-
1
-
-
84860324470
-
Roles for microRNAs in conferring robustness to biological processes
-
1 Ebert, M.S., Sharp, P.A., Roles for microRNAs in conferring robustness to biological processes. Cell 149 (2012), 515–524.
-
(2012)
Cell
, vol.149
, pp. 515-524
-
-
Ebert, M.S.1
Sharp, P.A.2
-
2
-
-
84956690733
-
MicroRNAs as regulators of endothelial cell functions in cardiometabolic diseases
-
2 Araldi, E., Suárez, Y., MicroRNAs as regulators of endothelial cell functions in cardiometabolic diseases. Biochim. Biophys. Acta 1861 (2016), 2094–2103.
-
(2016)
Biochim. Biophys. Acta
, vol.1861
, pp. 2094-2103
-
-
Araldi, E.1
Suárez, Y.2
-
3
-
-
84877298502
-
Characterization of human plasma-derived exosomal RNAs by deep sequencing
-
3 Huang, X., et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics, 14, 2013, 319.
-
(2013)
BMC Genomics
, vol.14
, pp. 319
-
-
Huang, X.1
-
4
-
-
84924134321
-
Long noncoding RNAs in cardiovascular diseases
-
4 Uchida, S., Dimmeler, S., Long noncoding RNAs in cardiovascular diseases. Circ. Res. 116 (2015), 737–750.
-
(2015)
Circ. Res.
, vol.116
, pp. 737-750
-
-
Uchida, S.1
Dimmeler, S.2
-
5
-
-
40549109924
-
Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p
-
5 Broadbent, H.M., et al. Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p. Hum. Mol. Genet. 17 (2008), 806–814.
-
(2008)
Hum. Mol. Genet.
, vol.17
, pp. 806-814
-
-
Broadbent, H.M.1
-
6
-
-
77649166974
-
ANRIL expression is associated with atherosclerosis risk at chromosome 9p21
-
6 Holdt, L.M., et al. ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arterioscler. Thromb. Vasc. Biol. 30 (2010), 620–627.
-
(2010)
Arterioscler. Thromb. Vasc. Biol.
, vol.30
, pp. 620-627
-
-
Holdt, L.M.1
-
7
-
-
79955468280
-
INK4B tumor suppressor gene
-
INK4B tumor suppressor gene. Oncogene 30 (2011), 1956–1962.
-
(2011)
Oncogene
, vol.30
, pp. 1956-1962
-
-
Kotake, Y.1
-
8
-
-
84921444103
-
Long noncoding RNA ANRIL promotes non-small cell lung cancer cell proliferation and inhibits apoptosis by silencing KLF2 and P21 expression
-
8 Nie, F.Q., et al. Long noncoding RNA ANRIL promotes non-small cell lung cancer cell proliferation and inhibits apoptosis by silencing KLF2 and P21 expression. Mol. Cancer Ther. 14 (2015), 268–277.
-
(2015)
Mol. Cancer Ther.
, vol.14
, pp. 268-277
-
-
Nie, F.Q.1
-
9
-
-
84880799429
-
Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks
-
9 Holdt, L.M., et al. Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet., 9, 2013, e1003588.
-
(2013)
PLoS Genet.
, vol.9
, pp. e1003588
-
-
Holdt, L.M.1
-
10
-
-
84964066198
-
Long non-coding RNA ANRIL regulates inflammatory responses as a novel component of NF-κB pathway
-
10 Zhou, X., et al. Long non-coding RNA ANRIL regulates inflammatory responses as a novel component of NF-κB pathway. RNA Biol. 13 (2016), 98–108.
-
(2016)
RNA Biol.
, vol.13
, pp. 98-108
-
-
Zhou, X.1
-
11
-
-
84960876092
-
Vascular endothelium – gatekeeper of vessel health
-
11 Cahill, P.A., Redmond, E.M., Vascular endothelium – gatekeeper of vessel health. Atherosclerosis 248 (2016), 97–109.
-
(2016)
Atherosclerosis
, vol.248
, pp. 97-109
-
-
Cahill, P.A.1
Redmond, E.M.2
-
12
-
-
67649552969
-
Risk prediction in cardiovascular disease: the prognostic significance of endothelial dysfunction
-
12 Martin, B.J., Anderson, T.J., Risk prediction in cardiovascular disease: the prognostic significance of endothelial dysfunction. Can. J. Cardiol. 25:Suppl. A (2009), 15A–20A.
