메뉴 건너뛰기




Volumn 20, Issue 12, 2013, Pages 9006-9013

Modelling of dissolved oxygen content using artificial neural networks: Danube River, North Serbia, case study

Author keywords

Artificial neural network; Modelling of dissolved oxygen; Modelling of water quality; Multiple linear regression

Indexed keywords

ARTIFICIAL NEURAL NETWORK; DISSOLVED OXYGEN; ELECTRICAL CONDUCTIVITY; ERROR ANALYSIS; PARAMETERIZATION; REGRESSION ANALYSIS; WATER FLOW; WATER QUALITY;

EID: 84891145294     PISSN: 09441344     EISSN: 16147499     Source Type: Journal    
DOI: 10.1007/s11356-013-1876-6     Document Type: Article
Times cited : (84)

References (26)
  • 2
    • 84871934498 scopus 로고    scopus 로고
    • The forecasting of municipal waste generation using artificial neural networks and sustainability indicators
    • Antanasijević D, Pocajt V, Popović I, Redžić N, Ristić M (2013b) The forecasting of municipal waste generation using artificial neural networks and sustainability indicators. Sustain Sci 8: 37-46.
    • (2013) Sustain Sci , vol.8 , pp. 37-46
    • Antanasijević, D.1    Pocajt, V.2    Popović, I.3    Redžić, N.4    Ristić, M.5
  • 3
    • 84868601226 scopus 로고    scopus 로고
    • Modeling of dissolved oxygen concentration using different neural network techniques in Foundation Creek, El Paso County, Colorado
    • Ay M, Kisi G (2012) Modeling of dissolved oxygen concentration using different neural network techniques in Foundation Creek, El Paso County, Colorado. J Environ Eng-ASCE 138: 654-662.
    • (2012) J Environ Eng-ASCE , vol.138 , pp. 654-662
    • Ay, M.1    Kisi, G.2
  • 4
    • 78650311079 scopus 로고    scopus 로고
    • Linear and nonlinear modeling for simultaneous prediction of dissolved oxygen and biochemical oxygen demand of the surface water-a case study
    • Basant N, Gupta S, Malik A, Singh KP (2010) Linear and nonlinear modeling for simultaneous prediction of dissolved oxygen and biochemical oxygen demand of the surface water-a case study. Chemometr Intell Lab 104: 172-180.
    • (2010) Chemometr Intell Lab , vol.104 , pp. 172-180
    • Basant, N.1    Gupta, S.2    Malik, A.3    Singh, K.P.4
  • 5
    • 84873096271 scopus 로고    scopus 로고
    • Artificial neural network (ANN) modeling of adsorption of methylene blue by NaOH-modified rice husk in a fixed-bed column system
    • Chowdhury S, Das Saha P (2013) Artificial neural network (ANN) modeling of adsorption of methylene blue by NaOH-modified rice husk in a fixed-bed column system. Environ Sci Pollut Res 20: 1050-1058.
    • (2013) Environ Sci Pollut Res , vol.20 , pp. 1050-1058
    • Chowdhury, S.1    Das Saha, P.2
  • 6
    • 56249121165 scopus 로고    scopus 로고
    • Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique
    • Dogan E, Sengorur B, Koklu R (2009) Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique. J Environ Manage 90: 1229-1235.
    • (2009) J Environ Manage , vol.90 , pp. 1229-1235
    • Dogan, E.1    Sengorur, B.2    Koklu, R.3
  • 8
    • 84891151351 scopus 로고    scopus 로고
    • IBM Corporation NY, USA
    • IBM Corporation (2003) SPSS 12, NY, USA.
    • (2003) SPSS 12
  • 9
    • 39849084753 scopus 로고    scopus 로고
    • Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling
    • Kim S, Kim HS (2008) Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling. J Hydrol 351: 299-317.
    • (2008) J Hydrol , vol.351 , pp. 299-317
    • Kim, S.1    Kim, H.S.2
  • 10
    • 37849186107 scopus 로고    scopus 로고
    • Using artificial neural network for reservoir eutrophication prediction
    • Kuo J-T, Hsieh M-H, Lung W-S, She N (2007) Using artificial neural network for reservoir eutrophication prediction. Ecol Model 200: 171-177.
    • (2007) Ecol Model , vol.200 , pp. 171-177
    • Kuo, J.-T.1    Hsieh, M.-H.2    Lung, W.-S.3    She, N.4
  • 11
    • 79951680934 scopus 로고    scopus 로고
    • Suspended sediment load prediction of river systems: an artificial neural network approach
    • Melesse AM, Ahmad S, McClain ME, Wang X, Lim YH (2011) Suspended sediment load prediction of river systems: an artificial neural network approach. Agric Water Manag 98: 855-866.
    • (2011) Agric Water Manag , vol.98 , pp. 855-866
    • Melesse, A.M.1    Ahmad, S.2    McClain, M.E.3    Wang, X.4    Lim, Y.H.5
  • 12
    • 49849106661 scopus 로고    scopus 로고
    • An ANN application for water quality forecasting
    • Palani S, Liong S-Y, Tkalich P (2008) An ANN application for water quality forecasting. Mar Pollut Bull 56: 1586-1597.
    • (2008) Mar Pollut Bull , vol.56 , pp. 1586-1597
    • Palani, S.1    Liong, S.-Y.2    Tkalich, P.3
  • 13
    • 80051657637 scopus 로고    scopus 로고
