메뉴 건너뛰기




Volumn 11, Issue 3, 2014, Pages 645-656

Prediction of water quality parameters of Karoon River (Iran) by artificial intelligence-based models

Author keywords

ANFIS; ANN; Karoon River; Water quality

Indexed keywords

BIOCHEMICAL OXYGEN DEMAND; MEAN SQUARE ERROR; NEURAL NETWORKS; WATER QUALITY;

EID: 84900376489     PISSN: 17351472     EISSN: 17352630     Source Type: Journal    
DOI: 10.1007/s13762-013-0378-x     Document Type: Article
Times cited : (140)

References (48)
  • 1
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: preliminary concepts
    • ASCE Task Committee, doi:10.1061/(ASCE)1084-0699(2000)5:2(115)
    • ASCE Task Committee (2000a) Artificial neural networks in hydrology. I: preliminary concepts. J Hydrol Eng 5(2): 115-123. doi: 10. 1061/(ASCE)1084-0699(2000)5: 2(115).
    • (2000) J Hydrol Eng , vol.5 , Issue.2 , pp. 115-123
  • 2
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: hydrologic applications
    • ASCE Task Committee, doi:10.1061/(ASCE)1084-0699(2000)5:2(124)
    • ASCE Task Committee (2000b) Artificial neural networks in hydrology. II: hydrologic applications. J Hydrol Eng 5(2): 124-137. doi: 10. 1061/(ASCE)1084-0699(2000)5: 2(124).
    • (2000) J Hydrol Eng , vol.5 , Issue.2 , pp. 124-137
  • 4
    • 41549154501 scopus 로고    scopus 로고
    • Single hidden layer artificial neural network models versus multiple linear regression model in forecasting the time series of total ozone
    • Bandyopadhyay G, Chattopadhyay S (2007) Single hidden layer artificial neural network models versus multiple linear regression model in forecasting the time series of total ozone. Int J Environ Sci Technol 4(1): 141-149.
    • (2007) Int J Environ Sci Technol , vol.4 , Issue.1 , pp. 141-149
    • Bandyopadhyay, G.1    Chattopadhyay, S.2
  • 5
    • 78650311079 scopus 로고    scopus 로고
    • Linear and nonlinear modeling for simultaneous prediction of dissolved oxygen and biochemical oxygen demand of the surface water-A case study
    • Basant N, Gupta S, Malik A, Singh KP (2010) Linear and nonlinear modeling for simultaneous prediction of dissolved oxygen and biochemical oxygen demand of the surface water-A case study. Chemometr Intell Lab Syst 104: 172-180.
    • (2010) Chemometr Intell Lab Syst , vol.104 , pp. 172-180
    • Basant, N.1    Gupta, S.2    Malik, A.3    Singh, K.P.4
  • 6
    • 33847679664 scopus 로고    scopus 로고
    • Neural network and neuro-fuzzy assessments for scour depth around bridge piers
    • Bateni SM, Borghei SM, Jeng DS (2007) Neural network and neuro-fuzzy assessments for scour depth around bridge piers. Eng Appl Artif Intell 20: 401-414.
    • (2007) Eng Appl Artif Intell , vol.20 , pp. 401-414
    • Bateni, S.M.1    Borghei, S.M.2    Jeng, D.S.3
  • 7
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • Broomhead D, Lowe D (1988) Multivariable functional interpolation and adaptive networks. Complex Syst 2: 321-355.
    • (1988) Complex Syst , vol.2 , pp. 321-355
    • Broomhead, D.1    Lowe, D.2
  • 8
    • 0037428019 scopus 로고    scopus 로고
    • Estuary water-stage forecasting by using radial basis function neural network
    • Chang FJ, Chen YC (2003) Estuary water-stage forecasting by using radial basis function neural network. J Hydrol 270: 158-166.
    • (2003) J Hydrol , vol.270 , pp. 158-166
    • Chang, F.J.1    Chen, Y.C.2
  • 9
    • 33746329318 scopus 로고    scopus 로고
    • A review on integration of artificial intelligence into water quality modeling