-
(2009)
Can. J. Cardiol.
, vol.25
, pp. 15A-20A
-
-
Martin, B.J.1
Anderson, T.J.2
-
13
-
-
75349088914
-
Endothelial dysfunction in metabolic syndrome: prevalence, pathogenesis and management
-
13 Tziomalos, K., et al. Endothelial dysfunction in metabolic syndrome: prevalence, pathogenesis and management. Nutr. Metab. Cardiovasc. Dis. 20 (2010), 140–146.
-
(2010)
Nutr. Metab. Cardiovasc. Dis.
, vol.20
, pp. 140-146
-
-
Tziomalos, K.1
-
14
-
-
84929501636
-
Prevalence of the metabolic syndrome in the United States, 2003-2012
-
14 Aguilar, M., et al. Prevalence of the metabolic syndrome in the United States, 2003-2012. JAMA 313 (2015), 1973–1974.
-
(2015)
JAMA
, vol.313
, pp. 1973-1974
-
-
Aguilar, M.1
-
15
-
-
0034837376
-
Cardiovascular morbidity and mortality associated with the metabolic syndrome
-
15 Isomaa, B., et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 24 (2001), 683–689.
-
(2001)
Diabetes Care
, vol.24
, pp. 683-689
-
-
Isomaa, B.1
-
16
-
-
84897522177
-
A comprehensive review on metabolic syndrome
-
16 Kaur, J., A comprehensive review on metabolic syndrome. Cardiol. Res. Pract., 2014, 2014, 943162.
-
(2014)
Cardiol. Res. Pract.
, vol.2014
, pp. 943162
-
-
Kaur, J.1
-
17
-
-
66749139008
-
Pathogenesis and management of the dyslipidemia of the metabolic syndrome
-
17 Raal, F.J., Pathogenesis and management of the dyslipidemia of the metabolic syndrome. Metab. Syndr. Relat. Disord. 7 (2009), 83–88.
-
(2009)
Metab. Syndr. Relat. Disord.
, vol.7
, pp. 83-88
-
-
Raal, F.J.1
-
18
-
-
34249302620
-
Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells
-
18 Valadi, H., et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9 (2007), 654–659.
-
(2007)
Nat. Cell Biol.
, vol.9
, pp. 654-659
-
-
Valadi, H.1
-
19
-
-
48749122914
-
Circulating microRNAs as stable blood-based markers for cancer detection
-
19 Mitchell, P.S., et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. U.S.A. 105 (2008), 10513–10518.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 10513-10518
-
-
Mitchell, P.S.1
-
20
-
-
53349177819
-
Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases
-
20 Chen, X., et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 18 (2008), 997–1006.
-
(2008)
Cell Res.
, vol.18
, pp. 997-1006
-
-
Chen, X.1
-
21
-
-
84904704297
-
Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles
-
21 Colombo, M., et al. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 30 (2014), 255–289.
-
(2014)
Annu. Rev. Cell Dev. Biol.
, vol.30
, pp. 255-289
-
-
Colombo, M.1
-
22
-
-
79953301730
-
MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins
-
22 Vickers, K.C., et al. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 13 (2011), 423–433.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 423-433
-
-
Vickers, K.C.1
-
23
-
-
79953202200
-
Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma
-
23 Arroyo, J.D., et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci. U.S.A. 108 (2011), 5003–5008.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 5003-5008
-
-
Arroyo, J.D.1
-
24
-
-
78149409316
-
Export of microRNAs and microRNA-protective protein by mammalian cells
-
24 Wang, K., et al. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res. 38 (2010), 7248–7259.
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. 7248-7259
-
-
Wang, K.1
-
25
-
-
84857968441
-
The majority of microRNAs detectable in serum and saliva is concentrated in exosomes
-
25 Gallo, A., et al. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS ONE, 7, 2012, e30679.
-
(2012)
PLoS ONE
, vol.7
, pp. e30679
-
-
Gallo, A.1
-
26
-
-
77449127999
-
Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection
-
26 Zernecke, A., et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci. Signal., 2, 2009, ra81.
-
(2009)
Sci. Signal.
, vol.2
, pp. ra81
-
-
Zernecke, A.1
-
27
-
-
84887075238
-
Endothelial microparticle-mediated transfer of microRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles
-
27 Jansen, F., et al. Endothelial microparticle-mediated transfer of microRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation 128 (2013), 2026–2038.
