-
1
-
-
84885336706
-
Peroxisome interactions and cross-talk with other subcellular compartments in animal cells
-
1 Schrader, M., et al. Peroxisome interactions and cross-talk with other subcellular compartments in animal cells. Subcell. Biochem. 69 (2013), 1–22.
-
(2013)
Subcell. Biochem.
, vol.69
, pp. 1-22
-
-
Schrader, M.1
-
2
-
-
84896731135
-
Peroxisomes: a nexus for lipid metabolism and cellular signaling
-
2 Lodhi, I.J., Semenkovich, C.F., Peroxisomes: a nexus for lipid metabolism and cellular signaling. Cell Metab. 19 (2014), 380–392.
-
(2014)
Cell Metab.
, vol.19
, pp. 380-392
-
-
Lodhi, I.J.1
Semenkovich, C.F.2
-
3
-
-
84959489863
-
Peroxisome biogenesis disorders in the Zellweger spectrum: an overview of current diagnosis, clinical manifestations, and treatment guidelines
-
3 Braverman, N.E., et al. Peroxisome biogenesis disorders in the Zellweger spectrum: an overview of current diagnosis, clinical manifestations, and treatment guidelines. Mol. Genet. Metab. 117 (2016), 313–321.
-
(2016)
Mol. Genet. Metab.
, vol.117
, pp. 313-321
-
-
Braverman, N.E.1
-
4
-
-
84864029381
-
Genetics and molecular basis of human peroxisome biogenesis disorders
-
4 Waterham, H.R., Ebberink, M.S., Genetics and molecular basis of human peroxisome biogenesis disorders. Biochim. Biophys. Acta 1822 (2012), 1430–1441.
-
(2012)
Biochim. Biophys. Acta
, vol.1822
, pp. 1430-1441
-
-
Waterham, H.R.1
Ebberink, M.S.2
-
5
-
-
84884531906
-
Aging, age-related diseases and peroxisomes
-
L.A. del Rio Springer
-
5 Fransen, M., et al. Aging, age-related diseases and peroxisomes. del Rio, L.A., (eds.) Peroxisomes and Their Key Role in Cellular Signaling and Metabolism, 2013, Springer, 45–65.
-
(2013)
Peroxisomes and Their Key Role in Cellular Signaling and Metabolism
, pp. 45-65
-
-
Fransen, M.1
-
6
-
-
84872861231
-
Intrinsic acyl-CoA thioesterase activity of a peroxisomal ATP binding cassette transporter is required for transport and metabolism of fatty acids
-
6 Lousa, C.D.M., et al. Intrinsic acyl-CoA thioesterase activity of a peroxisomal ATP binding cassette transporter is required for transport and metabolism of fatty acids. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), 1279–1284.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, pp. 1279-1284
-
-
Lousa, C.D.M.1
-
7
-
-
84937251746
-
Peroxisome-mitochondria interplay and disease
-
7 Schrader, M., et al. Peroxisome-mitochondria interplay and disease. J. Inherit. Metab. Dis. 38 (2015), 681–702.
-
(2015)
J. Inherit. Metab. Dis.
, vol.38
, pp. 681-702
-
-
Schrader, M.1
-
8
-
-
35148816583
-
Peroxisomal-mitochondrial oxidation in a rodent model of obesity-associated insulin resistance
-
8 Noland, R.C., et al. Peroxisomal-mitochondrial oxidation in a rodent model of obesity-associated insulin resistance. Am. J. Physiol. Endocrinol. Metab. 293 (2007), E986–E1001.
-
(2007)
Am. J. Physiol. Endocrinol. Metab.
, vol.293
, pp. E986-E1001
-
-
Noland, R.C.1
-
9
-
-
0344803532
-
Lignoceric acid is oxidized in the peroxisome: implications for the Zellweger cerebro-hepato-renal syndrome and adrenoleukodystrophy
-
9 Singh, I., et al. Lignoceric acid is oxidized in the peroxisome: implications for the Zellweger cerebro-hepato-renal syndrome and adrenoleukodystrophy. Proc. Natl. Acad. Sci. U. S. A. 81 (1984), 4203–4207.
-
(1984)
Proc. Natl. Acad. Sci. U. S. A.
, vol.81
, pp. 4203-4207
-
-
Singh, I.1
-
10
-
-
0034939632
-
Peroxisomal β-oxidation and peroxisome proliferator-activated receptor α: an adaptive metabolic system
-
10 Reddy, J.K., Hashimoto, T., Peroxisomal β-oxidation and peroxisome proliferator-activated receptor α: an adaptive metabolic system. Annu. Rev. Nutr. 21 (2001), 193–230.