    • Chau KW (2006) A review on integration of artificial intelligence into water quality modeling. Mar Pollut Bull 52: 726-733.
    • (2006) Mar Pollut Bull , vol.52 , pp. 726-733
    • Chau, K.W.1
  • 10
    • 33847710603 scopus 로고    scopus 로고
    • Conceptual fuzzy neural network model for water quality simulation
    • Chaves P, Kojiri T (2007) Conceptual fuzzy neural network model for water quality simulation. Hydrol Process 21: 634-646.
    • (2007) Hydrol Process , vol.21 , pp. 634-646
    • Chaves, P.1    Kojiri, T.2
  • 11
    • 84900347319 scopus 로고    scopus 로고
    • Wetland trends in Michigan since 1800: a preliminary assessment. United States
    • Michigan Natural Features Inventory, Lansing
    • Comer PJ (1996) Wetland trends in Michigan since 1800: a preliminary assessment. United States. Environmental Protection Agency, Michigan. Land and Water Management Division. Michigan Natural Features Inventory, Lansing.
    • (1996) Environmental Protection Agency, Michigan. Land and Water Management Division
    • Comer, P.J.1
  • 12
    • 18144446962 scopus 로고    scopus 로고
    • A review of dissolve oxygen modeling techniques for lowland rivers
    • Cox BA (2003) A review of dissolve oxygen modeling techniques for lowland rivers. The Sci Total Environ 314-316: 303-334.
    • (2003) The Sci Total Environ , vol.314-316 , pp. 303-334
    • Cox, B.A.1
  • 14
    • 77950516820 scopus 로고    scopus 로고
    • A hybrid neural network and ARIMA model for water quality time series prediction
    • Faruk DO (2010) A hybrid neural network and ARIMA model for water quality time series prediction. Eng Appl Artif Intell 23: 586-594.
    • (2010) Eng Appl Artif Intell , vol.23 , pp. 586-594
    • Faruk, D.O.1
  • 16
    • 0032123339 scopus 로고    scopus 로고
    • Runoff forecasting using RBF networks with OLS algorithm
    • Fernando AK, Jayawardena AW (1998) Runoff forecasting using RBF networks with OLS algorithm. J Hydrol Eng ASCE 3: 203-209.
    • (1998) J Hydrol Eng ASCE , vol.3 , pp. 203-209
    • Fernando, A.K.1    Jayawardena, A.W.2
  • 17
    • 0000152448 scopus 로고
    • Forecasting with neural networks: an application using bankruptcy data
    • Fletcher D, Goss E (1993) Forecasting with neural networks: an application using bankruptcy data. Inf Manag 24: 159-167.
    • (1993) Inf Manag , vol.24 , pp. 159-167
    • Fletcher, D.1    Goss, E.2
  • 19
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference system
    • Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23: 665-685.
    • (1993) IEEE Trans Syst Man Cybern , vol.23 , pp. 665-685
    • Jang, J.S.R.1
  • 21
    • 53549121571 scopus 로고    scopus 로고
    • River water quality zoning: a case study of Karoon and Dez River system
    • Karamouz M, Mahjouri N, Kerachian R (2004) River water quality zoning: a case study of Karoon and Dez River system. Iran J Environ Health Sci Eng 1: 16-27.
    • (2004) Iran J Environ Health Sci Eng , vol.1 , pp. 16-27
    • Karamouz, M.1    Mahjouri, N.2    Kerachian, R.3
  • 22
    • 34548146808 scopus 로고    scopus 로고
    • Stream flow forecasting using different artificial neural network algorithms
    • Kisi O (2007) Stream flow forecasting using different artificial neural network algorithms. J Hydrol Eng ASCE 12: 532-553.
    • (2007) J Hydrol Eng ASCE , vol.12 , pp. 532-553
    • Kisi, O.1
  • 24
    • 37849186107 scopus 로고    scopus 로고
    • Using artificial neural network for reservoir eutrophication prediction
    • Kuo JT, Hsiehb MH, Lungc WS, Shed N (2007) Using artificial neural network for reservoir eutrophication prediction. Ecol Model 200: 171-177.