-
(2013)
Circulation
, vol.128
, pp. 2026-2038
-
-
Jansen, F.1
-
28
-
-
84896894879
-
HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells
-
28 Tabet, F., et al. HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells. Nat. Commun., 5, 2014, 3292.
-
(2014)
Nat. Commun.
, vol.5
, pp. 3292
-
-
Tabet, F.1
-
29
-
-
84881033998
-
MicroRNAs activate natural killer cells through Toll-like receptor signaling
-
29 He, S., et al. MicroRNAs activate natural killer cells through Toll-like receptor signaling. Blood 121 (2013), 4663–4671.
-
(2013)
Blood
, vol.121
, pp. 4663-4671
-
-
He, S.1
-
30
-
-
84864503916
-
MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response
-
30 Fabbri, M., et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), E2110–E2116.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. E2110-E2116
-
-
Fabbri, M.1
-
31
-
-
84963604320
-
Blood-based biomarkers for metabolic syndrome
-
31 O'Neill, S., et al. Blood-based biomarkers for metabolic syndrome. Trends Endocrinol. Metab. 27 (2016), 363–374.
-
(2016)
Trends Endocrinol. Metab.
, vol.27
, pp. 363-374
-
-
O'Neill, S.1
-
32
-
-
84937129028
-
Endothelial cells suppress monocyte activation through secretion of extracellular vesicles containing antiinflammatory microRNAs
-
32 Njock, M-S., et al. Endothelial cells suppress monocyte activation through secretion of extracellular vesicles containing antiinflammatory microRNAs. Blood 125 (2015), 3202–3212.
-
(2015)
Blood
, vol.125
, pp. 3202-3212
-
-
Njock, M.-S.1
-
33
-
-
77957028990
-
Circulating microRNAs in patients with coronary artery disease
-
33 Fichtlscherer, S., et al. Circulating microRNAs in patients with coronary artery disease. Circ. Res. 107 (2010), 677–684.
-
(2010)
Circ. Res.
, vol.107
, pp. 677-684
-
-
Fichtlscherer, S.1
-
34
-
-
84929504046
-
MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease
-
34 Jansen, F., et al. MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease. J. Am. Heart Assoc., 3, 2014, e001249.
-
(2014)
J. Am. Heart Assoc.
, vol.3
, pp. e001249
-
-
Jansen, F.1
-
35
-
-
84934777883
-
Identification of microRNA biomarkers in type 2 diabetes: a meta-analysis of controlled profiling studies
-
35 Zhu, H., Leung, S.W., Identification of microRNA biomarkers in type 2 diabetes: a meta-analysis of controlled profiling studies. Diabetologia 58 (2015), 900–911.
-
(2015)
Diabetologia
, vol.58
, pp. 900-911
-
-
Zhu, H.1
Leung, S.W.2
-
36
-
-
84989172620
-
MicroRNA-126 and micro-/macrovascular complications of type 1 diabetes in the EURODIAB Prospective Complications Study
-
Published online October 1, 2016
-
36 Barutta, F., et al. MicroRNA-126 and micro-/macrovascular complications of type 1 diabetes in the EURODIAB Prospective Complications Study. Acta Diabetol., 2016, 10.1007/s00592-016-0915-4 Published online October 1, 2016.
-
(2016)
Acta Diabetol.
-
-
Barutta, F.1
-
37
-
-
77957259803
-
Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes
-
37 Zampetaki, A., et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ. Res. 107 (2010), 810–817.
-
(2010)
Circ. Res.
, vol.107
, pp. 810-817
-
-
Zampetaki, A.1
-
38
-
-
84967118772
-
Vascular endothelial microparticles-incorporated microRNAs are altered in patients with diabetes mellitus
-
38 Jansen, F., et al. Vascular endothelial microparticles-incorporated microRNAs are altered in patients with diabetes mellitus. Cardiovasc. Diabetol., 15, 2016, 49.
-
(2016)
Cardiovasc. Diabetol.
, vol.15
, pp. 49
-
-
Jansen, F.1
-
39
-
-
84858776574
-
MicroRNAs in metabolism and metabolic disorders
-
39 Rottiers, V., Naar, A.M., MicroRNAs in metabolism and metabolic disorders. Nat. Rev. Mol. Cell Biol. 13 (2012), 239–250.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 239-250
-
-
Rottiers, V.1
Naar, A.M.2
-
40
-
-
84870746025
-
Circulating miRNA profiles in patients with metabolic syndrome
-
40 Karolina, D.S., et al. Circulating miRNA profiles in patients with metabolic syndrome. J. Clin. Endocrinol. Metab. 97 (2012), E2271–E2276.