-
(2001)
Annu. Rev. Nutr.
, vol.21
, pp. 193-230
-
-
Reddy, J.K.1
Hashimoto, T.2
-
11
-
-
84885365145
-
Peroxisomes and their key role in cellular signaling and metabolism
-
11 Wanders, R.J.A., Peroxisomes and their key role in cellular signaling and metabolism. Subcell. Biochem. 69 (2013), 23–44.
-
(2013)
Subcell. Biochem.
, vol.69
, pp. 23-44
-
-
Wanders, R.J.A.1
-
12
-
-
84895192712
-
Metabolic functions of peroxisomes in health and disease
-
12 Wanders, R.J.A., Metabolic functions of peroxisomes in health and disease. Biochimie 98 (2014), 36–44.
-
(2014)
Biochimie
, vol.98
, pp. 36-44
-
-
Wanders, R.J.A.1
-
13
-
-
0030451896
-
Lipid biosynthesis in peroxisomes
-
13 Hajra, A.K., Das, A.K., Lipid biosynthesis in peroxisomes. Ann. N. Y. Acad. Sci. 804 (1996), 129–141.
-
(1996)
Ann. N. Y. Acad. Sci.
, vol.804
, pp. 129-141
-
-
Hajra, A.K.1
Das, A.K.2
-
14
-
-
84864705801
-
Inhibiting adipose tissue lipogenesis reprograms thermogenesis and PPARγ activation to decrease diet-induced obesity
-
14 Lodhi, I.J., et al. Inhibiting adipose tissue lipogenesis reprograms thermogenesis and PPARγ activation to decrease diet-induced obesity. Cell Metab. 16 (2012), 189–201.
-
(2012)
Cell Metab.
, vol.16
, pp. 189-201
-
-
Lodhi, I.J.1
-
15
-
-
84920563401
-
Peroxisomal lipid synthesis regulates inflammation by sustaining neutrophil membrane phospholipid composition and viability
-
15 Lodhi, I.J., et al. Peroxisomal lipid synthesis regulates inflammation by sustaining neutrophil membrane phospholipid composition and viability. Cell Metab. 21 (2015), 51–64.
-
(2015)
Cell Metab.
, vol.21
, pp. 51-64
-
-
Lodhi, I.J.1
-
16
-
-
0042131525
-
Inactivation of ether lipid biosynthesis causes male infertility, defects in eye development and optic nerve hypoplasia in mice
-
16 Rodemer, C., et al. Inactivation of ether lipid biosynthesis causes male infertility, defects in eye development and optic nerve hypoplasia in mice. Hum. Mol. Genet. 12 (2003), 1881–1895.
-
(2003)
Hum. Mol. Genet.
, vol.12
, pp. 1881-1895
-
-
Rodemer, C.1
-
17
-
-
84874070103
-
Human sperm tail proteome suggests new endogenous metabolic pathways
-
17 Amaral, A., et al. Human sperm tail proteome suggests new endogenous metabolic pathways. Mol. Cell. Proteomics 12 (2013), 330–342.
-
(2013)
Mol. Cell. Proteomics
, vol.12
, pp. 330-342
-
-
Amaral, A.1
-
18
-
-
84884219899
-
Altered phospholipid molecular species and glycolipid composition in brain, liver and fibroblasts of Zellweger syndrome
-
18 Miyazaki, C., et al. Altered phospholipid molecular species and glycolipid composition in brain, liver and fibroblasts of Zellweger syndrome. Neurosci. Lett. 552 (2013), 71–75.
-
(2013)
Neurosci. Lett.
, vol.552
, pp. 71-75
-
-
Miyazaki, C.1
-
19
-
-
84859927634
-
Peroxisome-derived lipids are self antigens that stimulate invariant natural killer T cells in the thymus
-
19 Facciotti, F., et al. Peroxisome-derived lipids are self antigens that stimulate invariant natural killer T cells in the thymus. Nat. Immunol. 13 (2012), 474–480.
-
(2012)
Nat. Immunol.
, vol.13
, pp. 474-480
-
-
Facciotti, F.1
-
20
-
-
70350417306
-
Bile acids: the role of peroxisomes
-
20 Ferdinandusse, S., et al. Bile acids: the role of peroxisomes. J. Lipid Res. 50 (2009), 2139–2147.
-
(2009)
J. Lipid Res.
, vol.50
, pp. 2139-2147
-
-
Ferdinandusse, S.1
-
21
-
-
33846991643
-
Localization of the pre-squalene segment of the isoprenoid biosynthetic pathway in mammalian peroxisomes
-
21 Kovacs, W.J., et al. Localization of the pre-squalene segment of the isoprenoid biosynthetic pathway in mammalian peroxisomes. Histochem. Cell Biol. 127 (2007), 273–290.
