메뉴 건너뛰기




Volumn 100, Issue , 2017, Pages 63-72

Application of artificial neural networks to the forecasting of dissolved oxygen content in the Hungarian section of the river Danube

Author keywords

Dissolved oxygen forecasting; General regression neural networks; Multilayer perceptron neural networks; Multivariate linear regression; Radial basis function neural network

Indexed keywords

DISSOLUTION; FORECASTING; FUNCTIONS; IMPORTANCE SAMPLING; INTELLIGENT SYSTEMS; LINEAR REGRESSION; MEAN SQUARE ERROR; MULTILAYER NEURAL NETWORKS; MULTILAYERS; NEURAL NETWORKS; NONLINEAR SYSTEMS; OXYGEN; RADIAL BASIS FUNCTION NETWORKS; REGRESSION ANALYSIS; RIVERS; SENSITIVITY ANALYSIS; SURFACE WATERS; WATER QUALITY;

EID: 85007228134     PISSN: 09258574     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ecoleng.2016.12.027     Document Type: Article
Times cited : (85)

References (42)
  • 1
    • 85021260425 scopus 로고    scopus 로고
    • Prediction of dissolved oxygen in Surma River by biochemical oxygen demand and chemical oxygen demand using the artificial neural networks (ANNs)
    • Ahmed, A.A.M., Prediction of dissolved oxygen in Surma River by biochemical oxygen demand and chemical oxygen demand using the artificial neural networks (ANNs). J. King Saud Univ. Eng. Sci., 2014, 10.1016/j.jksues.2014.05.001.
    • (2014) J. King Saud Univ. Eng. Sci.
    • Ahmed, A.A.M.1
  • 2
    • 81755176465 scopus 로고    scopus 로고
    • Depth-integrated estimation of dissolved oxygen in a lake
    • Akkoyunlu, A., Altun, H., Cigizoglu, H.K., Depth-integrated estimation of dissolved oxygen in a lake. J. Environ. Eng. 137 (2011), 961–967.
    • (2011) J. Environ. Eng. , vol.137 , pp. 961-967
    • Akkoyunlu, A.1    Altun, H.2    Cigizoglu, H.K.3
  • 3
    • 84891145294 scopus 로고    scopus 로고
    • Modelling of dissolved oxygen content using artificial neural networks Danube River, North Serbia, case study
    • Antanasijevic, D., Pocajt, V., Povrenovic, D., Peric-Grujic, A., Rictic, M., Modelling of dissolved oxygen content using artificial neural networks Danube River, North Serbia, case study. Environ. Sci. Pollut. Res. 20 (2013), 9006–9013.
    • (2013) Environ. Sci. Pollut. Res. , vol.20 , pp. 9006-9013
    • Antanasijevic, D.1    Pocajt, V.2    Povrenovic, D.3    Peric-Grujic, A.4    Rictic, M.5
  • 4
    • 84908377307 scopus 로고    scopus 로고
    • Modelling of dissolved oxygen in the Danube River using artificial neural networks and Monte Carlo Simulation uncertainty analysis
    • Antanasijevic, D., Pocajt, V., Peric-Grujic, A., Rictic, M., Modelling of dissolved oxygen in the Danube River using artificial neural networks and Monte Carlo Simulation uncertainty analysis. J. Hydrol. 519 (2014), 1895–1907.
    • (2014) J. Hydrol. , vol.519 , pp. 1895-1907
    • Antanasijevic, D.1    Pocajt, V.2    Peric-Grujic, A.3    Rictic, M.4
  • 5
    • 84868601226 scopus 로고    scopus 로고
    • Modeling of dissolved oxygen concentration using different neural network techniques in Foundation Creek, El Paso County, Colorado
    • Ay, M., Kisi, O., Modeling of dissolved oxygen concentration using different neural network techniques in Foundation Creek, El Paso County, Colorado. J. Environ. Eng. 138 (2012), 654–662.
    • (2012) J. Environ. Eng. , vol.138 , pp. 654-662
    • Ay, M.1    Kisi, O.2
  • 6
    • 78650311079 scopus 로고    scopus 로고
    • Linear and nonlinear modelling for simultaneous prediction of dissolved oxygen and biochemical oxygen demand of the surface water—a case study
    • Basant, N., Gupta, S., Malik, A., Singh, K.P., Linear and nonlinear modelling for simultaneous prediction of dissolved oxygen and biochemical oxygen demand of the surface water—a case study. Chemom. Intell. Lab. Syst. 104 (2010), 172–180.
