메뉴 건너뛰기




Volumn 28, Issue 4, 2017, Pages 297-308

Peroxisomal Dysfunction in Age-Related Diseases

Author keywords

aging; neurodegeneration; peroxisome; pexophagy; reactive oxygen species

Indexed keywords

ACYL COENZYME A; ETHER LIPID; PLASMALOGEN; REACTIVE OXYGEN METABOLITE;

EID: 85008470440     PISSN: 10432760     EISSN: 18793061     Source Type: Journal    
DOI: 10.1016/j.tem.2016.12.003     Document Type: Review
Times cited : (127)

References (88)
  • 1
    • 84885336706 scopus 로고    scopus 로고
    • Peroxisome interactions and cross-talk with other subcellular compartments in animal cells
    • 1 Schrader, M., et al. Peroxisome interactions and cross-talk with other subcellular compartments in animal cells. Subcell. Biochem. 69 (2013), 1–22.
    • (2013) Subcell. Biochem. , vol.69 , pp. 1-22
    • Schrader, M.1
  • 2
    • 84896731135 scopus 로고    scopus 로고
    • Peroxisomes: a nexus for lipid metabolism and cellular signaling
    • 2 Lodhi, I.J., Semenkovich, C.F., Peroxisomes: a nexus for lipid metabolism and cellular signaling. Cell Metab. 19 (2014), 380–392.
    • (2014) Cell Metab. , vol.19 , pp. 380-392
    • Lodhi, I.J.1    Semenkovich, C.F.2
  • 3
    • 84959489863 scopus 로고    scopus 로고
    • Peroxisome biogenesis disorders in the Zellweger spectrum: an overview of current diagnosis, clinical manifestations, and treatment guidelines
    • 3 Braverman, N.E., et al. Peroxisome biogenesis disorders in the Zellweger spectrum: an overview of current diagnosis, clinical manifestations, and treatment guidelines. Mol. Genet. Metab. 117 (2016), 313–321.
    • (2016) Mol. Genet. Metab. , vol.117 , pp. 313-321
    • Braverman, N.E.1
  • 4
    • 84864029381 scopus 로고    scopus 로고
    • Genetics and molecular basis of human peroxisome biogenesis disorders
    • 4 Waterham, H.R., Ebberink, M.S., Genetics and molecular basis of human peroxisome biogenesis disorders. Biochim. Biophys. Acta 1822 (2012), 1430–1441.
    • (2012) Biochim. Biophys. Acta , vol.1822 , pp. 1430-1441
    • Waterham, H.R.1    Ebberink, M.S.2
  • 6
    • 84872861231 scopus 로고    scopus 로고
    • Intrinsic acyl-CoA thioesterase activity of a peroxisomal ATP binding cassette transporter is required for transport and metabolism of fatty acids
    • 6 Lousa, C.D.M., et al. Intrinsic acyl-CoA thioesterase activity of a peroxisomal ATP binding cassette transporter is required for transport and metabolism of fatty acids. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), 1279–1284.
    • (2013) Proc. Natl. Acad. Sci. U. S. A. , vol.110 , pp. 1279-1284
    • Lousa, C.D.M.1
  • 7
    • 84937251746 scopus 로고    scopus 로고
    • Peroxisome-mitochondria interplay and disease
    • 7 Schrader, M., et al. Peroxisome-mitochondria interplay and disease. J. Inherit. Metab. Dis. 38 (2015), 681–702.
    • (2015) J. Inherit. Metab. Dis. , vol.38 , pp. 681-702
    • Schrader, M.1
  • 8
    • 35148816583 scopus 로고    scopus 로고
    • Peroxisomal-mitochondrial oxidation in a rodent model of obesity-associated insulin resistance
    • 8 Noland, R.C., et al. Peroxisomal-mitochondrial oxidation in a rodent model of obesity-associated insulin resistance. Am. J. Physiol. Endocrinol. Metab. 293 (2007), E986–E1001.
    • (2007) Am. J. Physiol. Endocrinol. Metab. , vol.293 , pp. E986-E1001
    • Noland, R.C.1
  • 9
    • 0344803532 scopus 로고
    • Lignoceric acid is oxidized in the peroxisome: implications for the Zellweger cerebro-hepato-renal syndrome and adrenoleukodystrophy
    • 9 Singh, I., et al. Lignoceric acid is oxidized in the peroxisome: implications for the Zellweger cerebro-hepato-renal syndrome and adrenoleukodystrophy. Proc. Natl. Acad. Sci. U. S. A. 81 (1984), 4203–4207.
    • (1984) Proc. Natl. Acad. Sci. U. S. A. , vol.81 , pp. 4203-4207
    • Singh, I.1
  • 10
    • 0034939632 scopus 로고    scopus 로고
    • Peroxisomal β-oxidation and peroxisome proliferator-activated receptor α: an adaptive metabolic system
    • 10 Reddy, J.K., Hashimoto, T., Peroxisomal β-oxidation and peroxisome proliferator-activated receptor α: an adaptive metabolic system. Annu. Rev. Nutr. 21 (2001), 193–230.
