메뉴 건너뛰기




Volumn 134, Issue 1, 2008, Pages 17-60

Lie group structures on groups of smooth and holomorphic maps on non-compact manifolds

Author keywords

Group of holomorphic maps; Infinite dimensional Lie group; Mapping group; Regular Lie group; Smooth compact open topology

Indexed keywords


EID: 43049179983     PISSN: 00465755     EISSN: 15729168     Source Type: Journal    
DOI: 10.1007/s10711-008-9244-2     Document Type: Article
Times cited : (27)

References (33)
  • 1
    • 0039780353 scopus 로고
    • The de Rham complex on infinite dimensional manifolds
    • 1. E.J. Beggs 1987 The de Rham complex on infinite dimensional manifolds Q. J. Math. Oxford (2) 38 131 154 0636.58004 10.1093/qmath/38.2.131 891612 Beggs E.J. (1987). The de Rham complex on infinite dimensional manifolds. Q. J. Math. Oxford (2) 38: 131–154
    • (1987) Q. J. Math. Oxford (2) , vol.38 , pp. 131-154
    • Beggs, E.J.1
  • 2
    • 85121085353 scopus 로고    scopus 로고
    • 2. Bredon, G.E.: Topology and Geometry. In: Graduate Texts in Mathematics, vol. 139. Springer-Verlag, Berlin (1993)
  • 3
    • 85121074654 scopus 로고    scopus 로고
    • 3. Forster, O.: Riemannsche Flachen. Heidelberger Taschenbucher, Springer-Verlag (1977)
  • 4
    • 0003939143 scopus 로고
    • Infinite Abelian Groups, I
    • 4. L. Fuchs 1970 Infinite Abelian Groups, I Academic Press New York Fuchs L. (1970). Infinite Abelian Groups, I. Academic Press, New York
    • (1970)
    • Fuchs, L.1
  • 5
    • 0036808583 scopus 로고    scopus 로고
    • Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups
    • 5. H. Glockner 2002 Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups J. Funct. Anal. 194 2 347 409 10.1006/jfan.2002.3942 1934608 Glockner H. (2002). Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups. J. Funct. Anal. 194(2): 347–409
    • (2002) J. Funct. Anal. , vol.194 , Issue.2 , pp. 347-409
    • Glockner, H.1
  • 6
    • 85121087059 scopus 로고    scopus 로고
    • 6. H. Glockner 2002 Infinite-dimensional Lie groups without completeness restrictions A. Strasburger Geometry and Analysis on Finite-and Infinite-Dimensional Lie Groups, vol. 55 Banach Center Publications Warszawa 53 59 Glockner H. (2002). Infinite-dimensional Lie groups without completeness restrictions. In: Strasburger, A. et al. (eds) Geometry and Analysis on Finite-and Infinite-Dimensional Lie Groups, vol. 55, pp 53–59. Banach Center Publications, Warszawa
  • 7
    • 33845603219 scopus 로고    scopus 로고
    • Implicit functions from topological vector spaces to Banach Spaces
    • 7. H. Glockner 2006 Implicit functions from topological vector spaces to Banach Spaces Isr. J. Math. 155 205 252 10.1007/BF02773955 2269430 Glockner H. (2006). Implicit functions from topological vector spaces to Banach Spaces. Isr. J. Math. 155: 205–252
    • (2006) Isr. J. Math. , vol.155 , pp. 205-252
    • Glockner, H.1
  • 8
    • 85121087123 scopus 로고    scopus 로고
    • 8. Glockner, H.: Lie groups over non-discrete topological fields. arXiv:math.GR/0408008
  • 9
    • 27744545987 scopus 로고    scopus 로고
    • Holder continuous homomorphisms between infinite-dimensional Lie groups are smooth
    • 9. H. Glockner 2005 Holder continuous homomorphisms between infinite-dimensional Lie groups are smooth J. Funct. Anal. 228 2 419 444 10.1016/j.jfa.2005.06.023 2175413 Glockner H. (2005). Holder continuous homomorphisms between infinite-dimensional Lie groups are smooth. J. Funct. Anal. 228(2): 419–444
    • (2005) J. Funct. Anal. , vol.228 , Issue.2 , pp. 419-444
    • Glockner, H.1
  • 10
    • 85121073497 scopus 로고    scopus 로고
    • 10. Glockner, H., Neeb, K.-H.: Infinite-Dimensional Lie Groups. Book (in preparation)
  • 11
    • 0000638506 scopus 로고
    • Analytische Faserungenuber holomorph-vollstandigen Raumen
    • 11. H. Grauert 1958 Analytische Faserungenuber holomorph-vollstandigen Raumen Math. Ann. 135 263 273 0081.07401 10.1007/BF01351803 98199 Grauert H. (1958). Analytische Faserungenuber holomorph-vollstandigen Raumen. Math. Ann. 135: 263–273
    • (1958) Math. Ann. , vol.135 , pp. 263-273
    • Grauert, H.1
  • 12
    • 85121081511 scopus 로고    scopus 로고