-
(2007)
Histochem. Cell Biol.
, vol.127
, pp. 273-290
-
-
Kovacs, W.J.1
-
22
-
-
33746366462
-
Biochemistry of mammalian peroxisomes revisited
-
22 Wanders, R.J., Waterham, H.R., Biochemistry of mammalian peroxisomes revisited. Annu. Rev. Biochem. 75 (2006), 295–332.
-
(2006)
Annu. Rev. Biochem.
, vol.75
, pp. 295-332
-
-
Wanders, R.J.1
Waterham, H.R.2
-
23
-
-
84927126103
-
Cholesterol transport through lysosome-peroxisome membrane contacts
-
23 Chu, B-B., et al. Cholesterol transport through lysosome-peroxisome membrane contacts. Cell 161 (2015), 291–306.
-
(2015)
Cell
, vol.161
, pp. 291-306
-
-
Chu, B.-B.1
-
24
-
-
0036906759
-
Peroxisome senescence in human fibroblasts
-
24 Legakis, J.E., et al. Peroxisome senescence in human fibroblasts. Mol. Biol. Cell 13 (2002), 4243–4255.
-
(2002)
Mol. Biol. Cell
, vol.13
, pp. 4243-4255
-
-
Legakis, J.E.1
-
25
-
-
0015363173
-
The cellular production of hydrogen peroxide
-
25 Boveris, A., et al. The cellular production of hydrogen peroxide. Biochem. J. 128 (1972), 617–630.
-
(1972)
Biochem. J.
, vol.128
, pp. 617-630
-
-
Boveris, A.1
-
26
-
-
84864050485
-
Role of peroxisomes in ROS/RNS-metabolism: implications for human disease
-
26 Fransen, M., et al. Role of peroxisomes in ROS/RNS-metabolism: implications for human disease. Biochim. Biophys. Acta 1822 (2012), 1363–1373.
-
(2012)
Biochim. Biophys. Acta
, vol.1822
, pp. 1363-1373
-
-
Fransen, M.1
-
27
-
-
77954484645
-
Peroxisomes are oxidative organelles
-
27 Antonenkov, V.D., et al. Peroxisomes are oxidative organelles. Antioxid. Redox Signal. 13 (2010), 525–537.
-
(2010)
Antioxid. Redox Signal.
, vol.13
, pp. 525-537
-
-
Antonenkov, V.D.1
-
28
-
-
84858376953
-
Mitochondria: in sickness and in health
-
28 Nunnari, J., Suomalainen, A., Mitochondria: in sickness and in health. Cell 148 (2012), 1145–1159.
-
(2012)
Cell
, vol.148
, pp. 1145-1159
-
-
Nunnari, J.1
Suomalainen, A.2
-
29
-
-
84873730644
-
Peroxisomes, oxidative stress, and inflammation
-
29 Terlecky, S.R., et al. Peroxisomes, oxidative stress, and inflammation. World J. Biol. Chem. 3 (2012), 93–97.
-
(2012)
World J. Biol. Chem.
, vol.3
, pp. 93-97
-
-
Terlecky, S.R.1
-
30
-
-
79955506970
-
Intraperoxisomal redox balance in mammalian cells: oxidative stress and interorganellar cross-talk
-
30 Ivashchenko, O., et al. Intraperoxisomal redox balance in mammalian cells: oxidative stress and interorganellar cross-talk. Mol. Biol. Cell 22 (2011), 1440–1451.
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 1440-1451
-
-
Ivashchenko, O.1
-
31
-
-
84863115387
-
Catalase deficiency accelerates diabetic renal injury through peroxisomal dysfunction
-
31 Hwang, I., et al. Catalase deficiency accelerates diabetic renal injury through peroxisomal dysfunction. Diabetes 61 (2012), 728–738.
-
(2012)
Diabetes
, vol.61
, pp. 728-738
-
-
Hwang, I.1
-
32
-
-
85002926411
-
Deep proteome analysis identifies age-related processes in C. elegans
-
32 Narayan, V., et al. Deep proteome analysis identifies age-related processes in C. elegans. Cell Syst. 3 (2016), 144–159.
-
(2016)
Cell Syst.