    • (2001) Annu. Rev. Nutr. , vol.21 , pp. 193-230
    • Reddy, J.K.1    Hashimoto, T.2
  • 11
    • 84885365145 scopus 로고    scopus 로고
    • Peroxisomes and their key role in cellular signaling and metabolism
    • 11 Wanders, R.J.A., Peroxisomes and their key role in cellular signaling and metabolism. Subcell. Biochem. 69 (2013), 23–44.
    • (2013) Subcell. Biochem. , vol.69 , pp. 23-44
    • Wanders, R.J.A.1
  • 12
    • 84895192712 scopus 로고    scopus 로고
    • Metabolic functions of peroxisomes in health and disease
    • 12 Wanders, R.J.A., Metabolic functions of peroxisomes in health and disease. Biochimie 98 (2014), 36–44.
    • (2014) Biochimie , vol.98 , pp. 36-44
    • Wanders, R.J.A.1
  • 13
    • 0030451896 scopus 로고    scopus 로고
    • Lipid biosynthesis in peroxisomes
    • 13 Hajra, A.K., Das, A.K., Lipid biosynthesis in peroxisomes. Ann. N. Y. Acad. Sci. 804 (1996), 129–141.
    • (1996) Ann. N. Y. Acad. Sci. , vol.804 , pp. 129-141
    • Hajra, A.K.1    Das, A.K.2
  • 14
    • 84864705801 scopus 로고    scopus 로고
    • Inhibiting adipose tissue lipogenesis reprograms thermogenesis and PPARγ activation to decrease diet-induced obesity
    • 14 Lodhi, I.J., et al. Inhibiting adipose tissue lipogenesis reprograms thermogenesis and PPARγ activation to decrease diet-induced obesity. Cell Metab. 16 (2012), 189–201.
    • (2012) Cell Metab. , vol.16 , pp. 189-201
    • Lodhi, I.J.1
  • 15
    • 84920563401 scopus 로고    scopus 로고
    • Peroxisomal lipid synthesis regulates inflammation by sustaining neutrophil membrane phospholipid composition and viability
    • 15 Lodhi, I.J., et al. Peroxisomal lipid synthesis regulates inflammation by sustaining neutrophil membrane phospholipid composition and viability. Cell Metab. 21 (2015), 51–64.
    • (2015) Cell Metab. , vol.21 , pp. 51-64
    • Lodhi, I.J.1
  • 16
    • 0042131525 scopus 로고    scopus 로고
    • Inactivation of ether lipid biosynthesis causes male infertility, defects in eye development and optic nerve hypoplasia in mice
    • 16 Rodemer, C., et al. Inactivation of ether lipid biosynthesis causes male infertility, defects in eye development and optic nerve hypoplasia in mice. Hum. Mol. Genet. 12 (2003), 1881–1895.
    • (2003) Hum. Mol. Genet. , vol.12 , pp. 1881-1895
    • Rodemer, C.1
  • 17
    • 84874070103 scopus 로고    scopus 로고
    • Human sperm tail proteome suggests new endogenous metabolic pathways
    • 17 Amaral, A., et al. Human sperm tail proteome suggests new endogenous metabolic pathways. Mol. Cell. Proteomics 12 (2013), 330–342.
    • (2013) Mol. Cell. Proteomics , vol.12 , pp. 330-342
    • Amaral, A.1
  • 18
    • 84884219899 scopus 로고    scopus 로고
    • Altered phospholipid molecular species and glycolipid composition in brain, liver and fibroblasts of Zellweger syndrome
    • 18 Miyazaki, C., et al. Altered phospholipid molecular species and glycolipid composition in brain, liver and fibroblasts of Zellweger syndrome. Neurosci. Lett. 552 (2013), 71–75.
    • (2013) Neurosci. Lett. , vol.552 , pp. 71-75
    • Miyazaki, C.1
  • 19
    • 84859927634 scopus 로고    scopus 로고
    • Peroxisome-derived lipids are self antigens that stimulate invariant natural killer T cells in the thymus
    • 19 Facciotti, F., et al. Peroxisome-derived lipids are self antigens that stimulate invariant natural killer T cells in the thymus. Nat. Immunol. 13 (2012), 474–480.
    • (2012) Nat. Immunol. , vol.13 , pp. 474-480
    • Facciotti, F.1
  • 20
    • 70350417306 scopus 로고    scopus 로고
    • Bile acids: the role of peroxisomes
    • 20 Ferdinandusse, S., et al. Bile acids: the role of peroxisomes. J. Lipid Res. 50 (2009), 2139–2147.
    • (2009) J. Lipid Res. , vol.50 , pp. 2139-2147
    • Ferdinandusse, S.1
  • 21
    • 33846991643 scopus 로고    scopus 로고
    • Localization of the pre-squalene segment of the isoprenoid biosynthetic pathway in mammalian peroxisomes
    • 21 Kovacs, W.J., et al. Localization of the pre-squalene segment of the isoprenoid biosynthetic pathway in mammalian peroxisomes. Histochem. Cell Biol. 127 (2007), 273–290.