-
(2012)
J. Clin. Endocrinol. Metab.
, vol.97
, pp. E2271-E2276
-
-
Karolina, D.S.1
-
41
-
-
84899817221
-
Blood microRNA profile associates with the levels of serum lipids and metabolites associated with glucose metabolism and insulin resistance and pinpoints pathways underlying metabolic syndrome: the cardiovascular risk in Young Finns Study
-
41 Raitoharju, E., et al. Blood microRNA profile associates with the levels of serum lipids and metabolites associated with glucose metabolism and insulin resistance and pinpoints pathways underlying metabolic syndrome: the cardiovascular risk in Young Finns Study. Mol. Cell. Endocrinol. 391 (2014), 41–49.
-
(2014)
Mol. Cell. Endocrinol.
, vol.391
, pp. 41-49
-
-
Raitoharju, E.1
-
42
-
-
84899983271
-
microRNA-155 is inversely associated with severity of coronary stenotic lesions calculated by the Gensini score
-
42 Zhu, G.F., et al. microRNA-155 is inversely associated with severity of coronary stenotic lesions calculated by the Gensini score. Coron. Artery Dis. 25 (2014), 304–310.
-
(2014)
Coron. Artery Dis.
, vol.25
, pp. 304-310
-
-
Zhu, G.F.1
-
43
-
-
84975076991
-
Plasma miR-10a: a potential biomarker for coronary artery disease
-
43 Luo, L., et al. Plasma miR-10a: a potential biomarker for coronary artery disease. Dis. Markers, 2016, 2016, 3841927.
-
(2016)
Dis. Markers
, vol.2016
, pp. 3841927
-
-
Luo, L.1
-
44
-
-
84892908098
-
Systemic delivery of microRNA-181b inhibits nuclear factor-κB activation, vascular inflammation, and atherosclerosis in apolipoprotein E-deficient mice
-
44 Sun, X., et al. Systemic delivery of microRNA-181b inhibits nuclear factor-κB activation, vascular inflammation, and atherosclerosis in apolipoprotein E-deficient mice. Circ. Res. 114 (2014), 32–40.
-
(2014)
Circ. Res.
, vol.114
, pp. 32-40
-
-
Sun, X.1
-
45
-
-
84918526111
-
Decreased serum level of miR-146a as sign of chronic inflammation in type 2 diabetic patients
-
45 Baldeon, R.L., et al. Decreased serum level of miR-146a as sign of chronic inflammation in type 2 diabetic patients. PLoS ONE, 9, 2014, e115209.
-
(2014)
PLoS ONE
, vol.9
, pp. e115209
-
-
Baldeon, R.L.1
-
46
-
-
84960510003
-
E-selectin-targeting delivery of microRNAs by microparticles ameliorates endothelial inflammation and atherosclerosis
-
46 Ma, S., et al. E-selectin-targeting delivery of microRNAs by microparticles ameliorates endothelial inflammation and atherosclerosis. Sci. Rep., 6, 2016, 22910.
-
(2016)
Sci. Rep.
, vol.6
, pp. 22910
-
-
Ma, S.1
-
47
-
-
84954356949
-
MicroRNA-181b improves glucose homeostasis and insulin sensitivity by regulating endothelial function in white adipose tissue
-
47 Sun, X., et al. MicroRNA-181b improves glucose homeostasis and insulin sensitivity by regulating endothelial function in white adipose tissue. Circ. Res. 118 (2016), 810–821.
-
(2016)
Circ. Res.
, vol.118
, pp. 810-821
-
-
Sun, X.1
-
48
-
-
84940796521
-
Endothelial microparticles reduce ICAM-1 expression in a microRNA-222-dependent mechanism
-
48 Jansen, F., et al. Endothelial microparticles reduce ICAM-1 expression in a microRNA-222-dependent mechanism. J. Cell. Mol. Med. 19 (2015), 2202–2214.
-
(2015)
J. Cell. Mol. Med.
, vol.19
, pp. 2202-2214
-
-
Jansen, F.1
-
49
-
-
84857708170
-
Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs
-
49 Hergenreider, E., et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat. Cell Biol. 14 (2012), 249–256.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 249-256
-
-
Hergenreider, E.1
-
50
-
-
84880475762
-
Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells
-
50 van Balkom, B.W., et al. Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood 121 (2013), 3997–4006.