, vol.3
, pp. 144-159
-
-
Narayan, V.1
-
33
-
-
0030459304
-
Multiple PEX genes are required for proper subcellular distribution and stability of Pex5p, the PTS1 receptor: evidence that PTS1 protein import is mediated by a cycling receptor
-
33 Dodt, G., Gould, S.J., Multiple PEX genes are required for proper subcellular distribution and stability of Pex5p, the PTS1 receptor: evidence that PTS1 protein import is mediated by a cycling receptor. J. Cell Biol. 135 (1996), 1763–1774.
-
(1996)
J. Cell Biol.
, vol.135
, pp. 1763-1774
-
-
Dodt, G.1
Gould, S.J.2
-
34
-
-
84865279926
-
Recent advances in peroxisomal matrix protein import
-
34 Liu, X., et al. Recent advances in peroxisomal matrix protein import. Curr. Opin. Cell Biol. 24 (2012), 484–489.
-
(2012)
Curr. Opin. Cell Biol.
, vol.24
, pp. 484-489
-
-
Liu, X.1
-
35
-
-
81755181731
-
PEX5 protein binds monomeric catalase blocking its tetramerization and releases it upon binding the n-terminal domain of PEX14
-
35 Freitas, M.O., et al. PEX5 protein binds monomeric catalase blocking its tetramerization and releases it upon binding the n-terminal domain of PEX14. J. Biol. Chem. 286 (2011), 40509–40519.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 40509-40519
-
-
Freitas, M.O.1
-
36
-
-
84884579723
-
Redox-regulated cargo binding and release by the peroxisomal targeting signal receptor
-
36 Ma, C., et al. Redox-regulated cargo binding and release by the peroxisomal targeting signal receptor. Pex5. J. Biol. Chem. 288 (2013), 27220–27231.
-
(2013)
Pex5. J. Biol. Chem.
, vol.288
, pp. 27220-27231
-
-
Ma, C.1
-
37
-
-
84889598580
-
PEX5, the shuttling import receptor for peroxisomal matrix proteins, is a redox-sensitive protein: PTS1 protein import and oxidative stress
-
37 Apanasets, O., et al. PEX5, the shuttling import receptor for peroxisomal matrix proteins, is a redox-sensitive protein: PTS1 protein import and oxidative stress. Traffic 15 (2014), 94–103.
-
(2014)
Traffic
, vol.15
, pp. 94-103
-
-
Apanasets, O.1
-
38
-
-
70350674903
-
Peroxisome dynamics in cultured mammalian cells
-
38 Huybrechts, S.J., et al. Peroxisome dynamics in cultured mammalian cells. Traffic 10 (2009), 1722–1733.
-
(2009)
Traffic
, vol.10
, pp. 1722-1733
-
-
Huybrechts, S.J.1
-
39
-
-
77950470469
-
Molecular mechanism and physiological role of pexophagy
-
39 Manjithaya, R., et al. Molecular mechanism and physiological role of pexophagy. FEBS Lett. 584 (2010), 1367–1373.
-
(2010)
FEBS Lett.
, vol.584
, pp. 1367-1373
-
-
Manjithaya, R.1
-
40
-
-
85009876211
-
Autophagic degradation of peroxisomes in mammals
-
40 Zientara-Rytter, K., Subramani, S., Autophagic degradation of peroxisomes in mammals. Biochem. Soc. Trans. 44 (2016), 431–440.
-
(2016)
Biochem. Soc. Trans.
, vol.44
, pp. 431-440
-
-
Zientara-Rytter, K.1
Subramani, S.2
-
41
-
-
84892859905
-
Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy
-
41 Rogov, V., et al. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol. Cell 53 (2014), 167–178.
-
(2014)
Mol. Cell
, vol.53
, pp. 167-178
-
-
Rogov, V.1
-
43
-
-
84943775216
-
Export-deficient monoubiquitinated PEX5 triggers peroxisome removal in SV40 large T antigen-transformed mouse embryonic fibroblasts
-
43 Nordgren, M., et al. Export-deficient monoubiquitinated PEX5 triggers peroxisome removal in SV40 large T antigen-transformed mouse embryonic fibroblasts. Autophagy 11 (2015), 1326–1340.
-
(2015)
Autophagy
, vol.11
, pp. 1326-1340
-
-
Nordgren, M.1
-
44
-
-
84942982653
-
ATM functions at the peroxisome to induce pexophagy in response to ROS
-
44 Zhang, J., et al. ATM functions at the peroxisome to induce pexophagy in response to ROS. Nat. Cell Biol. 17 (2015), 1259–1269.
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 1259-1269
-
-
Zhang, J.1
-
45
-
-
84885105969
-
A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS
-
45 Zhang, J., et al. A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS. Nat. Cell Biol. 15 (2013), 1186–1196.
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 1186-1196
-
-
Zhang, J.1
-
46
-
-
84910142171
-
Hif-2α promotes degradation of mammalian peroxisomes by selective autophagy
-
46 Walter, K.M., et al. Hif-2α promotes degradation of mammalian peroxisomes by selective autophagy. Cell Metab. 20 (2014), 882–897.