    • (2007) Histochem. Cell Biol. , vol.127 , pp. 273-290
    • Kovacs, W.J.1
  • 22
    • 33746366462 scopus 로고    scopus 로고
    • Biochemistry of mammalian peroxisomes revisited
    • 22 Wanders, R.J., Waterham, H.R., Biochemistry of mammalian peroxisomes revisited. Annu. Rev. Biochem. 75 (2006), 295–332.
    • (2006) Annu. Rev. Biochem. , vol.75 , pp. 295-332
    • Wanders, R.J.1    Waterham, H.R.2
  • 23
    • 84927126103 scopus 로고    scopus 로고
    • Cholesterol transport through lysosome-peroxisome membrane contacts
    • 23 Chu, B-B., et al. Cholesterol transport through lysosome-peroxisome membrane contacts. Cell 161 (2015), 291–306.
    • (2015) Cell , vol.161 , pp. 291-306
    • Chu, B.-B.1
  • 24
    • 0036906759 scopus 로고    scopus 로고
    • Peroxisome senescence in human fibroblasts
    • 24 Legakis, J.E., et al. Peroxisome senescence in human fibroblasts. Mol. Biol. Cell 13 (2002), 4243–4255.
    • (2002) Mol. Biol. Cell , vol.13 , pp. 4243-4255
    • Legakis, J.E.1
  • 25
    • 0015363173 scopus 로고
    • The cellular production of hydrogen peroxide
    • 25 Boveris, A., et al. The cellular production of hydrogen peroxide. Biochem. J. 128 (1972), 617–630.
    • (1972) Biochem. J. , vol.128 , pp. 617-630
    • Boveris, A.1
  • 26
    • 84864050485 scopus 로고    scopus 로고
    • Role of peroxisomes in ROS/RNS-metabolism: implications for human disease
    • 26 Fransen, M., et al. Role of peroxisomes in ROS/RNS-metabolism: implications for human disease. Biochim. Biophys. Acta 1822 (2012), 1363–1373.
    • (2012) Biochim. Biophys. Acta , vol.1822 , pp. 1363-1373
    • Fransen, M.1
  • 27
    • 77954484645 scopus 로고    scopus 로고
    • Peroxisomes are oxidative organelles
    • 27 Antonenkov, V.D., et al. Peroxisomes are oxidative organelles. Antioxid. Redox Signal. 13 (2010), 525–537.
    • (2010) Antioxid. Redox Signal. , vol.13 , pp. 525-537
    • Antonenkov, V.D.1
  • 28
    • 84858376953 scopus 로고    scopus 로고
    • Mitochondria: in sickness and in health
    • 28 Nunnari, J., Suomalainen, A., Mitochondria: in sickness and in health. Cell 148 (2012), 1145–1159.
    • (2012) Cell , vol.148 , pp. 1145-1159
    • Nunnari, J.1    Suomalainen, A.2
  • 29
    • 84873730644 scopus 로고    scopus 로고
    • Peroxisomes, oxidative stress, and inflammation
    • 29 Terlecky, S.R., et al. Peroxisomes, oxidative stress, and inflammation. World J. Biol. Chem. 3 (2012), 93–97.
    • (2012) World J. Biol. Chem. , vol.3 , pp. 93-97
    • Terlecky, S.R.1
  • 30
    • 79955506970 scopus 로고    scopus 로고
    • Intraperoxisomal redox balance in mammalian cells: oxidative stress and interorganellar cross-talk
    • 30 Ivashchenko, O., et al. Intraperoxisomal redox balance in mammalian cells: oxidative stress and interorganellar cross-talk. Mol. Biol. Cell 22 (2011), 1440–1451.
    • (2011) Mol. Biol. Cell , vol.22 , pp. 1440-1451
    • Ivashchenko, O.1
  • 31
    • 84863115387 scopus 로고    scopus 로고
    • Catalase deficiency accelerates diabetic renal injury through peroxisomal dysfunction
    • 31 Hwang, I., et al. Catalase deficiency accelerates diabetic renal injury through peroxisomal dysfunction. Diabetes 61 (2012), 728–738.
    • (2012) Diabetes , vol.61 , pp. 728-738
    • Hwang, I.1
  • 32
    • 85002926411 scopus 로고    scopus 로고
    • Deep proteome analysis identifies age-related processes in C. elegans
    • 32 Narayan, V., et al. Deep proteome analysis identifies age-related processes in C. elegans. Cell Syst. 3 (2016), 144–159.
    • (2016) Cell Syst. , vol.3 , pp. 144-159
    • Narayan, V.1
  • 33
    • 0030459304 scopus 로고    scopus 로고
    • Multiple PEX genes are required for proper subcellular distribution and stability of Pex5p, the PTS1 receptor: evidence that PTS1 protein import is mediated by a cycling receptor
    • 33 Dodt, G., Gould, S.J., Multiple PEX genes are required for proper subcellular distribution and stability of Pex5p, the PTS1 receptor: evidence that PTS1 protein import is mediated by a cycling receptor. J. Cell Biol. 135 (1996), 1763–1774.