    • (2010) Chemom. Intell. Lab. Syst. , vol.104 , pp. 172-180
    • Basant, N.1    Gupta, S.2    Malik, A.3    Singh, K.P.4
  • 7
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • Broomhead, D., Lowe, D., Multivariable functional interpolation and adaptive networks. Complex Syst. 2 (1988), 321–355.
    • (1988) Complex Syst. , vol.2 , pp. 321-355
    • Broomhead, D.1    Lowe, D.2
  • 8
    • 85007213491 scopus 로고    scopus 로고
    • Forecasting of dissolved oxygen in the river Danube using neural networks
    • Csábrági, A., Molnár, S., Tanos, P., Kovács, J., Forecasting of dissolved oxygen in the river Danube using neural networks. Hung. Agric. Eng. 27 (2015), 38–41.
    • (2015) Hung. Agric. Eng. , vol.27 , pp. 38-41
    • Csábrági, A.1    Molnár, S.2    Tanos, P.3    Kovács, J.4
  • 9
    • 0003396255 scopus 로고    scopus 로고
    • Neural Network Toolbox User's Guide: Matlab
    • The Mathworks Inc.
    • Demuth, H., Beale, M., Neural Network Toolbox User's Guide: Matlab. 2000, The Mathworks Inc.
    • (2000)
    • Demuth, H.1    Beale, M.2
  • 10
    • 56249121165 scopus 로고    scopus 로고
    • Modelling biochemical oxygen demand of the Melen River in Turkey using an artificial neural network technique
    • Dogan, E., Sengorur, B., Koklu, R., Modelling biochemical oxygen demand of the Melen River in Turkey using an artificial neural network technique. J. Environ. Manag. 90 (2009), 1229–1235.
    • (2009) J. Environ. Manag. , vol.90 , pp. 1229-1235
    • Dogan, E.1    Sengorur, B.2    Koklu, R.3
  • 11
    • 85101445097 scopus 로고
    • Applied Regression Analysis
    • Wiley New York
    • Draper, N.R., Smith, H., Applied Regression Analysis. 1981, Wiley, New York.
    • (1981)
    • Draper, N.R.1    Smith, H.2
  • 12
    • 84900376489 scopus 로고    scopus 로고
    • Prediction of water quality parameters of Karoon River (Iran) by artificial intelligence-based models
    • Emamgholizadeh, S., Kashi, H., Marofpoor, I., Zalaghi, E., Prediction of water quality parameters of Karoon River (Iran) by artificial intelligence-based models. Int. J. Environ. Sci. Technol. 11 (2014), 645–656.
    • (2014) Int. J. Environ. Sci. Technol. , vol.11 , pp. 645-656
    • Emamgholizadeh, S.1    Kashi, H.2    Marofpoor, I.3    Zalaghi, E.4
  • 13
    • 0000152448 scopus 로고
    • Forecasting with neural network: an application using bankruptcy data
    • Fletcher, D., Goss, E., Forecasting with neural network: an application using bankruptcy data. Inform. Manag. 24 (1993), 159–167.
    • (1993) Inform. Manag. , vol.24 , pp. 159-167
    • Fletcher, D.1    Goss, E.2
  • 14
    • 0003413187 scopus 로고    scopus 로고
    • Neural Networks: A Comprehensive Foundation
    • 2nd ed. Prentice-Hall Upper Saddle River, New Jersey
    • Haykin, S., Neural Networks: A Comprehensive Foundation. 2nd ed., 1999, Prentice-Hall, Upper Saddle River, New Jersey.
    • (1999)
    • Haykin, S.1
  • 15
    • 77957769268 scopus 로고    scopus 로고
    • Estimating monthly total nitrogen concentration in streams by using artificial neural network
    • He, B., Oki, T., Sun, F., Komori, D., Kanae, S., Wang, Y., Kim, H., Yamazaki, D., Estimating monthly total nitrogen concentration in streams by using artificial neural network. J. Environ. Manag. 92 (2011), 172–177.
    • (2011) J. Environ. Manag. , vol.92 , pp. 172-177
    • He, B.1    Oki, T.2    Sun, F.3    Komori, D.4    Kanae, S.5    Wang, Y.6    Kim, H.7    Yamazaki, D.8
  • 16
    • 80052086585 scopus 로고    scopus 로고
    • Abiotic influences on dissolved oxygen in a riverine environment
    • He, J., Chu, A., Ryan, M., Valeo, C., Zaitlin, B., Abiotic influences on dissolved oxygen in a riverine environment. Ecol. Eng. 37 (2011), 1804–1814.