-
(2013)
Blood
, vol.121
, pp. 3997-4006
-
-
van Balkom, B.W.1
-
51
-
-
84877116748
-
MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy
-
51 Halkein, J., et al. MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy. J. Clin. Invest. 123 (2013), 2143–2154.
-
(2013)
J. Clin. Invest.
, vol.123
, pp. 2143-2154
-
-
Halkein, J.1
-
52
-
-
84899128394
-
Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy
-
52 Bang, C., et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J. Clin. Invest. 124 (2014), 2136–2146.
-
(2014)
J. Clin. Invest.
, vol.124
, pp. 2136-2146
-
-
Bang, C.1
-
53
-
-
84922105441
-
Identification of therapeutic covariant microRNA clusters in hypoxia-treated cardiac progenitor cell exosomes using systems biology
-
53 Gray, W.D., et al. Identification of therapeutic covariant microRNA clusters in hypoxia-treated cardiac progenitor cell exosomes using systems biology. Circ. Res. 116 (2015), 255–263.
-
(2015)
Circ. Res.
, vol.116
, pp. 255-263
-
-
Gray, W.D.1
-
54
-
-
84908110212
-
Cross talk of combined gene and cell therapy in ischemic heart disease: role of exosomal microRNA transfer
-
54 Ong, S.G., et al. Cross talk of combined gene and cell therapy in ischemic heart disease: role of exosomal microRNA transfer. Circulation 130:11 Suppl. 1 (2014), S60–S69.
-
(2014)
Circulation
, vol.130
, Issue.11 Suppl. 1
, pp. S60-S69
-
-
Ong, S.G.1
-
55
-
-
84886293423
-
Coronary heart disease alters intercellular communication by modifying microparticle-mediated microRNA transport
-
55 Finn, N.A., et al. Coronary heart disease alters intercellular communication by modifying microparticle-mediated microRNA transport. FEBS Lett. 587 (2013), 3456–3463.
-
(2013)
FEBS Lett.
, vol.587
, pp. 3456-3463
-
-
Finn, N.A.1
-
56
-
-
84910637111
-
TNF-α alters the release and transfer of microparticle-encapsulated miRNAs from endothelial cells
-
56 Alexy, T., et al. TNF-α alters the release and transfer of microparticle-encapsulated miRNAs from endothelial cells. Physiol. Genomics 46 (2014), 833–840.
-
(2014)
Physiol. Genomics
, vol.46
, pp. 833-840
-
-
Alexy, T.1
-
57
-
-
84904768520
-
Cardiomyocytes mediate anti-angiogenesis in type 2 diabetic rats through the exosomal transfer of miR-320 into endothelial cells
-
57 Wang, X., et al. Cardiomyocytes mediate anti-angiogenesis in type 2 diabetic rats through the exosomal transfer of miR-320 into endothelial cells. J. Mol. Cell. Cardiol. 74 (2014), 139–150.
-
(2014)
J. Mol. Cell. Cardiol.
, vol.74
, pp. 139-150
-
-
Wang, X.1
-
58
-
-
84939130561
-
NTR-dependent activation of NF-κB regulates microRNA-503 transcription and pericyte-endothelial crosstalk in diabetes after limb ischaemia
-
NTR-dependent activation of NF-κB regulates microRNA-503 transcription and pericyte-endothelial crosstalk in diabetes after limb ischaemia. Nat. Commun., 6, 2015, 8024.
-
(2015)
Nat. Commun.
, vol.6
, pp. 8024
-
-
Caporali, A.1
-
59
-
-
84971408010
-
Exosome-mediated small RNA delivery for gene therapy
-
59 Zhou, Y., et al. Exosome-mediated small RNA delivery for gene therapy. Wiley Interdiscip. Rev. RNA 7 (2016), 758–771.
-
(2016)
Wiley Interdiscip. Rev. RNA
, vol.7
, pp. 758-771
-
-
Zhou, Y.1
-
60
-
-
79953858598
-
Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes
-
60 Alvarez-Erviti, L., et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29 (2011), 341–345.
-
(2011)
Nat. Biotechnol.