    • (1996) J. Cell Biol. , vol.135 , pp. 1763-1774
    • Dodt, G.1    Gould, S.J.2
  • 34
    • 84865279926 scopus 로고    scopus 로고
    • Recent advances in peroxisomal matrix protein import
    • 34 Liu, X., et al. Recent advances in peroxisomal matrix protein import. Curr. Opin. Cell Biol. 24 (2012), 484–489.
    • (2012) Curr. Opin. Cell Biol. , vol.24 , pp. 484-489
    • Liu, X.1
  • 35
    • 81755181731 scopus 로고    scopus 로고
    • PEX5 protein binds monomeric catalase blocking its tetramerization and releases it upon binding the n-terminal domain of PEX14
    • 35 Freitas, M.O., et al. PEX5 protein binds monomeric catalase blocking its tetramerization and releases it upon binding the n-terminal domain of PEX14. J. Biol. Chem. 286 (2011), 40509–40519.
    • (2011) J. Biol. Chem. , vol.286 , pp. 40509-40519
    • Freitas, M.O.1
  • 36
    • 84884579723 scopus 로고    scopus 로고
    • Redox-regulated cargo binding and release by the peroxisomal targeting signal receptor
    • 36 Ma, C., et al. Redox-regulated cargo binding and release by the peroxisomal targeting signal receptor. Pex5. J. Biol. Chem. 288 (2013), 27220–27231.
    • (2013) Pex5. J. Biol. Chem. , vol.288 , pp. 27220-27231
    • Ma, C.1
  • 37
    • 84889598580 scopus 로고    scopus 로고
    • PEX5, the shuttling import receptor for peroxisomal matrix proteins, is a redox-sensitive protein: PTS1 protein import and oxidative stress
    • 37 Apanasets, O., et al. PEX5, the shuttling import receptor for peroxisomal matrix proteins, is a redox-sensitive protein: PTS1 protein import and oxidative stress. Traffic 15 (2014), 94–103.
    • (2014) Traffic , vol.15 , pp. 94-103
    • Apanasets, O.1
  • 38
    • 70350674903 scopus 로고    scopus 로고
    • Peroxisome dynamics in cultured mammalian cells
    • 38 Huybrechts, S.J., et al. Peroxisome dynamics in cultured mammalian cells. Traffic 10 (2009), 1722–1733.
    • (2009) Traffic , vol.10 , pp. 1722-1733
    • Huybrechts, S.J.1
  • 39
    • 77950470469 scopus 로고    scopus 로고
    • Molecular mechanism and physiological role of pexophagy
    • 39 Manjithaya, R., et al. Molecular mechanism and physiological role of pexophagy. FEBS Lett. 584 (2010), 1367–1373.
    • (2010) FEBS Lett. , vol.584 , pp. 1367-1373
    • Manjithaya, R.1
  • 40
    • 85009876211 scopus 로고    scopus 로고
    • Autophagic degradation of peroxisomes in mammals
    • 40 Zientara-Rytter, K., Subramani, S., Autophagic degradation of peroxisomes in mammals. Biochem. Soc. Trans. 44 (2016), 431–440.
    • (2016) Biochem. Soc. Trans. , vol.44 , pp. 431-440
    • Zientara-Rytter, K.1    Subramani, S.2
  • 41
    • 84892859905 scopus 로고    scopus 로고
    • Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy
    • 41 Rogov, V., et al. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol. Cell 53 (2014), 167–178.
    • (2014) Mol. Cell , vol.53 , pp. 167-178
    • Rogov, V.1
  • 42
    • 84961149074 scopus 로고    scopus 로고
    • Pexophagy in yeasts
    • 42 Oku, M., Sakai, Y., Pexophagy in yeasts. Biochim. Biophys. Acta 1863 (2016), 992–998.
    • (2016) Biochim. Biophys. Acta , vol.1863 , pp. 992-998
    • Oku, M.1    Sakai, Y.2
  • 43
    • 84943775216 scopus 로고    scopus 로고
    • Export-deficient monoubiquitinated PEX5 triggers peroxisome removal in SV40 large T antigen-transformed mouse embryonic fibroblasts
    • 43 Nordgren, M., et al. Export-deficient monoubiquitinated PEX5 triggers peroxisome removal in SV40 large T antigen-transformed mouse embryonic fibroblasts. Autophagy 11 (2015), 1326–1340.
    • (2015) Autophagy , vol.11 , pp. 1326-1340
    • Nordgren, M.1
  • 44
    • 84942982653 scopus 로고    scopus 로고
    • ATM functions at the peroxisome to induce pexophagy in response to ROS
    • 44 Zhang, J., et al. ATM functions at the peroxisome to induce pexophagy in response to ROS. Nat. Cell Biol. 17 (2015), 1259–1269.