-
(2014)
Cell Metab.
, vol.20
, pp. 882-897
-
-
Walter, K.M.1
-
47
-
-
84991224662
-
PEX2 is the E3 ubiquitin ligase required for pexophagy during starvation
-
47 Sargent, G., et al. PEX2 is the E3 ubiquitin ligase required for pexophagy during starvation. J. Cell Biol. 214 (2016), 677–690.
-
(2016)
J. Cell Biol.
, vol.214
, pp. 677-690
-
-
Sargent, G.1
-
48
-
-
84858383401
-
Diabetes mellitus and the β cell: the last ten years
-
48 Ashcroft, F.M., Rorsman, P., Diabetes mellitus and the β cell: the last ten years. Cell 148 (2012), 1160–1171.
-
(2012)
Cell
, vol.148
, pp. 1160-1171
-
-
Ashcroft, F.M.1
Rorsman, P.2
-
49
-
-
84994021942
-
Oxidative stress and lipotoxicity
-
49 Hauck, A.K., Bernlohr, D.A., Oxidative stress and lipotoxicity. J. Lipid Res. 57 (2016), 1976–1986.
-
(2016)
J. Lipid Res.
, vol.57
, pp. 1976-1986
-
-
Hauck, A.K.1
Bernlohr, D.A.2
-
50
-
-
84865418540
-
Mitochondrial dysfunction in pancreatic β cells
-
50 Supale, S., et al. Mitochondrial dysfunction in pancreatic β cells. Trends Endocrinol. Metab. 23 (2012), 477–487.
-
(2012)
Trends Endocrinol. Metab.
, vol.23
, pp. 477-487
-
-
Supale, S.1
-
51
-
-
78751513443
-
Peroxisome-generated hydrogen peroxide as important mediator of lipotoxicity in insulin-producing cells
-
51 Elsner, M., et al. Peroxisome-generated hydrogen peroxide as important mediator of lipotoxicity in insulin-producing cells. Diabetes 60 (2011), 200–208.
-
(2011)
Diabetes
, vol.60
, pp. 200-208
-
-
Elsner, M.1
-
52
-
-
84899584562
-
Peroxisomal dysfunction is associated with up-regulation of apoptotic cell death via miR-223 induction in knee osteoarthritis patients with type 2 diabetes mellitus
-
52 Kim, D., et al. Peroxisomal dysfunction is associated with up-regulation of apoptotic cell death via miR-223 induction in knee osteoarthritis patients with type 2 diabetes mellitus. Bone 64 (2014), 124–131.
-
(2014)
Bone
, vol.64
, pp. 124-131
-
-
Kim, D.1
-
53
-
-
84879537948
-
Endothelial peroxisomal dysfunction and impaired pexophagy promotes oxidative damage in lipopolysaccharide-induced acute kidney injury
-
53 Vasko, R., et al. Endothelial peroxisomal dysfunction and impaired pexophagy promotes oxidative damage in lipopolysaccharide-induced acute kidney injury. Antioxid. Redox Signal. 19 (2013), 211–230.
-
(2013)
Antioxid. Redox Signal.
, vol.19
, pp. 211-230
-
-
Vasko, R.1
-
54
-
-
84939599869
-
Catalase therapy corrects oxidative stress-induced pathophysiology in incipient diabetic retinopathy
-
54 Giordano, C.R., et al. Catalase therapy corrects oxidative stress-induced pathophysiology in incipient diabetic retinopathy. Investig. Opthalmology Vis. Sci., 56, 2015, 3095.
-
(2015)
Investig. Opthalmology Vis. Sci.
, vol.56
, pp. 3095
-
-
Giordano, C.R.1
-
55
-
-
80054704470
-
Peroxisomal alterations in Alzheimer's disease
-
55 Kou, J., et al. Peroxisomal alterations in Alzheimer's disease. Acta Neuropathol. (Berl.) 122 (2011), 271–283.
-
(2011)
Acta Neuropathol. (Berl.)
, vol.122
, pp. 271-283
-
-
Kou, J.1
-
56
-
-
84952926583
-
Elevation of cortical C26:0 due to the decline of peroxisomal β-oxidation potentiates amyloid β generation and spatial memory deficits via oxidative stress in diabetic rats
-
56 Shi, Y., et al. Elevation of cortical C26:0 due to the decline of peroxisomal β-oxidation potentiates amyloid β generation and spatial memory deficits via oxidative stress in diabetic rats. Neuroscience 315 (2016), 125–135.
