-
1
-
-
0043127765
-
The Lie group of automorphisms of a principal bundle
-
M. C. Abbati, R. Cirelli, A. Mania and P. W. Michor, The Lie group of automorphisms of a principal bundle, J. Geom. Phys. 6:2 (1989), 215-235
-
(1989)
J. Geom. Phys
, vol.6
, Issue.2
, pp. 215-235
-
-
Abbati, M.C.1
Cirelli, R.2
Mania, A.3
Michor, P.W.4
-
2
-
-
0040706112
-
-
Marcel Dekker, New York
-
S. A. Albeverio, R. J. Høegh-Krohn, J. A. Marion, D. H. Testard and B. S. Torrésani, Noncommutative Distributions, Marcel Dekker, New York, 1993.
-
(1993)
Noncommutative Distributions
-
-
Albeverio, S.A.1
Høegh-Krohn, R.J.2
Marion, J.A.3
Testard, D.H.4
Torrésani, B.S.5
-
3
-
-
33646355676
-
Quasiregular representations of the infinite-dimensional nilpotent group
-
S. A. Albeverio and A. Kosyak, Quasiregular representations of the infinite-dimensional nilpotent group, J. Funct. Anal. 236:2 (2006), 634-681.
-
(2006)
J. Funct. Anal
, vol.236
, Issue.2
, pp. 634-681
-
-
Albeverio, S.A.1
Kosyak, A.2
-
4
-
-
4644274102
-
Simple Lie subalgebras of locally finite associative algebras
-
Y. A. Bahturin, A. A. Baranov and A. E. Zalesski, Simple Lie subalgebras of locally finite associative algebras, J. Algebra 281:1 (2004), 225-246
-
(2004)
J. Algebra
, vol.281
, Issue.1
, pp. 225-246
-
-
Bahturin, Y.A.1
Baranov, A.A.2
Zalesski, A.E.3
-
5
-
-
1542320699
-
Some constructions in the theory of locally finite simple Lie algebras
-
Y. Bahturin and G. Benkart, Some constructions in the theory of locally finite simple Lie algebras, J. Lie Theory 14:1 (2004), 243-270.
-
(2004)
J. Lie Theory
, vol.14
, Issue.1
, pp. 243-270
-
-
Bahturin, Y.1
Benkart, G.2
-
7
-
-
0003078425
-
An introduction to locally convex inductive limits
-
H. Hogbe-Nlend, World Scientific, Singapore
-
K.-D. Bierstedt, An introduction to locally convex inductive limits, pp. 35-133 in: H. Hogbe-Nlend (ed.), Functional Analysis and its Applications, World Scientific, Singapore, 1988.
-
(1988)
Functional Analysis and Its Applications
, pp. 35-133
-
-
Bierstedt, K.-D.1
-
8
-
-
84968464847
-
A projective description of weighted inductive limits
-
K.-D. Bierstedt, R. Meise and W. H. Summers, A projective description of weighted inductive limits, Trans. Amer. Math. Soc. 272:1 (1982), 107-160.
-
(1982)
Trans. Amer. Math. Soc
, vol.272
, Issue.1
, pp. 107-160
-
-
Bierstedt, K.-D.1
Meise, R.2
Summers, W.H.3
-
9
-
-
0002178646
-
Analytic functions in topological vector spaces
-
J. Bochnak and J. Siciak, Analytic functions in topological vector spaces. Studia Math. 39 (1971), 77-112.
-
(1971)
Studia Math
, vol.39
, pp. 77-112
-
-
Bochnak, J.1
Siciak, J.2
-
13
-
-
77954533803
-
Complex analytic mappings on (LB)-spaces and applications in infinite-dimensional Lie theory
-
R. Dahmen, Complex analytic mappings on (LB)-spaces and applications in infinite-dimensional Lie theory, Math. Z. 266:1 (2010), 115-140.
-
(2010)
Math. Z
, vol.266
, Issue.1
, pp. 115-140
-
-
Dahmen, R.1
-
15
-
-
2442433366
-
Inductive limits of topological algebras, Linear Topol
-
S. Dierolf and J. Wengenroth, Inductive limits of topological algebras, Linear Topol. Spaces Complex Anal. 3 (1997), 45-49.
-
(1997)
Spaces Complex Anal
, vol.3
, pp. 45-49
-
-
Dierolf, S.1
Wengenroth, J.2
-
16
-
-
43649087596
-
Borel subalgebras of gl(∞)
-
I. Dimitrov and I. Penkov, Borel subalgebras of gl(∞), Resenhas 6:2-3 (2004), 153-163.
-
(2004)
Resenhas
, vol.6
, Issue.2-3
, pp. 153-163
-
-
Dimitrov, I.1
Penkov, I.2
-
17
-
-
0036791503
-
A Bott-Borel-Weil theory for direct limits of algebraic groups
-
I. Dimitrov, I. Penkov and J. A. Wolf, A Bott-Borel-Weil theory for direct limits of algebraic groups, Amer. J. Math. 124:5 (2002), 955-998.