    • (2007) Ecol Model , vol.200 , pp. 171-177
    • Kuo, J.T.1    Hsiehb, M.H.2    Lungc, W.S.3    Shed, N.4
  • 25
    • 73249153695 scopus 로고    scopus 로고
    • Particle swarm optimization feedforward neural network for modeling runoff
    • Kuok KK, Harun S, Shamsuddin SM (2009) Particle swarm optimization feedforward neural network for modeling runoff. Int J Environ Sci Technol 7(1): 67-78.
    • (2009) Int J Environ Sci Technol , vol.7 , Issue.1 , pp. 67-78
    • Kuok, K.K.1    Harun, S.2    Shamsuddin, S.M.3
  • 26
    • 0032123243 scopus 로고    scopus 로고
    • An efficient MDL-based construction of RBF networks
    • Leonardis A, Bischof H (1998) An efficient MDL-based construction of RBF networks. Neural Netw 11: 963-973.
    • (1998) Neural Netw , vol.11 , pp. 963-973
    • Leonardis, A.1    Bischof, H.2
  • 28
    • 44749087316 scopus 로고    scopus 로고
    • Non-linear variable selection for artificial neural networks using partial mutual information
    • May RJ, Maier HR, Dandy GC, Fernando TMKG (2008) Non-linear variable selection for artificial neural networks using partial mutual information. Environ Model Softw 23(10-11): 1312-1326.
    • (2008) Environ Model Softw , vol.23 , Issue.10-11 , pp. 1312-1326
    • May, R.J.1    Maier, H.R.2    Dandy, G.C.3    Fernando, T.M.K.G.4
  • 29
    • 51249194645 scopus 로고
    • A logical calculus of the ideas imminent in nervous activity
    • McCulloch WS, Pitts W (1943) A logical calculus of the ideas imminent in nervous activity. Bull Math Biophys 5: 115-133.
    • (1943) Bull Math Biophys , vol.5 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.2
  • 30
  • 31
    • 65249087289 scopus 로고    scopus 로고
    • Prediction of Johor River water quality parameters using artificial neural networks
    • Najah A, Elshafie A, Karim OA, Jaffar O (2009) Prediction of Johor River water quality parameters using artificial neural networks. Eur J Sci Res 28: 422-435.
    • (2009) Eur J Sci Res , vol.28 , pp. 422-435
    • Najah, A.1    Elshafie, A.2    Karim, O.A.3    Jaffar, O.4
  • 33
    • 49849106661 scopus 로고    scopus 로고
    • An ANN application for water quality forecasting
    • Palani S, Liong SY, Tkalich P (2008) An ANN application for water quality forecasting. Mar Pollut Bull 56: 1586-1597.
    • (2008) Mar Pollut Bull , vol.56 , pp. 1586-1597
    • Palani, S.1    Liong, S.Y.2    Tkalich, P.3
  • 35
    • 84865022391 scopus 로고    scopus 로고
    • Prediction of dissolved oxygen in reservoirs using adaptive network-based fuzzy inference system
    • Ranković V, Radulović J, Radojević I, Ostojić A, Čomić L (2012) Prediction of dissolved oxygen in reservoirs using adaptive network-based fuzzy inference system. J Hydroinform 14(1): 167-179.
    • (2012) J Hydroinform , vol.14 , Issue.1 , pp. 167-179
    • Ranković, V.1    Radulović, J.2    Radojević, I.3    Ostojić, A.4    Čomić, L.5
  • 37
    • 0000646059 scopus 로고
    • Learning internal representation by error back propagation
    • D. E. Rumelhart and J. L. McClelland (Eds.), Cambridge, MA: MIT Press
    • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representation by error back propagation. In: Rumelhart DE, McClelland JL (eds) Parallel distributed processing. MIT Press, Cambridge, MA, pp 318-362.
    • (1986) Parallel Distributed Processing , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 38
    • 0034171993 scopus 로고    scopus 로고
    • Reducing prediction error by transforming input data for neural networks