-
(2016)
Neuroscience
, vol.315
, pp. 125-135
-
-
Shi, Y.1
-
57
-
-
84901044955
-
Amyloid-beta neuroprotection mediated by a targeted antioxidant
-
57 Giordano, C.R., et al. Amyloid-beta neuroprotection mediated by a targeted antioxidant. Sci. Rep., 4, 2014, 4983.
-
(2014)
Sci. Rep.
, vol.4
, pp. 4983
-
-
Giordano, C.R.1
-
58
-
-
84884414892
-
Greasing the synaptic vesicle cycle by membrane lipids
-
58 Puchkov, D., Haucke, V., Greasing the synaptic vesicle cycle by membrane lipids. Trends Cell Biol. 23 (2013), 493–503.
-
(2013)
Trends Cell Biol.
, vol.23
, pp. 493-503
-
-
Puchkov, D.1
Haucke, V.2
-
59
-
-
84861739965
-
Impaired neurotransmission in ether lipid-deficient nerve terminals
-
59 Brodde, A., et al. Impaired neurotransmission in ether lipid-deficient nerve terminals. Hum. Mol. Genet. 21 (2012), 2713–2724.
-
(2012)
Hum. Mol. Genet.
, vol.21
, pp. 2713-2724
-
-
Brodde, A.1
-
60
-
-
84884560388
-
Using neurolipidomics to identify phospholipid mediators of synaptic (dys)function in Alzheimer's disease
-
60 Bennett, S.A.L., et al. Using neurolipidomics to identify phospholipid mediators of synaptic (dys)function in Alzheimer's disease. Front. Physiol., 4, 2013, 168.
-
(2013)
Front. Physiol.
, vol.4
, pp. 168
-
-
Bennett, S.A.L.1
-
61
-
-
84855973361
-
Severe alterations in lipid composition of frontal cortex lipid rafts from Parkinson's disease and incidental Parkinson's disease
-
61 Fabelo, N., et al. Severe alterations in lipid composition of frontal cortex lipid rafts from Parkinson's disease and incidental Parkinson's disease. Mol. Med., 17, 2011, 1107.
-
(2011)
Mol. Med.
, vol.17
, pp. 1107
-
-
Fabelo, N.1
-
62
-
-
84962583837
-
Plasmalogen augmentation reverses striatal dopamine loss in MPTP mice
-
62 Miville-Godbout, E., et al. Plasmalogen augmentation reverses striatal dopamine loss in MPTP mice. PLoS One, 11, 2016, e0151020.
-
(2016)
PLoS One
, vol.11
, pp. e0151020
-
-
Miville-Godbout, E.1
-
63
-
-
84882630497
-
A peroxisome biogenesis deficiency prevents the binding of alpha-synuclein to lipid droplets in lipid-loaded yeast
-
63 Wang, S., et al. A peroxisome biogenesis deficiency prevents the binding of alpha-synuclein to lipid droplets in lipid-loaded yeast. Biochem. Biophys. Res. Commun. 438 (2013), 452–456.
-
(2013)
Biochem. Biophys. Res. Commun.
, vol.438
, pp. 452-456
-
-
Wang, S.1
-
64
-
-
84871433609
-
Global profiling strategies for mapping dysregulated metabolic pathways in cancer
-
64 Benjamin, D.I., et al. Global profiling strategies for mapping dysregulated metabolic pathways in cancer. Cell Metab. 16 (2012), 565–577.
-
(2012)
Cell Metab.
, vol.16
, pp. 565-577
-
-
Benjamin, D.I.1
-
65
-
-
0014441241
-
Alkyl and alk-1-enyl ethers of glycerol in lipids from normal and neoplastic human tissues
-
65 Snyder, F., Wood, R., Alkyl and alk-1-enyl ethers of glycerol in lipids from normal and neoplastic human tissues. Cancer Res. 29 (1969), 251–257.
-
(1969)
Cancer Res.
, vol.29
, pp. 251-257
-
-
Snyder, F.1
Wood, R.2
-
66
-
-
84976877694
-
Lipidomic signatures and associated transcriptomic profiles of clear cell renal cell carcinoma
-
66 Saito, K., et al. Lipidomic signatures and associated transcriptomic profiles of clear cell renal cell carcinoma. Sci. Rep., 6, 2016, 28932.
-
(2016)
Sci. Rep.