-
(2002)
Amer. J. Math
, vol.124
, Issue.5
, pp. 955-998
-
-
Dimitrov, I.1
Penkov, I.2
Wolf, J.A.3
-
18
-
-
84968495779
-
On sequential convergence
-
R. M. Dudley, On sequential convergence, Trans. Amer. Math. Soc. 112 (1964), 483-507.
-
(1964)
Trans. Amer. Math. Soc
, vol.112
, pp. 483-507
-
-
Dudley, R.M.1
-
19
-
-
0036933076
-
Direct limits of low-rank representations of classical groups
-
A. Dvorsky, Direct limits of low-rank representations of classical groups, Comm. Algebra 30:12 (2002), 6011-6022.
-
(2002)
Comm. Algebra
, vol.30
, Issue.12
, pp. 6011-6022
-
-
Dvorsky, A.1
-
20
-
-
0039374857
-
On the bamboo-shoot topology of certain inductive limits of topological groups
-
T. Edamatsu, On the bamboo-shoot topology of certain inductive limits of topological groups, J. Math. Kyoto Univ. 39:4 (1999), 715-724.
-
(1999)
J. Math. Kyoto Univ
, vol.39
, Issue.4
, pp. 715-724
-
-
Edamatsu, T.1
-
21
-
-
84961475044
-
Lokalkonvexe Sequenzen mit kompakten Abbildungen
-
K. Floret, Lokalkonvexe Sequenzen mit kompakten Abbildungen, J. Reine Angew. Math. 247 (1971), 155-195.
-
(1971)
J. Reine Angew. Math
, vol.247
, pp. 155-195
-
-
Floret, K.1
-
22
-
-
84966201330
-
On bounded sets in inductive limits of normed spaces
-
K. Floret, On bounded sets in inductive limits of normed spaces, Proc. Amer. Math. Soc. 75:2 (1979), 221-225.
-
(1979)
Proc. Amer. Math. Soc
, vol.75
, Issue.2
, pp. 221-225
-
-
Floret, K.1
-
23
-
-
77956934204
-
Some aspects of the theory of locally convex inductive limits
-
K.-D. Bierstedt and B. Fuchssteiner, North-Holland, Amsterdam
-
K. Floret, Some aspects of the theory of locally convex inductive limits, pp. 205-237 in: K.-D. Bierstedt and B. Fuchssteiner (eds.), Functional Analysis: Surveys and Recent Results II, North-Holland Math. Stud. 38, North-Holland, Amsterdam, 1980.
-
(1980)
Functional Analysis: Surveys and Recent Results II, North-Holland Math. Stud. 38
, pp. 205-237
-
-
Floret, K.1
-
24
-
-
0002734990
-
Infinite-dimensional Lie groups without completeness restrictions
-
A. Strasburger et al, Banach Center Publ. 55, Warsaw
-
H. Glöckner, Infinite-dimensional Lie groups without completeness restrictions, pp. 43-59 in: A. Strasburger et al. (eds.), Geometry and Analysis on Finite-and Infinite-Dimensional Lie Groups, Banach Center Publ. 55, Warsaw, 2002.
-
(2002)
Geometry and Analysis on Finite-And Infinite-Dimensional Lie Groups
, pp. 43-59
-
-
Glöckner, H.1
-
25
-
-
0036808583
-
Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups
-
H. Glöckner, Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups, J. Funct. Anal. 194:2 (2002), 347-409.
-
(2002)
J. Funct. Anal
, vol.194
, Issue.2
, pp. 347-409
-
-
Glöckner, H.1
-
26
-
-
0036446267
-
Algebras whose groups of units are Lie groups
-
H. Glöckner, Algebras whose groups of units are Lie groups, Studia Math. 153:2 (2002), 147-177.
-
(2002)
Studia Math
, vol.153
, Issue.2
, pp. 147-177
-
-
Glöckner, H.1
-
28
-
-
1442303110
-
Direct limit Lie groups and manifolds
-
H. Glöckner, Direct limit Lie groups and manifolds, J. Math. Kyoto Univ. 43:1 (2003), 1-26.
-
(2003)
J. Math. Kyoto Univ
, vol.43
, Issue.1
, pp. 1-26
-
-
Glöckner, H.1
-
29
-
-
0142153695
-
Lie groups of measurable mappings
-
H. Glöckner, Lie groups of measurable mappings, Canad. J. Math. 55:5 (2003), 969-999.
-
(2003)
Canad. J. Math
, vol.55
, Issue.5
, pp. 969-999
-
-
Glöckner, H.1
-
30
-
-
33749024896
-
Lie groups of germs of analytic mappings
-
T. Wurzbacher, IRMA Lecture Notes in Math. and Theor. Physics, de Gruyter
-
H. Glöckner, Lie groups of germs of analytic mappings, pp. 1-16 in: T. Wurzbacher (ed.), Infinite-Dimensional Groups and Manifolds, IRMA Lecture Notes in Math. and Theor. Physics, de Gruyter, 2004.