    • Shi IJ (2000) Reducing prediction error by transforming input data for neural networks. J Comput Civil Eng 14: 109-116.
    • (2000) J Comput Civil Eng , vol.14 , pp. 109-116
    • Shi, I.J.1
  • 39
    • 60649118396 scopus 로고    scopus 로고
    • Artificial neural network modeling of the river water quality, a case study
    • Singh KP, Basant A, Malik A, Jain G (2009) Artificial neural network modeling of the river water quality, a case study. Ecol Model 220: 888-895.
    • (2009) Ecol Model , vol.220 , pp. 888-895
    • Singh, K.P.1    Basant, A.2    Malik, A.3    Jain, G.4
  • 41
    • 84900379570 scopus 로고    scopus 로고
    • Prediction of chemical oxygen demand in Dondang River using artificial neural network
    • Talib A, Amat MI (2012) Prediction of chemical oxygen demand in Dondang River using artificial neural network. Int J Inf Educt Technol 2(3): 259-261.
    • (2012) Int J Inf Educt Technol , vol.2 , Issue.3 , pp. 259-261
    • Talib, A.1    Amat, M.I.2
  • 42
    • 33751569366 scopus 로고    scopus 로고
    • Application of a radial basis function neural network for diagnosis of diabetes mellitus
    • Venkatesan P, Anitha S (2006) Application of a radial basis function neural network for diagnosis of diabetes mellitus. Curr Sci 91: 1195-1199.
    • (2006) Curr Sci , vol.91 , pp. 1195-1199
    • Venkatesan, P.1    Anitha, S.2
  • 43
    • 84877660994 scopus 로고    scopus 로고
    • Prediction of water quality from simple field parameters
    • doi:10.1007/s12665-012-1967-6
    • Verma AK, Singh TN (2013) Prediction of water quality from simple field parameters. Environ Earth Sci 69(3): 821-829. doi: 10. 1007/s12665-012-1967-6.
    • (2013) Environ Earth Sci , vol.69 , Issue.3 , pp. 821-829
    • Verma, A.K.1    Singh, T.N.2
  • 44
    • 77949338130 scopus 로고    scopus 로고
    • Forecast of water level and ice jam thickness using the back propagation neural network and support vector machine methods
    • Wang J, Sui J, Guo L, Karney BW, Jüpner R (2010) Forecast of water level and ice jam thickness using the back propagation neural network and support vector machine methods. Int J Environ Sci Technol 7(2): 215-224.
    • (2010) Int J Environ Sci Technol , vol.7 , Issue.2 , pp. 215-224
    • Wang, J.1    Sui, J.2    Guo, L.3    Karney, B.W.4    Jüpner, R.5
  • 46
    • 34548262011 scopus 로고    scopus 로고
    • Study of multivariate linear regression analysis model for ground water quality prediction
    • Xiang SL, Liu ZM, Ma LP (2006) Study of multivariate linear regression analysis model for ground water quality prediction. Guizhou Sci 24: 60-62.
    • (2006) Guizhou Sci , vol.24 , pp. 60-62
    • Xiang, S.L.1    Liu, Z.M.2    Ma, L.P.3
  • 47
    • 79151474442 scopus 로고    scopus 로고
    • Multiple regression, ANN (RBF, MLP) and ANFIS models for prediction of swell potential of clayey soils
    • Yilmaz I, Kaynar O (2011) Multiple regression, ANN (RBF, MLP) and ANFIS models for prediction of swell potential of clayey soils. Expert Syst Appl 38: 5958-5966.
    • (2011) Expert Syst Appl , vol.38 , pp. 5958-5966
    • Yilmaz, I.1    Kaynar, O.2
  • 48
    • 70350780192 scopus 로고    scopus 로고
    • Effects of physical and biochemical processes on the dissolved oxygen budget for the Pearl River Estuary during summer
    • Zhang H, Li S (2010) Effects of physical and biochemical processes on the dissolved oxygen budget for the Pearl River Estuary during summer. J Mar Syst 79(2): 65-88.
    • (2010) J Mar Syst , vol.79 , Issue.2 , pp. 65-88
    • Zhang, H.1    Li, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.