 1724-1735
    • Leek, J.T.1    Storey, J.D.2
  • 27
    • 84862250978 scopus 로고    scopus 로고
    • Using control genes to correct for unwanted variation in microarray data
    • Gagnon-Bartsch JA, Speed TP. Using control genes to correct for unwanted variation in microarray data. Biostatistics. 2012; 13(3):539-52.
    • (2012) Biostatistics , vol.13 , Issue.3 , pp. 539-552
    • Gagnon-Bartsch, J.A.1    Speed, T.P.2
  • 28
    • 84966573111 scopus 로고    scopus 로고
    • R Foundation for Statistical Computing, R, Vienna, Austria.
    • Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, R, Vienna, Austria; 2015. http://www.R-project.org/.
    • (2015) a language and environment for statistical computing
  • 29
    • 84961289551 scopus 로고    scopus 로고
    • Orchestrating high-throughput genomic analysis with Bioconductor
    • Huber W, et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods. 2015; 12(2):115-21.
    • (2015) Nat Methods , vol.12 , Issue.2 , pp. 115-121
    • Huber, W.1
  • 30
    • 68549137864 scopus 로고    scopus 로고
    • Comments on the analysis of unbalanced microarray data
    • Kerr KF. Comments on the analysis of unbalanced microarray data. Bioinformatics. 2009; 25(16):2035-41.
    • (2009) Bioinformatics , vol.25 , Issue.16 , pp. 2035-2041
    • Kerr, K.F.1
  • 31
    • 0001244941 scopus 로고
    • Estimation of finite mixture distributions through Bayesian sampling
    • Diebolt J, Robert CP. Estimation of finite mixture distributions through Bayesian sampling. JRSS B. 1994; 56(2):363-75.
    • (1994) JRSS B , vol.56 , Issue.2 , pp. 363-375
    • Diebolt, J.1    Robert, C.P.2
  • 32
    • 84909644283 scopus 로고    scopus 로고
    • Normalization of RNA-seq data using factor analysis of control genes or samples
    • Risso D, Ngai J, Speed TP, Dudoit S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat Biotechnol. 2014; 32(9):896-902.
    • (2014) Nat Biotechnol. , vol.32 , Issue.9 , pp. 896-902
    • Risso, D.1    Ngai, J.2    Speed, T.P.3    Dudoit, S.4
  • 33
    • 79957851822 scopus 로고    scopus 로고
    • Independent surrogate variable analysis to deconvolve confounding factors in large-scale microarray profiling studies
    • Teschendorff AE, Zhuang J, Widschwendter M. Independent surrogate variable analysis to deconvolve confounding factors in large-scale microarray profiling studies. Bioinformatics. 2011; 27(11):1496-505.
    • (2011) Bioinformatics , vol.27 , Issue.11 , pp. 1496-1505
    • Teschendorff, A.E.1    Zhuang, J.2    Widschwendter, M.3
  • 34
    • 84942243321 scopus 로고    scopus 로고
    • Removing unwanted variation in a differential methylation analysis of Illumina HumanMethylation450 array data
    • Maksimovic J, Gagnon-Bartsch JA, Speed TP, Oshlack A. Removing unwanted variation in a differential methylation analysis of Illumina HumanMethylation450 array data. Nucleic Acids Res. 2015; 43(16):106.
    • (2015) Nucleic Acids Res. , vol.43 , Issue.16 , pp. 106
    • Maksimovic, J.1    Gagnon-Bartsch, J.A.2    Speed, T.P.3    Oshlack, A.4
  • 35
    • 79955771434 scopus 로고    scopus 로고
    • The meta-analysis of genome-wide association studies
    • Thompson JR, Attia J, Minelli C. The meta-analysis of genome-wide association studies. Brief Bioinformatics. 2011; 12(3):259-69.
    • (2011) Brief Bioinformatics , vol.12 , Issue.3 , pp. 259-269
    • Thompson, J.R.1    Attia, J.2    Minelli, C.3
  • 36
    • 0037186429 scopus 로고    scopus 로고
    • Advanced methods in meta-analysis: multivariate approach and meta-regression
    • van Houwelingen HC, Arends LR, Stijnen T. Advanced methods in meta-analysis: multivariate approach and meta-regression. Stat Med. 2002; 21(4):589-624.