    • (2015) Nat. Cell Biol. , vol.17 , pp. 1259-1269
    • Zhang, J.1
  • 45
    • 84885105969 scopus 로고    scopus 로고
    • A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS
    • 45 Zhang, J., et al. A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS. Nat. Cell Biol. 15 (2013), 1186–1196.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 1186-1196
    • Zhang, J.1
  • 46
    • 84910142171 scopus 로고    scopus 로고
    • Hif-2α promotes degradation of mammalian peroxisomes by selective autophagy
    • 46 Walter, K.M., et al. Hif-2α promotes degradation of mammalian peroxisomes by selective autophagy. Cell Metab. 20 (2014), 882–897.
    • (2014) Cell Metab. , vol.20 , pp. 882-897
    • Walter, K.M.1
  • 47
    • 84991224662 scopus 로고    scopus 로고
    • PEX2 is the E3 ubiquitin ligase required for pexophagy during starvation
    • 47 Sargent, G., et al. PEX2 is the E3 ubiquitin ligase required for pexophagy during starvation. J. Cell Biol. 214 (2016), 677–690.
    • (2016) J. Cell Biol. , vol.214 , pp. 677-690
    • Sargent, G.1
  • 48
    • 84858383401 scopus 로고    scopus 로고
    • Diabetes mellitus and the β cell: the last ten years
    • 48 Ashcroft, F.M., Rorsman, P., Diabetes mellitus and the β cell: the last ten years. Cell 148 (2012), 1160–1171.
    • (2012) Cell , vol.148 , pp. 1160-1171
    • Ashcroft, F.M.1    Rorsman, P.2
  • 49
    • 84994021942 scopus 로고    scopus 로고
    • Oxidative stress and lipotoxicity
    • 49 Hauck, A.K., Bernlohr, D.A., Oxidative stress and lipotoxicity. J. Lipid Res. 57 (2016), 1976–1986.
    • (2016) J. Lipid Res. , vol.57 , pp. 1976-1986
    • Hauck, A.K.1    Bernlohr, D.A.2
  • 50
    • 84865418540 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in pancreatic β cells
    • 50 Supale, S., et al. Mitochondrial dysfunction in pancreatic β cells. Trends Endocrinol. Metab. 23 (2012), 477–487.
    • (2012) Trends Endocrinol. Metab. , vol.23 , pp. 477-487
    • Supale, S.1
  • 51
    • 78751513443 scopus 로고    scopus 로고
    • Peroxisome-generated hydrogen peroxide as important mediator of lipotoxicity in insulin-producing cells
    • 51 Elsner, M., et al. Peroxisome-generated hydrogen peroxide as important mediator of lipotoxicity in insulin-producing cells. Diabetes 60 (2011), 200–208.
    • (2011) Diabetes , vol.60 , pp. 200-208
    • Elsner, M.1
  • 52
    • 84899584562 scopus 로고    scopus 로고
    • Peroxisomal dysfunction is associated with up-regulation of apoptotic cell death via miR-223 induction in knee osteoarthritis patients with type 2 diabetes mellitus
    • 52 Kim, D., et al. Peroxisomal dysfunction is associated with up-regulation of apoptotic cell death via miR-223 induction in knee osteoarthritis patients with type 2 diabetes mellitus. Bone 64 (2014), 124–131.
    • (2014) Bone , vol.64 , pp. 124-131
    • Kim, D.1
  • 53
    • 84879537948 scopus 로고    scopus 로고
    • Endothelial peroxisomal dysfunction and impaired pexophagy promotes oxidative damage in lipopolysaccharide-induced acute kidney injury
    • 53 Vasko, R., et al. Endothelial peroxisomal dysfunction and impaired pexophagy promotes oxidative damage in lipopolysaccharide-induced acute kidney injury. Antioxid. Redox Signal. 19 (2013), 211–230.
    • (2013) Antioxid. Redox Signal. , vol.19 , pp. 211-230
    • Vasko, R.1
  • 54
    • 84939599869 scopus 로고    scopus 로고
    • Catalase therapy corrects oxidative stress-induced pathophysiology in incipient diabetic retinopathy
    • 54 Giordano, C.R., et al. Catalase therapy corrects oxidative stress-induced pathophysiology in incipient diabetic retinopathy. Investig. Opthalmology Vis. Sci., 56, 2015, 3095.
    • (2015) Investig. Opthalmology Vis. Sci. , vol.56 , pp. 3095
    • Giordano, C.R.1
  • 55
    • 80054704470 scopus 로고    scopus 로고
    • Peroxisomal alterations in Alzheimer's disease
    • 55 Kou, J., et al. Peroxisomal alterations in Alzheimer's disease. Acta Neuropathol. (Berl.) 122 (2011), 271–283.
    • (2011) Acta Neuropathol. (Berl.) , vol.122 , pp. 271-283
    • Kou, J.1
  • 56
    • 84952926583 scopus 로고    scopus 로고
    • Elevation of cortical C26:0 due to the decline of peroxisomal β-oxidation potentiates amyloid β generation and spatial memory deficits via oxidative stress in diabetic rats
    • 56 Shi, Y., et al. Elevation of cortical C26:0 due to the decline of peroxisomal β-oxidation potentiates amyloid β generation and spatial memory deficits via oxidative stress in diabetic rats. Neuroscience 315 (2016), 125–135.