    • Recurrent high order neural network modeling for wastewater treatment process
    • Qiao J, Yang W (2011) Recurrent high order neural network modeling for wastewater treatment process. J Comput 6: 1570-1577.
    • (2011) J Comput , vol.6 , pp. 1570-1577
    • Qiao, J.1    Yang, W.2
  • 14
    • 77649190348 scopus 로고    scopus 로고
    • Neural network modeling of dissolved oxygen in the Gruža reservoir, Serbia
    • Ranković V, Radulović J, Radojević I, Ostojić A, Čomić L (2010) Neural network modeling of dissolved oxygen in the Gruža reservoir, Serbia. Ecol Model 221: 1239-1244.
    • (2010) Ecol Model , vol.221 , pp. 1239-1244
    • Ranković, V.1    Radulović, J.2    Radojević, I.3    Ostojić, A.4    Čomić, L.5
  • 15
    • 84891143093 scopus 로고    scopus 로고
    • Republic Hydrometeorological Service of Serbia (RHMZ), Belgrade: Republic Hydrometeorological Service of Serbia
    • Republic Hydrometeorological Service of Serbia (RHMZ) (2005) Hydrological yearbook, vol. 3. Water quality 2004 (in Serbian). Republic Hydrometeorological Service of Serbia, Belgrade.
    • (2005) Hydrological Yearbook, Vol. 3. Water Quality 2004 (in Serbian)
  • 16
    • 84891157866 scopus 로고    scopus 로고
    • Republic Hydrometeorological Service of Serbia (RHMZ), Belgrade: Republic Hydrometeorological Service of Serbia
    • Republic Hydrometeorological Service of Serbia (RHMZ) (2006) Hydrological yearbook, vol. 3. Water quality 2005 (in Serbian). Republic Hydrometeorological Service of Serbia, Belgrade.
    • (2006) Hydrological Yearbook, Vol. 3. Water Quality 2005 (in Serbian)
  • 17
    • 84891163884 scopus 로고    scopus 로고
    • Republic Hydrometeorological Service of Serbia (RHMZ), Belgrade: Republic Hydrometeorological Service of Serbia
    • Republic Hydrometeorological Service of Serbia (RHMZ) (2008) Hydrological yearbook, vol. 3. Water quality 2007 (in Serbian). Republic Hydrometeorological Service of Serbia, Belgrade.
    • (2008) Hydrological Yearbook, Vol. 3. Water Quality 2007 (in Serbian)
  • 18
    • 84891143116 scopus 로고    scopus 로고
    • Republic Hydrometeorological Service of Serbia (RHMZ), Belgrade: Republic Hydrometeorological Service of Serbia
    • Republic Hydrometeorological Service of Serbia (RHMZ) (2009) Hydrological yearbook, vol. 3. Water quality 2008 (in Serbian). Republic Hydrometeorological Service of Serbia, Belgrade.
    • (2009) Hydrological Yearbook, Vol. 3. Water Quality 2008 (in Serbian)
  • 19
    • 84891148270 scopus 로고    scopus 로고
    • Republic Hydrometeorological Service of Serbia (RHMZ), Belgrade: Republic Hydrometeorological Service of Serbia
    • Republic Hydrometeorological Service of Serbia (RHMZ) (2010) Hydrological yearbook, vol. 3. Water quality 2009 (in Serbian). Republic Hydrometeorological Service of Serbia, Belgrade.
    • (2010) Hydrological Yearbook, Vol. 3. Water Quality 2009 (in Serbian)
  • 20
    • 33749656875 scopus 로고    scopus 로고
    • Dissolved oxygen estimation using artificial neural network for water quality control
    • Şengorur B, Dogan E, Koklu R, Samandar A (2006) Dissolved oxygen estimation using artificial neural network for water quality control. Fresenius Environ Bull 15: 1064-1067.
    • (2006) Fresenius Environ Bull , vol.15 , pp. 1064-1067
    • Şengorur, B.1    Dogan, E.2    Koklu, R.3    Samandar, A.4
  • 22
    • 60649118396 scopus 로고    scopus 로고
    • Artificial neural network modeling of the river water quality-a case study
    • Singh KP, Basant A, Malik A, Jain G (2009) Artificial neural network modeling of the river water quality-a case study. Ecol Model 220: 888-895.
    • (2009) Ecol Model , vol.220 , pp. 888-895
    • Singh, K.P.1    Basant, A.2    Malik, A.3    Jain, G.4
  • 24
    • 1842578655 scopus 로고    scopus 로고
    • Ward Systems Group Accessed 15 Dec 2012
    • Ward Systems Group (2008) Neuroshell 2 Help. http://www. wardsystems. com/manuals/neuroshell2/index. html?idxhowuse. htm. Accessed 15 Dec 2012.
    • (2008) Neuroshell 2 Help
  • 25
    • 0004941790 scopus 로고
    • Ward Systems Group Inc Ward Systems Group Inc, Frederick
    • Ward Systems Group Inc. (1993) Neuroshell 2. Ward Systems Group Inc, Frederick.
    • (1993) Neuroshell 2
  • 26
    • 84878347590 scopus 로고    scopus 로고
    • Artificial neural network modeling of dissolved oxygen in the Heihe River, Northwestern China
    • Wen X, Fang J, Diao M, Zhang C (2012) Artificial neural network modeling of dissolved oxygen in the Heihe River, Northwestern China. Environ Monit Assess 185: 4361-4371.
    • (2012) Environ Monit Assess , vol.185 , pp. 4361-4371
    • Wen, X.1    Fang, J.2    Diao, M.3    Zhang, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.