    • (2011) Ecol. Eng. , vol.37 , pp. 1804-1814
    • He, J.1    Chu, A.2    Ryan, M.3    Valeo, C.4    Zaitlin, B.5
  • 17
    • 84899565683 scopus 로고    scopus 로고
    • Generalized regression neural network-based approach for modelling hourly dissolved oxygen concentration in the Upper Klamath River Oregon, USA
    • Heddam, S., Generalized regression neural network-based approach for modelling hourly dissolved oxygen concentration in the Upper Klamath River Oregon, USA. Environ. Technol. 35 (2014), 1650–1657.
    • (2014) Environ. Technol. , vol.35 , pp. 1650-1657
    • Heddam, S.1
  • 18
    • 39849084753 scopus 로고    scopus 로고
    • Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modelling
    • Kim, S., Kim, H.S., Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modelling. J. Hydrol. 351 (2008), 299–317.
    • (2008) J. Hydrol. , vol.351 , pp. 299-317
    • Kim, S.1    Kim, H.S.2
  • 19
    • 34249981775 scopus 로고    scopus 로고
    • Influence of hydropower dams on the composition of the suspended and riverbank sediments in the Danube
    • Klaver, G., van Os, B., Negrel, P., Petelet-Giraud, E., Influence of hydropower dams on the composition of the suspended and riverbank sediments in the Danube. Environ. Pollut. 148 (2007), 718–728.
    • (2007) Environ. Pollut. , vol.148 , pp. 718-728
    • Klaver, G.1    van Os, B.2    Negrel, P.3    Petelet-Giraud, E.4
  • 20
    • 85027932427 scopus 로고    scopus 로고
    • Spatial optimization of monitoring networks on the examples of a river, a lake-wetland system and a sub-surface water system
    • Kovács, J., Kovács, S., Hatvani, I.G., Magyar, N., Tanos, P., Korponai, J., Blaschke, A., Spatial optimization of monitoring networks on the examples of a river, a lake-wetland system and a sub-surface water system. Water Resour. Manag. 29 (2015), 5275–5294.
    • (2015) Water Resour. Manag. , vol.29 , pp. 5275-5294
    • Kovács, J.1    Kovács, S.2    Hatvani, I.G.3    Magyar, N.4    Tanos, P.5    Korponai, J.6    Blaschke, A.7
  • 21
    • 84916200407 scopus 로고    scopus 로고
    • Detection and evaluation of changes induced by the diversion of River Danube in the territorial appearance of latent effects governing shallow-groundwater fluctuations
    • Kovács, J., Márkus, L., Szalai, J., Kovács, I.S.Z., Detection and evaluation of changes induced by the diversion of River Danube in the territorial appearance of latent effects governing shallow-groundwater fluctuations. J. Hydrol. 520 (2015), 314–325.
    • (2015) J. Hydrol. , vol.520 , pp. 314-325
    • Kovács, J.1    Márkus, L.2    Szalai, J.3    Kovács, I.S.Z.4
  • 22
    • 37849186107 scopus 로고    scopus 로고
    • Using artificial neural network for reservoir eutrophication prediction
    • Kuo, J., Hsieh, M., Lung, W., She, N., Using artificial neural network for reservoir eutrophication prediction. Ecol. Modell. 200 (2007), 171–177.
    • (2007) Ecol. Modell. , vol.200 , pp. 171-177
    • Kuo, J.1    Hsieh, M.2    Lung, W.3    She, N.4
  • 23
    • 84953439549 scopus 로고    scopus 로고
    • The ecological benefit-loss evaluation in a riverine wetland for hydropower projects-A case study of Xiaolangdi reservoir in the Yellow river
    • Liang, C., Xin, S., Dongsheng, W., Xiujing, Y., Guodong, J., The ecological benefit-loss evaluation in a riverine wetland for hydropower projects-A case study of Xiaolangdi reservoir in the Yellow river. China. Ecol. Eng. 96 (2016), 34–44.
    • (2016) China. Ecol. Eng. , vol.96 , pp. 34-44
    • Liang, C.1    Xin, S.2    Dongsheng, W.3    Xiujing, Y.4    Guodong, J.5
  • 24
    • 85007233616 scopus 로고    scopus 로고
    • Joint Danube Survey 3, International Commission for the Protection of the Danube River, Vienna ISBN: 978-3-200-03795-3
    • Liška, I., Wagner, F., Sengl, M., Deutsch, K., Slobodník, J., 2015. Joint Danube Survey 3, International Commission for the Protection of the Danube River, Vienna ISBN: 978-3-200-03795-3.