-
(2004)
Infinite-Dimensional Groups and Manifolds
, pp. 1-16
-
-
Glöckner, H.1
-
32
-
-
22144437298
-
Diff(Rn) as a Milnor-Lie group
-
H. Glöckner, Diff(Rn) as a Milnor-Lie group, Math. Nachr. 278:9 (2005), 1025-1032.
-
(2005)
Math. Nachr
, vol.278
, Issue.9
, pp. 1025-1032
-
-
Glöckner, H.1
-
33
-
-
33748993020
-
Fundamentals of direct limit Lie theory
-
H. Glöckner, Fundamentals of direct limit Lie theory, Compos. Math. 141:6 (2005), 1551-1577.
-
(2005)
Compos. Math
, vol.141
, Issue.6
, pp. 1551-1577
-
-
Glöckner, H.1
-
34
-
-
33846849587
-
Direct limit groups do not have small subgroups
-
H. Glöckner, Direct limit groups do not have small subgroups, Topol. Appl. 154:6 (2007), 1126-1133.
-
(2007)
Topol. Appl
, vol.154
, Issue.6
, pp. 1126-1133
-
-
Glöckner, H.1
-
35
-
-
33847398770
-
Direct limits of infinite-dimensional Lie groups compared to direct limits in related categories
-
H. Glöckner, Direct limits of infinite-dimensional Lie groups compared to direct limits in related categories, J. Funct. Anal. 245:1 (2007), 19-61.
-
(2007)
J. Funct. Anal
, vol.245
, Issue.1
, pp. 19-61
-
-
Glöckner, H.1
-
36
-
-
45849107600
-
Solutions to questions in Neeb’s recent survey on infinitedimensional Lie groups
-
H. Glöckner, Solutions to questions in Neeb’s recent survey on infinitedimensional Lie groups, Geom. Dedicata 135 (2008), 71-86.
-
(2008)
Geom. Dedicata
, vol.135
, pp. 71-86
-
-
Glöckner, H.1
-
38
-
-
77956118264
-
Final group topologies, Kac-Moody groups and Pontryagin duality
-
H. Glöckner, R. Gramlich and T. Hartnick, Final group topologies, Kac-Moody groups and Pontryagin duality, Israel J. Math. 177 (2010), 49-102
-
(2010)
Israel J. Math.
, vol.177
, pp. 49-102
-
-
Glöckner, H.1
Gramlich, R.2
Hartnick, T.3
-
40
-
-
33644657756
-
Lectures on diffeomorphism groups in quantum physics
-
Workshop (Cotonou, 2003), World Scientific
-
G. A. Goldin, Lectures on diffeomorphism groups in quantum physics, pp. 3-93 in: Contemporary Problems in Mathematical Physics, Proceedings of the 3rd Intern. Workshop (Cotonou, 2003), World Scientific, 2004
-
(2004)
Contemporary Problems in Mathematical Physics, Proceedings of the 3Rd Intern
, pp. 3-93
-
-
Goldin, G.A.1
-
41
-
-
0011289005
-
Some theorems on direct limits of expanding systems of manifolds
-
V. L. Hansen, Some theorems on direct limits of expanding systems of manifolds, Math. Scand. 29 (1971), 5-36.
-
(1971)
Math. Scand
, vol.29
, pp. 5-36
-
-
Hansen, V.L.1
-
42
-
-
0008012385
-
Irreducible unitary representations of the group of diffeomorphisms of a noncompact manifold
-
T. Hirai, Irreducible unitary representations of the group of diffeomorphisms of a noncompact manifold, J. Math. Kyoto Univ. 33:3 (1993), 827-864.
-
(1993)
J. Math. Kyoto Univ
, vol.33
, Issue.3
, pp. 827-864
-
-
Hirai, T.1
-
43
-
-
0035743440
-
Inductive limits of topologies, their direct products, and problems related to algebraic structures
-
T. Hirai, H. Shimomura, N. Tatsuuma and E. Hirai, Inductive limits of topologies, their direct products, and problems related to algebraic structures, J. Math. Kyoto Univ. 41:3 (2001), 475-505.