, vol.29
, pp. 341-345
-
-
Alvarez-Erviti, L.1
-
61
-
-
79959845414
-
MicroRNAs 103 and 107 regulate insulin sensitivity
-
61 Trajkovski, M., et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 474 (2011), 649–653.
-
(2011)
Nature
, vol.474
, pp. 649-653
-
-
Trajkovski, M.1
-
62
-
-
84877258007
-
Treatment of HCV infection by targeting microRNA
-
62 Janssen, H.L., et al. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med. 368 (2013), 1685–1694.
-
(2013)
N. Engl. J. Med.
, vol.368
, pp. 1685-1694
-
-
Janssen, H.L.1
-
63
-
-
84907484544
-
Long-term safety and efficacy of microRNA-targeted therapy in chronic hepatitis C patients
-
63 van der Ree, M.H., et al. Long-term safety and efficacy of microRNA-targeted therapy in chronic hepatitis C patients. Antiviral Res. 111 (2014), 53–59.
-
(2014)
Antiviral Res.
, vol.111
, pp. 53-59
-
-
van der Ree, M.H.1
-
64
-
-
84920116302
-
In vitro antiviral activity and preclinical and clinical resistance profile of miravirsen, a novel anti-hepatitis C virus therapeutic targeting the human factor miR-122
-
64 Ottosen, S., et al. In vitro antiviral activity and preclinical and clinical resistance profile of miravirsen, a novel anti-hepatitis C virus therapeutic targeting the human factor miR-122. Antimicrob. Agents Chemother. 59 (2015), 599–608.
-
(2015)
Antimicrob. Agents Chemother.
, vol.59
, pp. 599-608
-
-
Ottosen, S.1
-
65
-
-
84949558870
-
The tumor-suppressive and potential therapeutic functions of miR-34a in epithelial carcinomas
-
65 Adams, B.D., et al. The tumor-suppressive and potential therapeutic functions of miR-34a in epithelial carcinomas. Expert Opin. Ther. Targets 20 (2016), 737–753.
-
(2016)
Expert Opin. Ther. Targets
, vol.20
, pp. 737-753
-
-
Adams, B.D.1
-
66
-
-
42249093319
-
LNA-mediated microRNA silencing in non-human primates
-
66 Elmén, J., et al. LNA-mediated microRNA silencing in non-human primates. Nature 452 (2008), 896–899.
-
(2008)
Nature
, vol.452
, pp. 896-899
-
-
Elmén, J.1
-
67
-
-
84878757129
-
Plasma processing conditions substantially influence circulating microRNA biomarker levels
-
67 Cheng, H.H., et al. Plasma processing conditions substantially influence circulating microRNA biomarker levels. PLoS ONE, 8, 2013, e64795.
-
(2013)
PLoS ONE
, vol.8
, pp. e64795
-
-
Cheng, H.H.1
-
68
-
-
84987905085
-
Platelets confound the measurement of extracellular miRNA in archived plasma
-
68 Mitchell, A.J., et al. Platelets confound the measurement of extracellular miRNA in archived plasma. Sci. Rep., 6, 2016, 32651.
-
(2016)
Sci. Rep.
, vol.6
, pp. 32651
-
-
Mitchell, A.J.1
-
69
-
-
84874230935
-
Circulating microRNAs as novel biomarkers for platelet activation
-
69 Willeit, P., et al. Circulating microRNAs as novel biomarkers for platelet activation. Circ. Res. 112 (2013), 595–600.
-
(2013)
Circ. Res.
, vol.112
, pp. 595-600
-
-
Willeit, P.1
-
70
-
-
84892908098
-
Systemic delivery of microRNA-181b inhibits nuclear factor-kappaB activation, vascular inflammation, and atherosclerosis in apolipoprotein E-deficient mice
-
70 Sun, X., et al. Systemic delivery of microRNA-181b inhibits nuclear factor-kappaB activation, vascular inflammation, and atherosclerosis in apolipoprotein E-deficient mice. Circ. Res. 114 (2014), 32–40.
-
(2014)
Circ. Res.
, vol.114
, pp. 32-40
-
-
Sun, X.1
-
71
-
-
84975252032
-
Circulating microRNA-21 is downregulated in patients with metabolic syndrome
-
71 He, Q.F., et al. Circulating microRNA-21 is downregulated in patients with metabolic syndrome. Biomed. Environ. Sci. 29 (2016), 385–389.
-
(2016)
Biomed. Environ. Sci.
, vol.29
, pp. 385-389
-
-
He, Q.F.1
|