    • (2015)
    • Liška, I.1    Wagner, F.2    Sengl, M.3    Deutsch, K.4    Slobodník, J.5
  • 25
    • 85007233022 scopus 로고
    • An algorithm for least square estimation of nonlinear parameters
    • Marquardt, D., An algorithm for least square estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11 (1963), 431–441.
    • (1963) J. Soc. Ind. Appl. Math. , vol.11 , pp. 431-441
    • Marquardt, D.1
  • 27
    • 80054860156 scopus 로고    scopus 로고
    • An application of different artificial intelligences techniques for water quality prediction
    • Najah, A., El-Shafie, A., Karim, O.A., Jaafar, O., El-Shafie, A.H., An application of different artificial intelligences techniques for water quality prediction. Int. J. Phys. Sci. 6:22 (2011), 5298–5308, 10.5897/IJPS11.1180.
    • (2011) Int. J. Phys. Sci. , vol.6 , Issue.22 , pp. 5298-5308
    • Najah, A.1    El-Shafie, A.2    Karim, O.A.3    Jaafar, O.4    El-Shafie, A.H.5
  • 28
    • 43049098945 scopus 로고    scopus 로고
    • Retrieval of suspended particulate matter concentrations in the Danube River from Landsat ETM data
    • Onderka, M., Pekárová, P., Retrieval of suspended particulate matter concentrations in the Danube River from Landsat ETM data. Sci. Total Environ. 397:1–3 (2008), 238–243.
    • (2008) Sci. Total Environ. , vol.397 , Issue.1-3 , pp. 238-243
    • Onderka, M.1    Pekárová, P.2
  • 29
    • 49849106661 scopus 로고    scopus 로고
    • An ANN application for water quality forecasting
    • Palani, S., Liong, S., Tkalich, P., An ANN application for water quality forecasting. Mar. Pollut. Bull. 56 (2008), 1586–1597.
    • (2008) Mar. Pollut. Bull. , vol.56 , pp. 1586-1597
    • Palani, S.1    Liong, S.2    Tkalich, P.3
  • 30
    • 79960169803 scopus 로고    scopus 로고
    • Algorithms for initialization of neural network weights. Sbornik prispevku 11
    • Pavelka, A., Procházka, A., 2004. Algorithms for initialization of neural network weights. Sbornik prispevku 11. in: Konference MATLAB. 2, 453–459.
    • (2004) Konference MATLAB , vol.2 , pp. 453-459
    • Pavelka, A.1    Procházka, A.2
  • 31
    • 0025056697 scopus 로고
    • Regularization algorithms for learning that are equivalent to multilayer networks
    • Poggio, T., Girosi, F., Regularization algorithms for learning that are equivalent to multilayer networks. Science 247:4945 (1990), 978–982.
    • (1990) Science , vol.247 , Issue.4945 , pp. 978-982
    • Poggio, T.1    Girosi, F.2
  • 32
    • 77649190348 scopus 로고    scopus 로고
    • Neural network modelling of dissolved oxygen in the Gruza reservoir, Serbia
    • Rankovic, V., Radulovic, J., Radojevic, I., Ostojic, A., Comic, L., Neural network modelling of dissolved oxygen in the Gruza reservoir, Serbia. Ecol. Modell. 221 (2010), 1239–1244.
    • (2010) Ecol. Modell. , vol.221 , pp. 1239-1244
    • Rankovic, V.1    Radulovic, J.2    Radojevic, I.3    Ostojic, A.4    Comic, L.5
  • 33
    • 84865022391 scopus 로고    scopus 로고
    • Prediction of dissolved oxygen in reservoirs using adaptive network-based fuzzy inference system
    • Rankovic, V., Radulovic, J., Radojevic, I., Ostojic, A., Comic, L., Prediction of dissolved oxygen in reservoirs using adaptive network-based fuzzy inference system. J. Hydroinf. 14 (2012), 167–179.
    • (2012) J. Hydroinf. , vol.14 , pp. 167-179
    • Rankovic, V.1    Radulovic, J.2    Radojevic, I.3    Ostojic, A.4    Comic, L.5
  • 34
    • 0000646059 scopus 로고
    • Learning internal representation by error back propagation
    • Rumelhart, D.E. and McClelland, J.L., (Eds.) MIT Press, Cambridge ISBN: 9780262680530
    • Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1986. Learning internal representation by error back propagation, in: Rumelhart, D.E. and McClelland, J.L., (Eds.), Parallel distributed processing. MIT Press, Cambridge, pp. 318–362. ISBN: 9780262680530.