-
(2001)
J. Math. Kyoto Univ
, vol.41
, Issue.3
, pp. 475-505
-
-
Hirai, T.1
Shimomura, H.2
Tatsuuma, N.3
Hirai, E.4
-
45
-
-
0010990862
-
Unitary representations of the group C0(X, G), G=SU2
-
166
-
R. S. Ismagilov, Unitary representations of the group C0(X, G), G=SU2, Mat. Sb.(N.S.) 100(142):1 (1976), 117-131, 166.
-
(1976)
Mat. Sb.(N.S.)
, vol.100
, Issue.142-1
, pp. 117-131
-
-
Ismagilov, R.S.1
-
46
-
-
0002520541
-
A manifold structure for analytic isotropy Lie pseudogroups of infinite type
-
N. Kamran and T. Robart, A manifold structure for analytic isotropy Lie pseudogroups of infinite type, J. Lie Theory 11:1 (2001), 57-80.
-
(2001)
J. Lie Theory
, vol.11
, Issue.1
, pp. 57-80
-
-
Kamran, N.1
Robart, T.2
-
48
-
-
11144268918
-
Harmonic analysis on the infinite symmetric group
-
S. Kerov, G. I. Ol’shanskiĭ and A. Vershik, Harmonic analysis on the infinite symmetric group, Invent. Math. 158:3 (2004), 551-642.
-
(2004)
Invent. Math
, vol.158
, Issue.3
, pp. 551-642
-
-
Kerov, S.1
Ol’Shanskiĭ, G.I.2
Vershik, A.3
-
49
-
-
0038214555
-
Unitary representations of the group of diffeomorphisms and of some of its subgroups
-
A. A. Kirillov, Unitary representations of the group of diffeomorphisms and of some of its subgroups, Sel. Math. Sov. 1 (1981), 351-372.
-
(1981)
Sel. Math. Sov
, vol.1
, pp. 351-372
-
-
Kirillov, A.A.1
-
50
-
-
34250480168
-
Induktive Limiten nicht lokal-konvexer topologischer Vektorräume
-
J. Köhn, Induktive Limiten nicht lokal-konvexer topologischer Vektorräume, Math. Ann. 181 (1969), 269-278.
-
(1969)
Math. Ann
, vol.181
, pp. 269-278
-
-
Köhn, J.1
-
51
-
-
0001198355
-
Irreducible representations of inductive limits of groups
-
V. I. Kolomycev and Y.S. Samoĭlenko, Irreducible representations of inductive limits of groups, Ukr. Mat. J. 29 (1977), 526-531, 565
-
(1977)
Ukr. Mat. J
, vol.29
, Issue.565
, pp. 526-531
-
-
Kolomycev, V.I.1
Samoĭlenko, Y.S.2
-
53
-
-
30444447388
-
Direct limits of diagonal chains of type O, U, and Sp, and their homotopy groups
-
K. Kühn, Direct limits of diagonal chains of type O, U, and Sp, and their homotopy groups, Comm. Algebra 34:1 (2006), 75-87.
-
(2006)
Comm. Algebra
, vol.34
, Issue.1
, pp. 75-87
-
-
Kühn, K.1
-
54
-
-
84985387196
-
Unitary representations and coadjoint orbits for a group of germs of real analytic diffeomorphisms
-
F. Leitenberger, Unitary representations and coadjoint orbits for a group of germs of real analytic diffeomorphisms, Math. Nachr. 169 (1994), 185-205.
-
(1994)
Math. Nachr
, vol.169
, pp. 185-205
-
-
Leitenberger, F.1
-
55
-
-
0034365643
-
Integral completeness of locally convex spaces
-
A. K. Leonov and S. A. Shkarin, Integral completeness of locally convex spaces, Russ. J. Math. Phys. 7:4 (2000), 402-412.
-
(2000)
Russ. J. Math. Phys
, vol.7
, Issue.4
, pp. 402-412
-
-
Leonov, A.K.1
Shkarin, S.A.2
-
56
-
-
0003204775
-
On the group of real analytic diffeomorphisms of a compact real analytic manifold
-
J. Leslie, On the group of real analytic diffeomorphisms of a compact real analytic manifold, Trans. Amer. Math. Soc. 274:2 (1982), 651-669.
-
(1982)
Trans. Amer. Math. Soc
, vol.274
, Issue.2
, pp. 651-669
-
-
Leslie, J.1
-
57
-
-
85028074332
-
Some finite-codimensional Lie subgroups of Diffω (M)
-
G. M. Rassias and T. M. Rassias, Marcel Dekker, New York
-
J. Leslie, Some finite-codimensional Lie subgroups of Diffω (M), pp. 359-372 in: G. M. Rassias and T. M. Rassias (eds.), Differential Geometry, Calculus of Variations, and their Applications, Lecture Notes in Pure and Appl. Math. 100, Marcel Dekker, New York, 1985.
