-
1
-
-
0039780353
-
The de Rham complex on infinite dimensional manifolds
-
1. E.J. Beggs 1987 The de Rham complex on infinite dimensional manifolds Q. J. Math. Oxford (2) 38 131 154 0636.58004 10.1093/qmath/38.2.131 891612 Beggs E.J. (1987). The de Rham complex on infinite dimensional manifolds. Q. J. Math. Oxford (2) 38: 131–154
-
(1987)
Q. J. Math. Oxford (2)
, vol.38
, pp. 131-154
-
-
Beggs, E.J.1
-
2
-
-
85121085353
-
-
2. Bredon, G.E.: Topology and Geometry. In: Graduate Texts in Mathematics, vol. 139. Springer-Verlag, Berlin (1993)
-
-
-
-
3
-
-
85121074654
-
-
3. Forster, O.: Riemannsche Flachen. Heidelberger Taschenbucher, Springer-Verlag (1977)
-
-
-
-
4
-
-
0003939143
-
Infinite Abelian Groups, I
-
4. L. Fuchs 1970 Infinite Abelian Groups, I Academic Press New York Fuchs L. (1970). Infinite Abelian Groups, I. Academic Press, New York
-
(1970)
-
-
Fuchs, L.1
-
5
-
-
0036808583
-
Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups
-
5. H. Glockner 2002 Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups J. Funct. Anal. 194 2 347 409 10.1006/jfan.2002.3942 1934608 Glockner H. (2002). Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups. J. Funct. Anal. 194(2): 347–409
-
(2002)
J. Funct. Anal.
, vol.194
, Issue.2
, pp. 347-409
-
-
Glockner, H.1
-
6
-
-
85121087059
-
-
6. H. Glockner 2002 Infinite-dimensional Lie groups without completeness restrictions A. Strasburger Geometry and Analysis on Finite-and Infinite-Dimensional Lie Groups, vol. 55 Banach Center Publications Warszawa 53 59 Glockner H. (2002). Infinite-dimensional Lie groups without completeness restrictions. In: Strasburger, A. et al. (eds) Geometry and Analysis on Finite-and Infinite-Dimensional Lie Groups, vol. 55, pp 53–59. Banach Center Publications, Warszawa
-
-
-
-
7
-
-
33845603219
-
Implicit functions from topological vector spaces to Banach Spaces
-
7. H. Glockner 2006 Implicit functions from topological vector spaces to Banach Spaces Isr. J. Math. 155 205 252 10.1007/BF02773955 2269430 Glockner H. (2006). Implicit functions from topological vector spaces to Banach Spaces. Isr. J. Math. 155: 205–252
-
(2006)
Isr. J. Math.
, vol.155
, pp. 205-252
-
-
Glockner, H.1
-
8
-
-
85121087123
-
-
8. Glockner, H.: Lie groups over non-discrete topological fields. arXiv:math.GR/0408008
-
-
-
-
9
-
-
27744545987
-
Holder continuous homomorphisms between infinite-dimensional Lie groups are smooth
-
9. H. Glockner 2005 Holder continuous homomorphisms between infinite-dimensional Lie groups are smooth J. Funct. Anal. 228 2 419 444 10.1016/j.jfa.2005.06.023 2175413 Glockner H. (2005). Holder continuous homomorphisms between infinite-dimensional Lie groups are smooth. J. Funct. Anal. 228(2): 419–444
-
(2005)
J. Funct. Anal.
, vol.228
, Issue.2
, pp. 419-444
-
-
Glockner, H.1
-
10
-
-
85121073497
-
-
10. Glockner, H., Neeb, K.-H.: Infinite-Dimensional Lie Groups. Book (in preparation)
-
-
-
-
11
-
-
0000638506
-
Analytische Faserungenuber holomorph-vollstandigen Raumen
-
11. H. Grauert 1958 Analytische Faserungenuber holomorph-vollstandigen Raumen Math. Ann. 135 263 273 0081.07401 10.1007/BF01351803 98199 Grauert H. (1958). Analytische Faserungenuber holomorph-vollstandigen Raumen. Math. Ann. 135: 263–273
-
(1958)
Math. Ann.