    • (1986) Parallel distributed processing , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 35
    • 60649118396 scopus 로고    scopus 로고
    • Artificial neural network modeling of the river water quality—a case study
    • Singh, K., Basant, A., Malik, A., Jain, G., Artificial neural network modeling of the river water quality—a case study. Ecol. Modell. 220 (2009), 888–895.
    • (2009) Ecol. Modell. , vol.220 , pp. 888-895
    • Singh, K.1    Basant, A.2    Malik, A.3    Jain, G.4
  • 36
    • 85007176099 scopus 로고    scopus 로고
    • Final report for he developing the typology of surface waters and defining the relevant reference conditions, UNDP/GEF danube regional project
    • (Assessed 1 December 2016)
    • Sommerhäuser, M., Robert, S., Birk, S., Hering, D., Moog, O., Stubauer, I., Ofenböck, T., Final report for he developing the typology of surface waters and defining the relevant reference conditions, UNDP/GEF danube regional project. Vienna, 2003 (Assessed 1 December 2016) http://www.undp-drp.org/pdf/1.1_River%20Basin%20Management%20-%20Phase%201/1.1_UNDP-DRP_Typology%20of%20SW_116_fr.pdf.
    • (2003) Vienna
    • Sommerhäuser, M.1    Robert, S.2    Birk, S.3    Hering, D.4    Moog, O.5    Stubauer, I.6    Ofenböck, T.7
  • 37
    • 0026254768 scopus 로고
    • A general regression neural network
    • Specht, D.F., A general regression neural network. IEEE Trans. Neural Netw. 2 (1991), 568–576.
    • (1991) IEEE Trans. Neural Netw. , vol.2 , pp. 568-576
    • Specht, D.F.1
  • 38
    • 84900379570 scopus 로고    scopus 로고
    • Prediction of chemical oxygen demand in Dondang river using artificial neural network
    • Talib, A., Amat, M.I., Prediction of chemical oxygen demand in Dondang river using artificial neural network. Int. J. Inform. Educ. Technol. 2 (2012), 259–261.
    • (2012) Int. J. Inform. Educ. Technol. , vol.2 , pp. 259-261
    • Talib, A.1    Amat, M.I.2
  • 39
    • 85007167748 scopus 로고    scopus 로고
    • Cooling water options for the new generation of nuclear power stations in the UK
    • (assessed: 03.12.16)
    • Turnpenny, A.W.H., Coughlan, J., Ng, B., Crews, P., Bamber, R.N., Rowles, P., Cooling water options for the new generation of nuclear power stations in the UK. Env. Agency, Bristol., 2010 (assessed: 03.12.16) https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/291077/scho0610bsot-e-e.pdf.
    • (2010) Env. Agency, Bristol.
    • Turnpenny, A.W.H.1    Coughlan, J.2    Ng, B.3    Crews, P.4    Bamber, R.N.5    Rowles, P.6
  • 40
    • 33751569366 scopus 로고    scopus 로고
    • Application of a radial basis function neural network for diagnosis of diabetes mellitus
    • Venkatesan, P., Anitha, S., Application of a radial basis function neural network for diagnosis of diabetes mellitus. Curr. Sci. 91 (2006), 1195–1199.
    • (2006) Curr. Sci. , vol.91 , pp. 1195-1199
    • Venkatesan, P.1    Anitha, S.2
  • 41
    • 84878347590 scopus 로고    scopus 로고
    • Artificial neural network modelling of dissolved oxygen in the Heihe River, Northwestern China
    • Wen, X., Fang, J., Diao, M., Zhang, C., Artificial neural network modelling of dissolved oxygen in the Heihe River, Northwestern China. Environ. Monit. Assess. 185 (2013), 4361–4371.
    • (2013) Environ. Monit. Assess. , vol.185 , pp. 4361-4371
    • Wen, X.1    Fang, J.2    Diao, M.3    Zhang, C.4
  • 42
    • 0345772444 scopus 로고    scopus 로고
    • 9—Oxygen
    • third ed., Academic Press San Diego ISBN: 9780127447605 Wetzel, RG
    • Wetzel, RG., 2001. 9—Oxygen, in: Wetzel, RG., Limnology, third ed., Academic Press San Diego, pp. 151–168. ISBN: 9780127447605.
    • (2001) Limnology , pp. 151-168
    • Wetzel, R.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.