-
(1985)
Differential Geometry, Calculus of Variations, and Their Applications, Lecture Notes in Pure and Appl. Math. 100
, pp. 359-372
-
-
Leslie, J.1
-
58
-
-
0011550113
-
Some pathological properties of inductive limits of B-spaces
-
B. M. Makarov, Some pathological properties of inductive limits of B-spaces, Uspehi Mat. Nauk 18:3 (1963), 171-178.
-
(1963)
Uspehi Mat. Nauk
, vol.18
, Issue.3
, pp. 171-178
-
-
Makarov, B.M.1
-
61
-
-
0001335921
-
Remarks on infinite dimensional Lie groups
-
B. DeWitt and R. Stora, North-Holland, Amsterdam
-
J. Milnor, Remarks on infinite dimensional Lie groups, pp. 1007-1057 in: B. DeWitt and R. Stora (eds.), Relativity, Groups and Topology II, North-Holland, Amsterdam, 1984.
-
(1984)
Relativity, Groups and Topology II
, pp. 1007-1057
-
-
Milnor, J.1
-
62
-
-
0011322982
-
Isomorphism of the spaces of continuous functions over compact sets of the cardinality of the continuum
-
A. A. Miljutin, Isomorphism of the spaces of continuous functions over compact sets of the cardinality of the continuum, Teor. Funkciĭ Funkcional. Anal. i Priložen. Vyp. 2 (1966), 150-156.
-
(1966)
Teor. Funkciĭ Funkcional. Anal. I Priložen. Vyp
, vol.2
, pp. 150-156
-
-
Miljutin, A.A.1
-
63
-
-
0010962879
-
Spaces of germs of holomorphic functions
-
G.-C. Rota, Academic Press, New York
-
J. Mujica, Spaces of germs of holomorphic functions, pp. 1-41 in: G.-C. Rota (ed.), Studies in Analysis, Adv. in Math. Suppl. Stud. 4, Academic Press, New York, 1979.
-
(1979)
Studies in Analysis, Adv. In Math. Suppl. Stud. 4
, pp. 1-41
-
-
Mujica, J.1
-
64
-
-
84971125052
-
Spaces of continuous functions with values in an inductive limit
-
G. I. Zapata, Notes Pure Appl. Math. 83, Marcel Dekker, New York
-
J. Mujica, Spaces of continuous functions with values in an inductive limit, pp. 359-367 in: G. I. Zapata (ed.), Functional Analysis, Holomorphy, and Approximation Theory, Lect. Notes Pure Appl. Math. 83, Marcel Dekker, New York, 1983.
-
(1983)
Functional Analysis, Holomorphy, and Approximation Theory, Lect
, pp. 359-367
-
-
Mujica, J.1
-
65
-
-
0002713720
-
Differentiable structure for direct limit groups
-
L. Natarajan, E. Rodríguez-Carrington and J. A. Wolf, Differentiable structure for direct limit groups, Letters in Math. Phys. 23:2, (1991) 99-109.
-
(1991)
Letters in Math. Phys
, vol.23
, Issue.2
, pp. 99-109
-
-
Natarajan, L.1
Rodríguez-Carrington, E.2
Wolf, J.A.3
-
66
-
-
0002794405
-
Locally convex Lie groups
-
L. Natarajan, E. Rodríguez-Carrington and J. A. Wolf, Locally convex Lie groups, Nova J. Alg. Geom. 2:1 (1993), 59-87.
-
(1993)
Nova J. Alg. Geom
, vol.2
, Issue.1
, pp. 59-87
-
-
Natarajan, L.1
Rodríguez-Carrington, E.2
Wolf, J.A.3
-
67
-
-
23044528903
-
The Bott-Borel-Weil theorem for direct limit groups
-
L. Natarajan, E. Rodríguez-Carrington and J. A. Wolf, The Bott-Borel-Weil theorem for direct limit groups, Trans. Amer. Math. Soc. 353:11 (2001), 4583-4622.
-
(2001)
Trans. Amer. Math. Soc
, vol.11
, Issue.353
, pp. 4583-4622
-
-
Natarajan, L.1
Rodríguez-Carrington, E.2
Wolf, J.A.3
-
68
-
-
0032428541
-
Holomorphic highest weight representations of infinitedimensional complex classical groups
-
K.-H. Neeb, Holomorphic highest weight representations of infinitedimensional complex classical groups, J. Reine Angew. Math. 497 (1998), 171-222.
-
(1998)
J. Reine Angew. Math
, vol.497
, pp. 171-222
-
-
Neeb, K.-H.1
-
69
-
-
0034652903
-
Integrable roots in split graded Lie algebras
-
K.-H. Neeb, Integrable roots in split graded Lie algebras, J. Algebra 225:2 (2000), 534-580.
