메뉴 건너뛰기




Volumn 6, Issue 22, 2011, Pages 5298-5308

An application of different artificial intelligences techniques for water quality prediction

Author keywords

Artificial intelligence; Water quality prediction model

Indexed keywords


EID: 80054860156     PISSN: 19921950     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (69)

References (30)
  • 1
    • 0037389847 scopus 로고    scopus 로고
    • Integration of data mining techniques and heuristic knowledge in fuzzy logic modelling of eutrophication in Taihu Lake
    • Chen Q, Mynett AE (2003). Integration of data mining techniques and heuristic knowledge in fuzzy logic modelling of eutrophication in Taihu Lake. Ecol. Modell. 162 (1/2), 55-67.
    • (2003) Ecol. Modell , vol.162 , Issue.1-2 , pp. 55-67
    • Chen, Q.1    Mynett, A.E.2
  • 4
    • 63049105407 scopus 로고    scopus 로고
    • Neural network model for Nile River inflow forecasting analysis of historical inflow data
    • El-shafie AE, Noureldin M, Taha R, Basri H (2008). Neural network model for Nile River inflow forecasting analysis of historical inflow data. J. Appl. Sci., 8 (24): 4487-4499.
    • (2008) J. Appl. Sci , vol.8 , Issue.24 , pp. 4487-4499
    • El-Shafie, A.E.1    Noureldin, M.2    Taha, R.3    Basri, H.4
  • 5
    • 79958705260 scopus 로고    scopus 로고
    • Performance of artificial neural network and regression techniques for rainfall-runoff prediction
    • 18 April
    • El-shafie A, Mukhlisin M, Najah AA, Taha MR (2011). Performance of artificial neural network and regression techniques for rainfall-runoff prediction. Int. J. Phys. Sci. 6(8):1997-2003, 18 April.
    • (2011) Int. J. Phys. Sci , vol.6 , Issue.8 , pp. 1997-2003
    • El-Shafie, A.1    Mukhlisin, M.2    Najah, A.A.3    Taha, M.R.4
  • 8
    • 44749088857 scopus 로고    scopus 로고
    • Acid deposition in the eastern United States and neural network predictions for the future
    • Grubert JP (2003). Acid deposition in the eastern United States and neural network predictions for the future. J. Environ. Eng. Sci. 2 (2): 99-109.
    • (2003) J. Environ. Eng. Sci , vol.2 , Issue.2 , pp. 99-109
    • Grubert, J.P.1
  • 10
    • 0024880831 scopus 로고
    • Multilayer feed forward networks are universal approximators
    • Hornik K, White H (1989). Multilayer feed forward networks are universal approximators. Neural Netw., 2:359-366.
    • (1989) Neural Netw , vol.2 , pp. 359-366
    • Hornik, K.1    White, H.2
  • 11
    • 0003226593 scopus 로고    scopus 로고
    • fuzzy systems, and knowledge engineering MIT Press Cambridge
    • Kasabov NK (1996). Foundations of neural networks, fuzzy systems, and knowledge engineering MIT Press Cambridge.
    • (1996) Foundations of Neural Networks
    • Kasabov, N.K.1
  • 15
    • 0033692068 scopus 로고    scopus 로고
    • Real time river stage forecasting for flood Bangladesh: Neural network approach
    • Liong SY, Lim WH, Paudyal G (1999). Real time river stage forecasting for flood Bangladesh: neural network approach. J. Comput. Civil Eng. ASCE 14 (1): 1-8.
    • (1999) J. Comput. Civil Eng. ASCE , vol.14 , Issue.1 , pp. 1-8
    • Liong, S.Y.1    Lim, W.H.2    Paudyal, G.3
  • 16
    • 65249087289 scopus 로고    scopus 로고
    • Prediction of Johor River water quality parameters using artificial neural networks
    • ISSN 1450-216X
    • Najah A, Elshafie A, Karim OA, Jaffar O (2009). Prediction of Johor River water quality parameters using artificial neural networks. Eur. J. Sci. Res., 28(3):422-435 ISSN 1450-216X
    • (2009) Eur. J. Sci. Res , vol.28 , Issue.3 , pp. 422-435
    • Najah, A.1    Elshafie, A.2    Karim, O.A.3    Jaffar, O.4
  • 17
    • 84865634266 scopus 로고    scopus 로고
    • Water Quality Prediction Model Utilizing Integrated Wavelet-ANFIS Model with Cross Validation
    • DOI: 10.1007/s00521-010-0486-1
    • Najah, A., El-Shafie A, Karim OA, Jaffer O (2010a). Water Quality Prediction Model Utilizing Integrated Wavelet-ANFIS Model with Cross Validation. Neural Computing and Applications J. DOI: 10.1007/s00521-010-0486-1
    • (2010) Neural Computing and Applications J