, vol.6
, pp. 28932
-
-
Saito, K.1
-
67
-
-
84922784986
-
The ether lipid precursor hexadecylglycerol stimulates the release and changes the composition of exosomes derived from PC-3 cells
-
67 Phuyal, S., et al. The ether lipid precursor hexadecylglycerol stimulates the release and changes the composition of exosomes derived from PC-3 cells. J. Biol. Chem. 290 (2015), 4225–4237.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 4225-4237
-
-
Phuyal, S.1
-
68
-
-
84856068961
-
Regulation of peroxisomal lipid metabolism by catalytic activity of tumor suppressor H-rev107
-
68 Uyama, T., et al. Regulation of peroxisomal lipid metabolism by catalytic activity of tumor suppressor H-rev107. J. Biol. Chem. 287 (2012), 2706–2718.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 2706-2718
-
-
Uyama, T.1
-
69
-
-
84940093443
-
Interaction of phospholipase A/acyltransferase-3 with Pex19p: a possible involvement in the down-regulation of peroxisomes
-
69 Uyama, T., et al. Interaction of phospholipase A/acyltransferase-3 with Pex19p: a possible involvement in the down-regulation of peroxisomes. J. Biol. Chem. 290 (2015), 17520–17534.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 17520-17534
-
-
Uyama, T.1
-
70
-
-
0345861756
-
PEX19 is a predominantly cytosolic chaperone and import receptor for class 1 peroxisomal membrane proteins
-
70 Jones, J.M., et al. PEX19 is a predominantly cytosolic chaperone and import receptor for class 1 peroxisomal membrane proteins. J. Cell Biol. 164 (2004), 57–67.
-
(2004)
J. Cell Biol.
, vol.164
, pp. 57-67
-
-
Jones, J.M.1
-
71
-
-
84883819129
-
Ether lipid generating enzyme AGPS alters the balance of structural and signaling lipids to fuel cancer pathogenicity
-
71 Benjamin, D.I., et al. Ether lipid generating enzyme AGPS alters the balance of structural and signaling lipids to fuel cancer pathogenicity. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), 14912–14917.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, pp. 14912-14917
-
-
Benjamin, D.I.1
-
72
-
-
84903213693
-
Role and mechanism of the alkylglycerone phosphate synthase in suppressing the invasion potential of human glioma and hepatic carcinoma cells in vitro
-
72 Zhu, Y., et al. Role and mechanism of the alkylglycerone phosphate synthase in suppressing the invasion potential of human glioma and hepatic carcinoma cells in vitro. Oncol. Rep. 32 (2014), 431–436.
-
(2014)
Oncol. Rep.
, vol.32
, pp. 431-436
-
-
Zhu, Y.1
-
73
-
-
84947909618
-
Discovery of inhibitors for the ether lipid-generating enzyme AGPS as anti-cancer agents
-
73 Piano, V., et al. Discovery of inhibitors for the ether lipid-generating enzyme AGPS as anti-cancer agents. ACS Chem. Biol. 10 (2015), 2589–2597.
-
(2015)
ACS Chem. Biol.
, vol.10
, pp. 2589-2597
-
-
Piano, V.1
-
74
-
-
0037012476
-
α-methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer
-
74 Rubin, M.A., et al. α-methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer. JAMA 287 (2002), 1662–1670.
-
(2002)
JAMA
, vol.287
, pp. 1662-1670
-
-
Rubin, M.A.1
-
75
-
-
84875754906
-
α-Methylacyl-CoA racemase (AMACR): metabolic enzyme, drug metabolizer and cancer marker P504S
-
75 Lloyd, M.D., et al. α-Methylacyl-CoA racemase (AMACR): metabolic enzyme, drug metabolizer and cancer marker P504S. Prog. Lipid Res. 52 (2013), 220–230.
-
(2013)
Prog. Lipid Res.
, vol.52
, pp. 220-230
-
-
Lloyd, M.D.1
-
76
-
-
84918544789
-
AMACR amplification in myxofibrosarcomas: a mechanism of overexpression that promotes cell proliferation with therapeutic relevance
-
76 Li, C-F., et al. AMACR amplification in myxofibrosarcomas: a mechanism of overexpression that promotes cell proliferation with therapeutic relevance. Clin. Cancer Res. 20 (2014), 6141–6152.
-
(2014)
Clin. Cancer Res.
, vol.20
, pp. 6141-6152
-
-
Li, C.-F.1
-
77
-
-
33748260777
-
Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer
-
77 Liu, Y., Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate Cancer Prostatic Dis. 9 (2006), 230–234.
-
(2006)
Prostate Cancer Prostatic Dis.