-
(2000)
J. Algebra
, vol.225
, Issue.2
, pp. 534-580
-
-
Neeb, K.-H.1
-
70
-
-
0042239396
-
Classical Hilbert-Lie groups, their extensions and their homotopy groups
-
A. Strasburger et al, Banach Center Publ. 55, Warsaw
-
K.-H. Neeb, Classical Hilbert-Lie groups, their extensions and their homotopy groups, pp. 87-151 in: A. Strasburger et al. (eds.) Geometry and Analysis on Finite-and Infinite-Dimensional Lie Groups, Banach Center Publ. 55, Warsaw, 2002.
-
(2002)
Geometry and Analysis on Finite-And Infinite-Dimensional Lie Groups
, pp. 87-151
-
-
Neeb, K.-H.1
-
71
-
-
0038168011
-
Central extensions of infinite-dimensional Lie groups
-
K.-H. Neeb, Central extensions of infinite-dimensional Lie groups, Ann. Inst. Fourier (Grenoble) 52:5 (2002), 1365-1442.
-
(2002)
Ann. Inst. Fourier (Grenoble)
, vol.52
, Issue.5
, pp. 1365-1442
-
-
Neeb, K.-H.1
-
72
-
-
43049158861
-
Current groups for non-compact manifolds and their central extensions
-
T. Wurzbacher, Physics, de Gruyter
-
K.-H. Neeb, Current groups for non-compact manifolds and their central extensions, pp. 109-183 in: T. Wurzbacher (ed.) Infinite-Dimensional Groups and Manifolds, IRMA Lecture Notes in Math. and Theor. Physics, de Gruyter, 2004.
-
(2004)
Infinite-Dimensional Groups and Manifolds, IRMA Lecture Notes in Math. And Theor
, pp. 109-183
-
-
Neeb, K.-H.1
-
73
-
-
33645067555
-
Abelian extensions of infinite-dimensional Lie groups
-
K.-H. Neeb, Abelian extensions of infinite-dimensional Lie groups, Travaux Math. 15 (2004), 69-194.
-
(2004)
Travaux Math
, vol.15
, pp. 69-194
-
-
Neeb, K.-H.1
-
74
-
-
23844546665
-
Infinite-dimensional groups and their representations
-
J. C. Jantzen and K.-H. Neeb, Birkhäuser, Boston, MA
-
K.-H. Neeb, Infinite-dimensional groups and their representations, pp. 213-328 in: J. C. Jantzen and K.-H. Neeb (eds.), Lie Theory, Birkhäuser, Boston, MA, 2004.
-
(2004)
Lie Theory
, pp. 213-328
-
-
Neeb, K.-H.1
-
75
-
-
33749023336
-
Towards a Lie theory of locally convex groups
-
K.-H. Neeb, Towards a Lie theory of locally convex groups, Jpn. J. Math. 1:2 (2006), 291-468.
-
(2006)
Jpn. J. Math
, vol.1
, Issue.2
, pp. 291-468
-
-
Neeb, K.-H.1
-
76
-
-
33947595386
-
Non-abelian extensions of infinite-dimensional Lie groups
-
K.-H. Neeb, Non-abelian extensions of infinite-dimensional Lie groups, Ann. Inst. Fourier (Grenoble) 57:1 (2007), 209-271.
-
(2007)
Ann. Inst. Fourier (Grenoble)
, vol.57
, Issue.1
, pp. 209-271
-
-
Neeb, K.-H.1
-
77
-
-
0035609132
-
The classification of locally finite split simple Lie algebras
-
K.-H. Neeb and N. Stumme, The classification of locally finite split simple Lie algebras, J. Reine Angew. Math. 533 (2001), 25-53.
-
(2001)
J. Reine Angew. Math
, vol.533
, pp. 25-53
-
-
Neeb, K.-H.1
Stumme, N.2
-
78
-
-
43049179983
-
Lie group structures on groups of smooth and holomorphic maps on non-compact manifolds
-
K.-H. Neeb and F. Wagemann, Lie group structures on groups of smooth and holomorphic maps on non-compact manifolds, Geom. Dedicata 134 (2008), 17-60.
-
(2008)
Geom. Dedicata
, vol.134
, pp. 17-60
-
-
Neeb, K.-H.1
Wagemann, F.2
-
79
-
-
77954067766
-
Unitary representations of infinite-dimensional pairs (G, K) and the formalism of R. Howe
-
G. I. Ol’shanskiĭ, Unitary representations of infinite-dimensional pairs (G, K) and the formalism of R. Howe, Dokl. Akad. Nauk SSSR 269:1 (1983), 33-36.
-
(1983)
Dokl. Akad. Nauk SSSR
, vol.269
, Issue.1
, pp. 33-36
-
-
Ol’Shanskiĭ, G.I.1
-
80
-
-
0346343169
-
The problem of harmonic analysis on the infinitedimensional unitary group
-
G. I. Ol’shanskiĭ, The problem of harmonic analysis on the infinitedimensional unitary group, J. Funct. Anal. 205:2 (2003), 464-524.