    • (2002) Stat Med , vol.21 , Issue.4 , pp. 589-624
    • van Houwelingen, H.C.1    Arends, L.R.2    Stijnen, T.3
  • 37
    • 79952495403 scopus 로고    scopus 로고
    • The cross-sectional association between insulin resistance and circulating complement C3 is partly explained by plasma alanine aminotransferase, independent of central obesity and general inflammation (the CODAM study)
    • van Greevenbroek MM, et al.The cross-sectional association between insulin resistance and circulating complement C3 is partly explained by plasma alanine aminotransferase, independent of central obesity and general inflammation (the CODAM study). Eur J Clin Invest. 2011; 41(4):372-9.
    • (2011) Eur J Clin Invest. , vol.41 , Issue.4 , pp. 372-379
    • van Greevenbroek, M.M.1
  • 38
    • 84941588145 scopus 로고    scopus 로고
    • Cohort profile: LifeLines DEEP, a prospective, general population cohort study in the northern Netherlands: study design and baseline characteristics
    • Tigchelaar EF, et al. Cohort profile: LifeLines DEEP, a prospective, general population cohort study in the northern Netherlands: study design and baseline characteristics. BMJ Open. 2015; 5(8):006772.
    • (2015) BMJ Open , vol.5 , Issue.8 , pp. 006772
    • Tigchelaar, E.F.1
  • 39
    • 69549112995 scopus 로고    scopus 로고
    • Nonagenarian siblings and their offspring display lower risk of mortality and morbidity than sporadic nonagenarians: The Leiden Longevity Study
    • Westendorp RG, et al.Nonagenarian siblings and their offspring display lower risk of mortality and morbidity than sporadic nonagenarians: The Leiden Longevity Study. J Am Geriatr Soc. 2009; 57(9):1634-37.
    • (2009) J Am Geriatr Soc , vol.57 , Issue.9 , pp. 1634-1637
    • Westendorp, R.G.1
  • 40
    • 80054717387 scopus 로고    scopus 로고
    • The Rotterdam Study: 2012 objectives and design update
    • Hofman A, et al.The Rotterdam Study: 2012 objectives and design update. Eur J Epidemiol. 2011; 26(8):657-86.
    • (2011) Eur J Epidemiol. , vol.26 , Issue.8 , pp. 657-686
    • Hofman, A.1
  • 41
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010; 11(3):25.
    • (2010) Genome Biol. , vol.11 , Issue.3 , pp. 25
    • Robinson, M.D.1    Oshlack, A.2
  • 42
    • 84925550941 scopus 로고    scopus 로고
    • MethylAid: visual and interactive quality control of large Illumina 450k datasets
    • van Iterson M, et al.MethylAid: visual and interactive quality control of large Illumina 450k datasets. Bioinformatics. 2014; 30(23):3435-7.
    • (2014) Bioinformatics , vol.30 , Issue.23 , pp. 3435-3437
    • van Iterson, M.1
  • 43
    • 84874353239 scopus 로고    scopus 로고
    • Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray
    • Chen YA, et al.Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics. 2013; 8(2):203-9.
    • (2013) Epigenetics , vol.8 , Issue.2 , pp. 203-209
    • Chen, Y.A.1
  • 44
    • 0034960264 scopus 로고    scopus 로고
    • Missing value estimation methods for DNA microarrays
    • Troyanskaya O, et al.Missing value estimation methods for DNA microarrays. Bioinformatics. 2001; 17(6):520-5.
    • (2001) Bioinformatics , vol.17 , Issue.6 , pp. 520-525
    • Troyanskaya, O.1
  • 45
    • 84990924267 scopus 로고    scopus 로고
    • Functional normalization of 450k methylation array data improves replication in large cancer studies
    • Fortin JP, et al.Functional normalization of 450k methylation array data improves replication in large cancer studies. Genome Biol. 2014; 15(12):503.