, vol.9
, pp. 230-234
-
-
Liu, Y.1
-
78
-
-
66249108601
-
Understanding the Warburg effect: the metabolic requirements of cell proliferation
-
78 Vander Heiden, M.G., et al. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324 (2009), 1029–1033.
-
(2009)
Science
, vol.324
, pp. 1029-1033
-
-
Vander Heiden, M.G.1
-
79
-
-
84959451365
-
The Warburg effect: how does it benefit cancer cells?
-
79 Liberti, M.V., Locasale, J.W., The Warburg effect: how does it benefit cancer cells?. Trends Biochem. Sci. 41 (2016), 211–218.
-
(2016)
Trends Biochem. Sci.
, vol.41
, pp. 211-218
-
-
Liberti, M.V.1
Locasale, J.W.2
-
80
-
-
84861430732
-
Cryptic peroxisomal targeting via alternative splicing and stop codon read-through in fungi
-
80 Freitag, J., et al. Cryptic peroxisomal targeting via alternative splicing and stop codon read-through in fungi. Nature 485 (2012), 522–525.
-
(2012)
Nature
, vol.485
, pp. 522-525
-
-
Freitag, J.1
-
81
-
-
84926148990
-
Peroxisomal lactate dehydrogenase is generated by translational readthrough in mammals
-
81 Schueren, F., et al. Peroxisomal lactate dehydrogenase is generated by translational readthrough in mammals. Elife, 3, 2014, e03640.
-
(2014)
Elife
, vol.3
, pp. e03640
-
-
Schueren, F.1
-
82
-
-
84908316001
-
Ribosomal readthrough at a short UGA stop codon context triggers dual localization of metabolic enzymes in fungi and animals
-
82 Stiebler, A.C., et al. Ribosomal readthrough at a short UGA stop codon context triggers dual localization of metabolic enzymes in fungi and animals. PLoS Genet., 10, 2014, e1004685.
-
(2014)
PLoS Genet.
, vol.10
, pp. e1004685
-
-
Stiebler, A.C.1
-
83
-
-
0037466404
-
Peroxisomal membrane monocarboxylate transporters: evidence for a redox shuttle system?
-
83 McClelland, G.B., et al. Peroxisomal membrane monocarboxylate transporters: evidence for a redox shuttle system?. Biochem. Biophys. Res. Commun. 304 (2003), 130–135.
-
(2003)
Biochem. Biophys. Res. Commun.
, vol.304
, pp. 130-135
-
-
McClelland, G.B.1
-
84
-
-
84883514161
-
Targeting lactate metabolism for cancer therapeutics
-
84 Doherty, J.R., Cleveland, J.L., Targeting lactate metabolism for cancer therapeutics. J. Clin. Invest. 123 (2013), 3685–3692.
-
(2013)
J. Clin. Invest.
, vol.123
, pp. 3685-3692
-
-
Doherty, J.R.1
Cleveland, J.L.2
-
85
-
-
84925880705
-
Localization of MCT2 at peroxisomes is associated with malignant transformation in prostate cancer
-
85 Valença, I., et al. Localization of MCT2 at peroxisomes is associated with malignant transformation in prostate cancer. J. Cell. Mol. Med. 19 (2015), 723–733.
-
(2015)
J. Cell. Mol. Med.
, vol.19
, pp. 723-733
-
-
Valença, I.1
-
86
-
-
84940758201
-
Epigenetic and oncogenic regulation of SLC16A7 (MCT2) results in protein over-expression, impacting on signalling and cellular phenotypes in prostate cancer
-
86 Pertega-Gomes, N., et al. Epigenetic and oncogenic regulation of SLC16A7 (MCT2) results in protein over-expression, impacting on signalling and cellular phenotypes in prostate cancer. Oncotarget 6 (2015), 21675–21684.
-
(2015)
Oncotarget
, vol.6
, pp. 21675-21684
-
-
Pertega-Gomes, N.1
-
87
-
-
84962429359
-
Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways
-
87 DeLoache, W.C., et al. Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways. Nat. Commun., 7, 2016, 11152.
-
(2016)
Nat. Commun.
, vol.7
, pp. 11152
-
-
DeLoache, W.C.1
-
88
-
-
85000786739
-
Harnessing yeast peroxisomes for biosynthesis of fatty-acid-derived biofuels and chemicals with relieved side-pathway competition
-
88 Zhou, Y.J., et al. Harnessing yeast peroxisomes for biosynthesis of fatty-acid-derived biofuels and chemicals with relieved side-pathway competition. J. Am. Chem. Soc. 138 (2016), 15368–15377.
-
(2016)
J. Am. Chem. Soc.
, vol.138
, pp. 15368-15377
-
-
Zhou, Y.J.1
|