-
(2003)
J. Funct. Anal
, vol.205
, Issue.2
, pp. 464-524
-
-
Ol’Shanskiĭ, G.I.1
-
81
-
-
0007310980
-
-
Amer. Math. Soc., Providence, RI
-
H. Omori, Infinite-Dimensional Lie Groups, Transl. Math. Monographs 158, Amer. Math. Soc., Providence, RI, 1997.
-
(1997)
Infinite-Dimensional Lie Groups, Transl. Math. Monographs 158
-
-
Omori, H.1
-
82
-
-
0000489416
-
On the homotopy type of certain groups of operators
-
R. S. Palais, On the homotopy type of certain groups of operators, Topol-ogy 3 (1965), 271-279.
-
(1965)
Topol-Ogy
, vol.3
, pp. 271-279
-
-
Palais, R.S.1
-
83
-
-
0001156234
-
Homotopy theory of infinite-dimensional manifolds
-
R. S. Palais, Homotopy theory of infinite-dimensional manifolds, Topology 5 (1966), 1-16.
-
(1966)
Topology
, vol.5
, pp. 1-16
-
-
Palais, R.S.1
-
84
-
-
0042414123
-
Locally finite Lie algebras with root decomposition
-
I. Penkov and H. Strade, Locally finite Lie algebras with root decomposition, Arch. Math. (Basel) 80:5 (2003), 478-485.
-
(2003)
Arch. Math. (Basel)
, vol.80
, Issue.5
, pp. 478-485
-
-
Penkov, I.1
Strade, H.2
-
85
-
-
85028041557
-
Heat kernel measures and critical limits
-
Karl-Hermann Neeb and Arturo Pianzola, Birkhäuser, Boston, MA
-
D. Pickrell Heat kernel measures and critical limits, Karl-Hermann Neeb and Arturo Pianzola (eds.), Developments and Trends in InfiniteDimensional Lie Theory, Birkhäuser, Boston, MA, 2010.
-
(2010)
Developments and Trends in Infinitedimensional Lie Theory
-
-
Pickrell, D.1
-
86
-
-
84966233470
-
An example of an infinite Lie group
-
D. Pisanelli, An example of an infinite Lie group, Proc. Amer. Math. Soc. 62:1 (1977), 156-160.
-
(1977)
Proc. Amer. Math. Soc
, vol.62
, Issue.1
, pp. 156-160
-
-
Pisanelli, D.1
-
87
-
-
50849096663
-
A Bochner type theorem for inductive limits of Gelfand pairs
-
M. Rabaoui, A Bochner type theorem for inductive limits of Gelfand pairs, Ann. Inst. Fourier 58:5 (2008), 1551-1573.
-
(2008)
Ann. Inst. Fourier
, vol.58
, Issue.5
, pp. 1551-1573
-
-
Rabaoui, M.1
-
88
-
-
77951626984
-
Spaces of vector-valued continuous functions
-
R. M. Aron and S. Dineen, 644, Springer, Berlin
-
J. Schmets, Spaces of vector-valued continuous functions, pp. 368-377 in: R. M. Aron and S. Dineen (eds.), Vector Space Measures and Applications II, Lecture Notes in Math. 644, Springer, Berlin, 1978.
-
(1978)
Vector Space Measures and Applications II, Lecture Notes in Math
, pp. 368-377
-
-
Schmets, J.1
-
90
-
-
0001429908
-
Su certe classi di spazi localmente convessi important per le applicazioni
-
J. Sebastião e Silva, Su certe classi di spazi localmente convessi important per le applicazioni, Rend. Mat. Appl. 14 (1955), 388-410.
-
(1955)
Rend. Mat. Appl
, vol.14
, pp. 388-410
-
-
Sebastião E Silva, J.1
-
91
-
-
0035924684
-
Quasi-invariant measures on the group of diffeomorphisms and smooth vectors of unitary representations
-
H. Shimomura, Quasi-invariant measures on the group of diffeomorphisms and smooth vectors of unitary representations, J. Funct. Anal. 187:2 (2001), 406-441.
-
(2001)
J. Funct. Anal
, vol.187
, Issue.2
, pp. 406-441
-
-
Shimomura, H.1
-
92
-
-
26444493507
-
Irreducible decompositions of unitary representations of infinite-dimensional groups
-
H. Shimomura, Irreducible decompositions of unitary representations of infinite-dimensional groups, Math. Z. 251:3 (2005), 575-587.