    • (2014) Genome Biol. , vol.15 , Issue.12 , pp. 503
    • Fortin, J.P.1
  • 46
    • 84897548625 scopus 로고    scopus 로고
    • Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays
    • Aryee MJ, et al.Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014; 30(10):1363-9.
    • (2014) Bioinformatics , vol.30 , Issue.10 , pp. 1363-1369
    • Aryee, M.J.1
  • 47
    • 85011096886 scopus 로고    scopus 로고
    • Quality control, probe/sample filtering and normalization of Infinium HumanMethylation450 BeadChip data
    • van Iterson M. Quality control, probe/sample filtering and normalization of Infinium HumanMethylation450 BeadChip data: 'The Leiden Approach'. 2016. doi: 10.5281/zenodo.158908.
    • (2016) The Leiden Approach
    • van Iterson, M.1
  • 48
    • 84860637797 scopus 로고    scopus 로고
    • DNA methylation arrays as surrogate measures of cell mixture distribution
    • Houseman EA, et al.DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics. 2012; 13:86.
    • (2012) BMC Bioinformatics , vol.13 , pp. 86
    • Houseman, E.A.1
  • 49
    • 84926507971 scopus 로고    scopus 로고
    • limma powers differential expression analyses for RNA-sequencing and microarray studies
    • Ritchie ME, et al.limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015; 43(7):47.
    • (2015) Nucleic Acids Res. , vol.43 , Issue.7 , pp. 47
    • Ritchie, M.E.1
  • 50
    • 84896735766 scopus 로고    scopus 로고
    • voom: Precision weights unlock linear model analysis tools for RNA-seq read counts
    • Law CW, Chen Y, Shi W, Smyth GK. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014; 15(2):29.
    • (2014) Genome Biol. , vol.15 , Issue.2 , pp. 29
    • Law, C.W.1    Chen, Y.2    Shi, W.3    Smyth, G.K.4
  • 51
    • 85011071077 scopus 로고    scopus 로고
    • Correlation questions
    • Cox HMHambly, editor. New York: Cambridge University Press.
    • Efron B. Correlation questions In: Cox HMHambly, editor. Large-scale inference. New York: Cambridge University Press: 2010. p. 141-62.
    • (2010) Large-scale inference , pp. 141-162
    • Efron, B.1
  • 52
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
    • Geman S, Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell. 1984; 6(6):721-41.
    • (1984) IEEE Trans Pattern Anal Mach Intell , vol.6 , Issue.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 53
    • 84937730674 scopus 로고
    • Explaining the Gibbs sampler
    • Casella G, George EI. Explaining the Gibbs sampler. Am Stat. 1992; 46(3). doi: 10.2307/2685208.
    • (1992) Am Stat , vol.46 , Issue.3
    • Casella, G.1    George, E.I.2
  • 54
    • 0000783674 scopus 로고    scopus 로고
    • Hypothesis testing and model selection
    • Gilks W. R, Richardson S, Spiegelhalter DJ, editors. London: Chapman and Hall.
    • Raftery AE. Hypothesis testing and model selection In: Gilks W. R, Richardson S, Spiegelhalter DJ, editors. Markov chain Monte Carlo in practice. London: Chapman and Hall: 1996. p. 163-88.
    • (1996) Markov chain Monte Carlo in practice , pp. 163-188
    • Raftery, A.E.1
  • 55
    • 30344451668 scopus 로고    scopus 로고
    • Weighted random sampling with a reservoir
    • Efraimidisa PS, Spirakisb PG. Weighted random sampling with a reservoir. Inform Process Lett. 2006; 97(6). doi: 10.1016/j.ipl.2005.11.003.
    • (2006) Inform Process Lett , vol.97 , Issue.6
    • Efraimidisa, P.S.1    Spirakisb, P.G.2
  • 56
    • 33846829987 scopus 로고    scopus 로고
    • The pls Package: Principal Component and Partial Least Squares Regression in R
    • Mevik BH, Wehrens R. The pls Package: Principal Component and Partial Least Squares Regression in R. J Stat Softw. 2007; 18(2). doi: 10.18637/jss.v018.i02.
    • (2007) J Stat Softw , vol.18 , Issue.2
    • Mevik, B.H.1    Wehrens, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.