    • Najah, A.1    El-Shafie, A.2    Karim, O.A.3    Jaffer, O.4
  • 18
    • 84865634266 scopus 로고    scopus 로고
    • Water quality prediction model utilizing integrated wavelet-ANFIS model with cross validation
    • in press, doi: 10.1007/s00521-010-0486-1
    • Najah AA, El-Shafie A, Karim OA, Jaafar O (2010b). Water Quality Prediction Model Utilizing Integrated Wavelet-ANFIS Model with Cross Validation, Neural. Comput. Appl., in press, doi: 10.1007/s00521-010-0486-1.
    • (2010) Neural. Comput. Appl
    • Najah, A.A.1    El-Shafie, A.2    Karim, O.A.3    Jaafar, O.4
  • 19
    • 77956684693 scopus 로고    scopus 로고
    • Evaluation the efficiency of radial basis function neural network for prediction of water quality parameters
    • Najah A, Elshafie A, Karim OA, Jaffar O (2010c). Evaluation the efficiency of radial basis function neural network for prediction of water quality parameters. Eng. Int. Syst. 4: 221-231.
    • (2010) Eng. Int. Syst , vol.4 , pp. 221-231
    • Najah, A.1    Elshafie, A.2    Karim, O.A.3    Jaffar, O.4
  • 20
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models. Part 1: A discussion of principles
    • Nash JE, Sutcliffe JV (1970). River flow forecasting through conceptual models. Part 1: a discussion of principles. J. Hydrol. 10(3): 282-290.
    • (1970) J. Hydrol , vol.10 , Issue.3 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 22
    • 33845384467 scopus 로고    scopus 로고
    • Neural network and genetic programming for modelling coastal algal blooms
    • Muttil, N, Chau, KW (2006). Neural network and genetic programming for modelling coastal algal blooms. Int. J. Environ. Pollut., 28 (3/4): 223-238.
    • (2006) Int. J. Environ. Pollut , vol.28 , Issue.3-4 , pp. 223-238
    • Muttil, N.1    Chau, K.W.2
  • 23
    • 1842843640 scopus 로고    scopus 로고
    • Improving wave predictions with artificial neural networks
    • Makarynskyy O (2004). Improving wave predictions with artificial neural networks. Ocean Eng., 31: 709-724.
    • (2004) Ocean Eng , vol.31 , pp. 709-724
    • Makarynskyy, O.1
  • 25
    • 0034878542 scopus 로고    scopus 로고
    • Fish-habitat relationships in lakes: Gaining predictive and explanatory insight by using artificial neural networks
    • Olden JD, Jackson DA (2001). Fish-habitat relationships in lakes: gaining predictive and explanatory insight by using artificial neural networks. Trans. Am. Fish. Soc., 130: 878-897.
    • (2001) Trans. Am. Fish. Soc , vol.130 , pp. 878-897
    • Olden, J.D.1    Jackson, D.A.2
  • 26
    • 80053903075 scopus 로고    scopus 로고
    • General regression neural network (GRNN) for the first crack analysis prediction of strengthened RC one-way slab by CFRP
    • Razavi SV, Jumaat MZ, Ahmed H EI-Shafie, Mohammadi P (2011a). General regression neural network (GRNN) for the first crack analysis prediction of strengthened RC one-way slab by CFRP Int. J. Phys. Sci., 6(10): 2439-2446
    • (2011) Int. J. Phys. Sci , vol.6 , Issue.10 , pp. 2439-2446
    • Razavi, S.V.1    Jumaat, M.Z.2    Ei-Shafie, A.H.3    Mohammadi, P.4
  • 27
    • 79957957835 scopus 로고    scopus 로고
    • Using feedforward back propagation (FFBP) neural networks for compressive strength prediction of lightweight concrete made with different percentage of scoria instead of sand
    • Razavi SV, Jumaat MZ, Ahmed H EI-Shafie (2011b). Using feedforward back propagation (FFBP) neural networks for compressive strength prediction of lightweight concrete made with different percentage of scoria instead of sand. Int. J. Phys. Sci., 6(6): 1325-1331
    • (2011) Int. J. Phys. Sci , vol.6 , Issue.6 , pp. 1325-1331
    • Razavi, S.V.1    Jumaat, M.Z.2    Ei-Shafie, A.H.3
  • 29
    • 0033306413 scopus 로고    scopus 로고
    • Water quality prediction and probability network models
    • Reckhow KH (1999). Water quality prediction and probability network models. Can. J. Fish. Aquat. Sci., 56: 1150-1158.
    • (1999) Can. J. Fish. Aquat. Sci , vol.56 , pp. 1150-1158
    • Reckhow, K.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.