-
(2005)
Math. Z
, vol.251
, Issue.3
, pp. 575-587
-
-
Shimomura, H.1
-
93
-
-
0011358160
-
Sur les topologies des espaces de L. Schwartz
-
T. Shirai, Sur les topologies des espaces de L. Schwartz, Proc. Japan Acad. 35 (1959), 31-36.
-
(1959)
Proc. Japan Acad
, vol.35
, pp. 31-36
-
-
Shirai, T.1
-
94
-
-
57849156370
-
Almost closed linear subspaces of strict inductive limits of sequences of Fréchet spaces
-
O. G. Smolyanov, Almost closed linear subspaces of strict inductive limits of sequences of Fréchet spaces, Mat. Sb. (N.S.) 80 (122) (1969), 513-520
-
(1969)
Mat. Sb. (N.S.)
, vol.80
, Issue.122
, pp. 513-520
-
-
Smolyanov, O.G.1
-
95
-
-
0033569194
-
The structure of locally finite split Lie algebras
-
N. Stumme, The structure of locally finite split Lie algebras, J. Algebra 220:2 (1999), 664-693.
-
(1999)
J. Algebra
, vol.220
, Issue.2
, pp. 664-693
-
-
Stumme, N.1
-
96
-
-
0032245438
-
On group topologies and unitary representations of inductive limits of topological groups and the case of the group of diffeomorphisms
-
N. Tatsuuma, H. Shimomura and T. Hirai, On group topologies and unitary representations of inductive limits of topological groups and the case of the group of diffeomorphisms, J. Math. Kyoto Univ. 38:3 (1998), 551-578.
-
(1998)
J. Math. Kyoto Univ
, vol.38
, Issue.3
, pp. 551-578
-
-
Tatsuuma, N.1
Shimomura, H.2
Hirai, T.3
-
97
-
-
0001276666
-
Über unitäre Darstellungen abzählbarer, diskreter Gruppen
-
E. Thoma, Über unitäre Darstellungen abzählbarer, diskreter Gruppen, Math. Ann. 153 (1964), 111-138.
-
(1964)
Math. Ann
, vol.153
, pp. 111-138
-
-
Thoma, E.1
-
98
-
-
0002043076
-
Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe
-
E. Thoma, Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe, Math. Z. 85 (1964), 40-61.
-
(1964)
Math. Z
, vol.85
, pp. 40-61
-
-
Thoma, E.1
-
99
-
-
84942095911
-
Representations of the group of diffeomorphisms
-
A. M. Veršik, I.M. Gel’fand and M. I. Graev, Representations of the group of diffeomorphisms, Uspehi Mat. Nauk 30:6 (1975), 1-50.
-
(1975)
Uspehi Mat. Nauk
, vol.30
, Issue.6
, pp. 1-50
-
-
Veršik, A.M.1
Gel’Fand, I.M.2
Graev, M.I.3
-
100
-
-
0002191551
-
Représentations factorielles de type II1 de U(∞)
-
D. Voiculescu, Représentations factorielles de type II1 de U(∞), J. Math. Pures Appl. 55:1 (1976), 1-20.
-
(1976)
J. Math. Pures Appl
, vol.55
, Issue.1
, pp. 1-20
-
-
Voiculescu, D.1
-
103
-
-
34548016778
-
Lie group structures on symmetry groups of principal bundles
-
C. Wockel, Lie group structures on symmetry groups of principal bundles, J. Funct. Anal. 251:1 (2007), 254-288.
-
(2007)
J. Funct. Anal
, vol.251
, Issue.1
, pp. 254-288
-
-
Wockel, C.1
-
104
-
-
33749014286
-
Principal series representations of direct limit groups
-
J. A. Wolf, Principal series representations of direct limit groups, Compos. Math. 141:6 (2005), 1504-1530.
-
(2005)
Compos. Math
, vol.141
, Issue.6
, pp. 1504-1530
-
-
Wolf, J.A.1
-
105
-
-
78651236261
-
Infinite dimensional multiplicity free spaces I: Limits of compact commutative spaces
-
Karl-Hermann Neeb and Arturo Pianzola, Birkhäuser, Boston, MA
-
J. A. Wolf, Infinite dimensional multiplicity free spaces I: limits of compact commutative spaces, Karl-Hermann Neeb and Arturo Pianzola (eds.), Developments and Trends in Infinite-Dimensional Lie Theory, Birkhäuser, Boston, MA, 2010.
-
(2010)
Developments and Trends in Infinite-Dimensional Lie Theory
-
-
Wolf, J.A.1
-
106
-
-
0039993830
-
Inductive limits of general linear groups
-
A. Yamasaki, Inductive limits of general linear groups, J. Math. Kyoto Univ. 38:4 (1998), 769-779
-
(1998)
J. Math. Kyoto Univ
, vol.38
, Issue.4
, pp. 769-779
-
-
Yamasaki, A.1
|