    • (2016) Neuroscience , vol.315 , pp. 125-135
    • Shi, Y.1
  • 57
    • 84901044955 scopus 로고    scopus 로고
    • Amyloid-beta neuroprotection mediated by a targeted antioxidant
    • 57 Giordano, C.R., et al. Amyloid-beta neuroprotection mediated by a targeted antioxidant. Sci. Rep., 4, 2014, 4983.
    • (2014) Sci. Rep. , vol.4 , pp. 4983
    • Giordano, C.R.1
  • 58
    • 84884414892 scopus 로고    scopus 로고
    • Greasing the synaptic vesicle cycle by membrane lipids
    • 58 Puchkov, D., Haucke, V., Greasing the synaptic vesicle cycle by membrane lipids. Trends Cell Biol. 23 (2013), 493–503.
    • (2013) Trends Cell Biol. , vol.23 , pp. 493-503
    • Puchkov, D.1    Haucke, V.2
  • 59
    • 84861739965 scopus 로고    scopus 로고
    • Impaired neurotransmission in ether lipid-deficient nerve terminals
    • 59 Brodde, A., et al. Impaired neurotransmission in ether lipid-deficient nerve terminals. Hum. Mol. Genet. 21 (2012), 2713–2724.
    • (2012) Hum. Mol. Genet. , vol.21 , pp. 2713-2724
    • Brodde, A.1
  • 60
    • 84884560388 scopus 로고    scopus 로고
    • Using neurolipidomics to identify phospholipid mediators of synaptic (dys)function in Alzheimer's disease
    • 60 Bennett, S.A.L., et al. Using neurolipidomics to identify phospholipid mediators of synaptic (dys)function in Alzheimer's disease. Front. Physiol., 4, 2013, 168.
    • (2013) Front. Physiol. , vol.4 , pp. 168
    • Bennett, S.A.L.1
  • 61
    • 84855973361 scopus 로고    scopus 로고
    • Severe alterations in lipid composition of frontal cortex lipid rafts from Parkinson's disease and incidental Parkinson's disease
    • 61 Fabelo, N., et al. Severe alterations in lipid composition of frontal cortex lipid rafts from Parkinson's disease and incidental Parkinson's disease. Mol. Med., 17, 2011, 1107.
    • (2011) Mol. Med. , vol.17 , pp. 1107
    • Fabelo, N.1
  • 62
    • 84962583837 scopus 로고    scopus 로고
    • Plasmalogen augmentation reverses striatal dopamine loss in MPTP mice
    • 62 Miville-Godbout, E., et al. Plasmalogen augmentation reverses striatal dopamine loss in MPTP mice. PLoS One, 11, 2016, e0151020.
    • (2016) PLoS One , vol.11 , pp. e0151020
    • Miville-Godbout, E.1
  • 63
    • 84882630497 scopus 로고    scopus 로고
    • A peroxisome biogenesis deficiency prevents the binding of alpha-synuclein to lipid droplets in lipid-loaded yeast
    • 63 Wang, S., et al. A peroxisome biogenesis deficiency prevents the binding of alpha-synuclein to lipid droplets in lipid-loaded yeast. Biochem. Biophys. Res. Commun. 438 (2013), 452–456.
    • (2013) Biochem. Biophys. Res. Commun. , vol.438 , pp. 452-456
    • Wang, S.1
  • 64
    • 84871433609 scopus 로고    scopus 로고
    • Global profiling strategies for mapping dysregulated metabolic pathways in cancer
    • 64 Benjamin, D.I., et al. Global profiling strategies for mapping dysregulated metabolic pathways in cancer. Cell Metab. 16 (2012), 565–577.
    • (2012) Cell Metab. , vol.16 , pp. 565-577
    • Benjamin, D.I.1
  • 65
    • 0014441241 scopus 로고
    • Alkyl and alk-1-enyl ethers of glycerol in lipids from normal and neoplastic human tissues
    • 65 Snyder, F., Wood, R., Alkyl and alk-1-enyl ethers of glycerol in lipids from normal and neoplastic human tissues. Cancer Res. 29 (1969), 251–257.
    • (1969) Cancer Res. , vol.29 , pp. 251-257
    • Snyder, F.1    Wood, R.2
  • 66
    • 84976877694 scopus 로고    scopus 로고
    • Lipidomic signatures and associated transcriptomic profiles of clear cell renal cell carcinoma
    • 66 Saito, K., et al. Lipidomic signatures and associated transcriptomic profiles of clear cell renal cell carcinoma. Sci. Rep., 6, 2016, 28932.