, vol.135
, pp. 263-273
-
-
Grauert, H.1
-
12
-
-
85121081511
-
-
12. Grothendieck, A.: Classes de Chern et representations lineaires. In: Dix Exposes sur la Cohomologie des Schemas. North Holland, Amsterdam; Masson, Paris (1968)
-
-
-
-
13
-
-
84966236065
-
The inverse function theorem of Nash and Moser
-
13. R. Hamilton 1982 The inverse function theorem of Nash and Moser Bull. Amer. Math. Soc. 7 65 222 0499.58003 10.1090/S0273-0979-1982-15004-2 656198 Hamilton R. (1982). The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc. 7: 65–222
-
(1982)
Bull. Amer. Math. Soc.
, vol.7
, pp. 65-222
-
-
Hamilton, R.1
-
14
-
-
0004215075
-
The Structure of Lie Groups
-
14. G. Hochschild 1965 The Structure of Lie Groups Holden Day San Francisco 0131.02702 Hochschild G. (1965). The Structure of Lie Groups. Holden Day, San Francisco
-
(1965)
-
-
Hochschild, G.1
-
15
-
-
85121077774
-
-
15. Hofmann, K.H., Neeb, K.-H.: Pro-Lie groups which are infinite-dimensional Lie groups (submitted)
-
-
-
-
16
-
-
85121076442
-
-
16. Kamber, F., Tondeur, Ph.: Flat manifolds. In: Lecture Notes Math., vol. 67. Springer-Verlag (1968)
-
-
-
-
17
-
-
85121086065
-
-
17. Kriegl, A., Michor, P.: The convenient setting of global analysis. Math. Surv. Monogr. 53, Amer. Math. Soc. (1997)
-
-
-
-
18
-
-
0003626553
-
Manifolds of Differentiable Mappings
-
18. P.W. Michor 1980 Manifolds of Differentiable Mappings Shiva Publishing Orpington, Kent (U.K.) 0433.58001 Michor P.W. (1980). Manifolds of Differentiable Mappings. Shiva Publishing, Orpington, Kent (U.K.)
-
(1980)
-
-
Michor, P.W.1
-
19
-
-
0038351150
-
Description of infinite dimensional abelian regular Lie groups
-
19. P. Michor J. Teichmann 1999 Description of infinite dimensional abelian regular Lie groups J. Lie Theory 9 2 487 489 1012.22036 1718235 Michor P. and Teichmann J. (1999). Description of infinite dimensional abelian regular Lie groups. J. Lie Theory 9(2): 487–489
-
(1999)
J. Lie Theory
, vol.9
, Issue.2
, pp. 487-489
-
-
Michor, P.1
Teichmann, J.2
-
20
-
-
51649208796
-
On the existence of a connection with curvature zero
-
20. J. Milnor 1958 On the existence of a connection with curvature zero Comment. Math. Helv. 32 215 223 0196.25101 10.1007/BF02564579 95518 Milnor J. (1958). On the existence of a connection with curvature zero. Comment. Math. Helv. 32: 215–223
-
(1958)
Comment. Math. Helv.
, vol.32
, pp. 215-223
-
-
Milnor, J.1
-
21
-
-
85121082626
-
-
21. J. Milnor 1984 Remarks on infinite-dimensional Lie groups B. DeWitt R. Stora Relativite, Groupes et Topologie II (Les Houches, 1983) North Holland Amsterdam 1007 1057 Milnor J. (1984). Remarks on infinite-dimensional Lie groups. In: DeWitt, B. and Stora, R. (eds) Relativite, Groupes et Topologie II (Les Houches, 1983), pp 1007–1057. North Holland, Amsterdam
-
-
-
-
22
-
-
85121086831
-
-
22. Muller, Chr., Wockel, Chr.: Equivalences of smooth and continuous principal bundles with infinite-dimensional structure group. math.DG/0604142
-
-
-
-
23
-
-
85121088884
-
-
23. Neeb, K.-H.: Representations of infinite dimensional groups. In: Huckleberry, A., Wurzbacher, T. (eds.) Infinite Dimensional Kahler Manifolds, DMV-Seminar, vol. 31, pp. 131–178. Birkhauser Verlag (2001)
-
-
-
-
24
-
-
85121085907
-
-
24. Neeb, K.-H.: Current groups for non-compact manifolds and their central extensions. pp. 109–183; in “Infinite Dimensional Groups and Manifolds” IRMA Lect. Math. Theor. Phys. 5, de Gruyter Berlin 2004
-
-
-
-
25
-
-
43049180006
-
Logarithmically exact differential forms
-
25. R. Palais 1961 Logarithmically exact differential forms Proc. Amer. Math. Soc. 12 50 52 0196.38903 10.2307/2034123 123339 Palais R. (1961). Logarithmically exact differential forms. Proc. Amer. Math. Soc. 12: 50–52
-
(1961)
Proc. Amer. Math. Soc.