    • (2016) Sci. Rep. , vol.6 , pp. 28932
    • Saito, K.1
  • 67
    • 84922784986 scopus 로고    scopus 로고
    • The ether lipid precursor hexadecylglycerol stimulates the release and changes the composition of exosomes derived from PC-3 cells
    • 67 Phuyal, S., et al. The ether lipid precursor hexadecylglycerol stimulates the release and changes the composition of exosomes derived from PC-3 cells. J. Biol. Chem. 290 (2015), 4225–4237.
    • (2015) J. Biol. Chem. , vol.290 , pp. 4225-4237
    • Phuyal, S.1
  • 68
    • 84856068961 scopus 로고    scopus 로고
    • Regulation of peroxisomal lipid metabolism by catalytic activity of tumor suppressor H-rev107
    • 68 Uyama, T., et al. Regulation of peroxisomal lipid metabolism by catalytic activity of tumor suppressor H-rev107. J. Biol. Chem. 287 (2012), 2706–2718.
    • (2012) J. Biol. Chem. , vol.287 , pp. 2706-2718
    • Uyama, T.1
  • 69
    • 84940093443 scopus 로고    scopus 로고
    • Interaction of phospholipase A/acyltransferase-3 with Pex19p: a possible involvement in the down-regulation of peroxisomes
    • 69 Uyama, T., et al. Interaction of phospholipase A/acyltransferase-3 with Pex19p: a possible involvement in the down-regulation of peroxisomes. J. Biol. Chem. 290 (2015), 17520–17534.
    • (2015) J. Biol. Chem. , vol.290 , pp. 17520-17534
    • Uyama, T.1
  • 70
    • 0345861756 scopus 로고    scopus 로고
    • PEX19 is a predominantly cytosolic chaperone and import receptor for class 1 peroxisomal membrane proteins
    • 70 Jones, J.M., et al. PEX19 is a predominantly cytosolic chaperone and import receptor for class 1 peroxisomal membrane proteins. J. Cell Biol. 164 (2004), 57–67.
    • (2004) J. Cell Biol. , vol.164 , pp. 57-67
    • Jones, J.M.1
  • 71
    • 84883819129 scopus 로고    scopus 로고
    • Ether lipid generating enzyme AGPS alters the balance of structural and signaling lipids to fuel cancer pathogenicity
    • 71 Benjamin, D.I., et al. Ether lipid generating enzyme AGPS alters the balance of structural and signaling lipids to fuel cancer pathogenicity. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), 14912–14917.
    • (2013) Proc. Natl. Acad. Sci. U. S. A. , vol.110 , pp. 14912-14917
    • Benjamin, D.I.1
  • 72
    • 84903213693 scopus 로고    scopus 로고
    • Role and mechanism of the alkylglycerone phosphate synthase in suppressing the invasion potential of human glioma and hepatic carcinoma cells in vitro
    • 72 Zhu, Y., et al. Role and mechanism of the alkylglycerone phosphate synthase in suppressing the invasion potential of human glioma and hepatic carcinoma cells in vitro. Oncol. Rep. 32 (2014), 431–436.
    • (2014) Oncol. Rep. , vol.32 , pp. 431-436
    • Zhu, Y.1
  • 73
    • 84947909618 scopus 로고    scopus 로고
    • Discovery of inhibitors for the ether lipid-generating enzyme AGPS as anti-cancer agents
    • 73 Piano, V., et al. Discovery of inhibitors for the ether lipid-generating enzyme AGPS as anti-cancer agents. ACS Chem. Biol. 10 (2015), 2589–2597.
    • (2015) ACS Chem. Biol. , vol.10 , pp. 2589-2597
    • Piano, V.1
  • 74
    • 0037012476 scopus 로고    scopus 로고
    • α-methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer
    • 74 Rubin, M.A., et al. α-methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer. JAMA 287 (2002), 1662–1670.
    • (2002) JAMA , vol.287 , pp. 1662-1670
    • Rubin, M.A.1
  • 75
    • 84875754906 scopus 로고    scopus 로고
    • α-Methylacyl-CoA racemase (AMACR): metabolic enzyme, drug metabolizer and cancer marker P504S
    • 75 Lloyd, M.D., et al. α-Methylacyl-CoA racemase (AMACR): metabolic enzyme, drug metabolizer and cancer marker P504S. Prog. Lipid Res. 52 (2013), 220–230.
    • (2013) Prog. Lipid Res. , vol.52 , pp. 220-230
    • Lloyd, M.D.1
  • 76
    • 84918544789 scopus 로고    scopus 로고
    • AMACR amplification in myxofibrosarcomas: a mechanism of overexpression that promotes cell proliferation with therapeutic relevance
    • 76 Li, C-F., et al. AMACR amplification in myxofibrosarcomas: a mechanism of overexpression that promotes cell proliferation with therapeutic relevance. Clin. Cancer Res. 20 (2014), 6141–6152.
    • (2014) Clin. Cancer Res. , vol.20 , pp. 6141-6152
    • Li, C.-F.1
  • 77
    • 33748260777 scopus 로고    scopus 로고
    • Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer
    • 77 Liu, Y., Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate Cancer Prostatic Dis. 9 (2006), 230–234.
    • (2006) Prostate Cancer Prostatic Dis. , vol.9 , pp. 230-234
    • Liu, Y.1
  • 78
    • 66249108601 scopus 로고    scopus 로고
    • Understanding the Warburg effect: the metabolic requirements of cell proliferation
    • 78 Vander Heiden, M.G., et al. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324 (2009), 1029–1033.
    • (2009) Science , vol.324 , pp. 1029-1033
    • Vander Heiden, M.G.1
  • 79
    • 84959451365 scopus 로고    scopus 로고
    • The Warburg effect: how does it benefit cancer cells?
    • 79 Liberti, M.V., Locasale, J.W., The Warburg effect: how does it benefit cancer cells?. Trends Biochem. Sci. 41 (2016), 211–218.
    • (2016) Trends Biochem. Sci. , vol.41 , pp. 211-218
    • Liberti, M.V.1    Locasale, J.W.2
  • 80
    • 84861430732 scopus 로고    scopus 로고
    • Cryptic peroxisomal targeting via alternative splicing and stop codon read-through in fungi
    • 80 Freitag, J., et al. Cryptic peroxisomal targeting via alternative splicing and stop codon read-through in fungi. Nature 485 (2012), 522–525.
    • (2012) Nature , vol.485 , pp. 522-525
    • Freitag, J.1
  • 81
    • 84926148990 scopus 로고    scopus 로고
    • Peroxisomal lactate dehydrogenase is generated by translational readthrough in mammals
    • 81 Schueren, F., et al. Peroxisomal lactate dehydrogenase is generated by translational readthrough in mammals. Elife, 3, 2014, e03640.
    • (2014) Elife , vol.3 , pp. e03640
    • Schueren, F.1
  • 82
    • 84908316001 scopus 로고    scopus 로고
    • Ribosomal readthrough at a short UGA stop codon context triggers dual localization of metabolic enzymes in fungi and animals
    • 82 Stiebler, A.C., et al. Ribosomal readthrough at a short UGA stop codon context triggers dual localization of metabolic enzymes in fungi and animals. PLoS Genet., 10, 2014, e1004685.
    • (2014) PLoS Genet. , vol.10 , pp. e1004685
    • Stiebler, A.C.1
  • 83
    • 0037466404 scopus 로고    scopus 로고
    • Peroxisomal membrane monocarboxylate transporters: evidence for a redox shuttle system?
    • 83 McClelland, G.B., et al. Peroxisomal membrane monocarboxylate transporters: evidence for a redox shuttle system?. Biochem. Biophys. Res. Commun. 304 (2003), 130–135.
    • (2003) Biochem. Biophys. Res. Commun. , vol.304 , pp. 130-135
    • McClelland, G.B.1
  • 84
    • 84883514161 scopus 로고    scopus 로고
    • Targeting lactate metabolism for cancer therapeutics
    • 84 Doherty, J.R., Cleveland, J.L., Targeting lactate metabolism for cancer therapeutics. J. Clin. Invest. 123 (2013), 3685–3692.
    • (2013) J. Clin. Invest. , vol.123 , pp. 3685-3692
    • Doherty, J.R.1    Cleveland, J.L.2
  • 85
    • 84925880705 scopus 로고    scopus 로고
    • Localization of MCT2 at peroxisomes is associated with malignant transformation in prostate cancer
    • 85 Valença, I., et al. Localization of MCT2 at peroxisomes is associated with malignant transformation in prostate cancer. J. Cell. Mol. Med. 19 (2015), 723–733.
    • (2015) J. Cell. Mol. Med. , vol.19 , pp. 723-733
    • Valença, I.1
  • 86
    • 84940758201 scopus 로고    scopus 로고
    • Epigenetic and oncogenic regulation of SLC16A7 (MCT2) results in protein over-expression, impacting on signalling and cellular phenotypes in prostate cancer
    • 86 Pertega-Gomes, N., et al. Epigenetic and oncogenic regulation of SLC16A7 (MCT2) results in protein over-expression, impacting on signalling and cellular phenotypes in prostate cancer. Oncotarget 6 (2015), 21675–21684.
    • (2015) Oncotarget , vol.6 , pp. 21675-21684
    • Pertega-Gomes, N.1
  • 87
    • 84962429359 scopus 로고    scopus 로고
    • Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways
    • 87 DeLoache, W.C., et al. Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways. Nat. Commun., 7, 2016, 11152.
    • (2016) Nat. Commun. , vol.7 , pp. 11152
    • DeLoache, W.C.1
  • 88
    • 85000786739 scopus 로고    scopus 로고
    • Harnessing yeast peroxisomes for biosynthesis of fatty-acid-derived biofuels and chemicals with relieved side-pathway competition
    • 88 Zhou, Y.J., et al. Harnessing yeast peroxisomes for biosynthesis of fatty-acid-derived biofuels and chemicals with relieved side-pathway competition. J. Am. Chem. Soc. 138 (2016), 15368–15377.
    • (2016) J. Am. Chem. Soc. , vol.138 , pp. 15368-15377
    • Zhou, Y.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.