, vol.12
, pp. 50-52
-
-
Palais, R.1
-
26
-
-
0000144550
-
The relationship between a commutative Banach algebra and its maximal ideal space
-
26. I. Raeburn 1977 The relationship between a commutative Banach algebra and its maximal ideal space J. Funct. Anal. 25 366 390 0353.46041 10.1016/0022-1236(77)90045-3 458180 Raeburn I. (1977). The relationship between a commutative Banach algebra and its maximal ideal space. J. Funct. Anal. 25: 366–390
-
(1977)
J. Funct. Anal.
, vol.25
, pp. 366-390
-
-
Raeburn, I.1
-
27
-
-
85121076493
-
-
27. Rudin, W.: Functional Analysis. McGraw Hill (1973)
-
-
-
-
28
-
-
11144263893
-
Higher genus affine algebras of Krichever-Novikov type
-
28. M. Schlichenmaier 2003 Higher genus affine algebras of Krichever-Novikov type Mosc. Math. J. 3 4 1395 1427 1115.17010 2058804 Schlichenmaier M. (2003). Higher genus affine algebras of Krichever-Novikov type. Mosc. Math. J. 3(4): 1395–1427
-
(2003)
Mosc. Math. J.
, vol.3
, Issue.4
, pp. 1395-1427
-
-
Schlichenmaier, M.1
-
29
-
-
0038689489
-
Weakly dense subgroups of Banach spaces
-
29. S.J. Sidney 1977 Weakly dense subgroups of Banach spaces Indiana Univ. Math. J. 26 6 981 986 0344.46033 10.1512/iumj.1977.26.26079 458134 Sidney S.J. (1977). Weakly dense subgroups of Banach spaces. Indiana Univ. Math. J. 26(6): 981–986
-
(1977)
Indiana Univ. Math. J.
, vol.26
, Issue.6
, pp. 981-986
-
-
Sidney, S.J.1
-
30
-
-
0010851527
-
Fixed-point theorems for periodic transformations
-
30. P.A. Smith 1941 Fixed-point theorems for periodic transformations Amer. J. Math. 63 1 8 0024.19004 10.2307/2371271 3199 Smith P.A. (1941). Fixed-point theorems for periodic transformations. Amer. J. Math. 63: 1–8
-
(1941)
Amer. J. Math.
, vol.63
, pp. 1-8
-
-
Smith, P.A.1
-
31
-
-
85121077095
-
-
31. Wells, R.O. Jr.: Differential Analysis on Complex Manifolds. 2nd edn, Graduate Texts in Mathematics 65, Springer-Verlag, New York-Berlin (1980)
-
-
-
-
32
-
-
85121071038
-
-
32. Wockel, Chr.: The Topology of Gauge Groups. (submitted) math-ph/0504076
-
-
-
-
33
-
-
33749003340
-
Smooth extensions and spaces of smooth and holomorphic mappings
-
33. Chr. Wockel 2006 Smooth extensions and spaces of smooth and holomorphic mappings J. Geom. Symm. Phys. 5 118 126 1108.58006 2269885 Wockel Chr. (2006). Smooth extensions and spaces of smooth and holomorphic mappings. J. Geom. Symm. Phys. 5: 118–126
-
(2006)
J. Geom. Symm. Phys.
, vol.5
, pp. 118-126
-
-
Wockel, Chr.1
|