    • 12. Grothendieck, A.: Classes de Chern et representations lineaires. In: Dix Exposes sur la Cohomologie des Schemas. North Holland, Amsterdam; Masson, Paris (1968)
  • 13
    • 84966236065 scopus 로고
    • The inverse function theorem of Nash and Moser
    • 13. R. Hamilton 1982 The inverse function theorem of Nash and Moser Bull. Amer. Math. Soc. 7 65 222 0499.58003 10.1090/S0273-0979-1982-15004-2 656198 Hamilton R. (1982). The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc. 7: 65–222
    • (1982) Bull. Amer. Math. Soc. , vol.7 , pp. 65-222
    • Hamilton, R.1
  • 14
    • 0004215075 scopus 로고
    • The Structure of Lie Groups
    • 14. G. Hochschild 1965 The Structure of Lie Groups Holden Day San Francisco 0131.02702 Hochschild G. (1965). The Structure of Lie Groups. Holden Day, San Francisco
    • (1965)
    • Hochschild, G.1
  • 15
    • 85121077774 scopus 로고    scopus 로고
    • 15. Hofmann, K.H., Neeb, K.-H.: Pro-Lie groups which are infinite-dimensional Lie groups (submitted)
  • 16
    • 85121076442 scopus 로고    scopus 로고
    • 16. Kamber, F., Tondeur, Ph.: Flat manifolds. In: Lecture Notes Math., vol. 67. Springer-Verlag (1968)
  • 17
    • 85121086065 scopus 로고    scopus 로고
    • 17. Kriegl, A., Michor, P.: The convenient setting of global analysis. Math. Surv. Monogr. 53, Amer. Math. Soc. (1997)
  • 18
    • 0003626553 scopus 로고
    • Manifolds of Differentiable Mappings
    • 18. P.W. Michor 1980 Manifolds of Differentiable Mappings Shiva Publishing Orpington, Kent (U.K.) 0433.58001 Michor P.W. (1980). Manifolds of Differentiable Mappings. Shiva Publishing, Orpington, Kent (U.K.)
    • (1980)
    • Michor, P.W.1
  • 19
    • 0038351150 scopus 로고    scopus 로고
    • Description of infinite dimensional abelian regular Lie groups
    • 19. P. Michor J. Teichmann 1999 Description of infinite dimensional abelian regular Lie groups J. Lie Theory 9 2 487 489 1012.22036 1718235 Michor P. and Teichmann J. (1999). Description of infinite dimensional abelian regular Lie groups. J. Lie Theory 9(2): 487–489
    • (1999) J. Lie Theory , vol.9 , Issue.2 , pp. 487-489
    • Michor, P.1    Teichmann, J.2
  • 20
    • 51649208796 scopus 로고
    • On the existence of a connection with curvature zero
    • 20. J. Milnor 1958 On the existence of a connection with curvature zero Comment. Math. Helv. 32 215 223 0196.25101 10.1007/BF02564579 95518 Milnor J. (1958). On the existence of a connection with curvature zero. Comment. Math. Helv. 32: 215–223
    • (1958) Comment. Math. Helv. , vol.32 , pp. 215-223
    • Milnor, J.1
  • 21
    • 85121082626 scopus 로고    scopus 로고
    • 21. J. Milnor 1984 Remarks on infinite-dimensional Lie groups B. DeWitt R. Stora Relativite, Groupes et Topologie II (Les Houches, 1983) North Holland Amsterdam 1007 1057 Milnor J. (1984). Remarks on infinite-dimensional Lie groups. In: DeWitt, B. and Stora, R. (eds) Relativite, Groupes et Topologie II (Les Houches, 1983), pp 1007–1057. North Holland, Amsterdam
  • 22
    • 85121086831 scopus 로고    scopus 로고
    • 22. Muller, Chr., Wockel, Chr.: Equivalences of smooth and continuous principal bundles with infinite-dimensional structure group. math.DG/0604142
  • 23
    • 85121088884 scopus 로고    scopus 로고
    • 23. Neeb, K.-H.: Representations of infinite dimensional groups. In: Huckleberry, A., Wurzbacher, T. (eds.) Infinite Dimensional Kahler Manifolds, DMV-Seminar, vol. 31, pp. 131–178. Birkhauser Verlag (2001)
  • 24
    • 85121085907 scopus 로고    scopus 로고
    • 24. Neeb, K.-H.: Current groups for non-compact manifolds and their central extensions. pp. 109–183; in “Infinite Dimensional Groups and Manifolds” IRMA Lect. Math. Theor. Phys. 5, de Gruyter Berlin 2004
  • 25
    • 43049180006 scopus 로고
    • Logarithmically exact differential forms
    • 25. R. Palais 1961 Logarithmically exact differential forms Proc. Amer. Math. Soc. 12 50 52 0196.38903 10.2307/2034123 123339 Palais R. (1961). Logarithmically exact differential forms. Proc. Amer. Math. Soc. 12: 50–52
    • (1961) Proc. Amer. Math. Soc. , vol.12 , pp. 50-52
    • Palais, R.1
  • 26
    • 0000144550 scopus 로고
    • The relationship between a commutative Banach algebra and its maximal ideal space
    • 26. I. Raeburn 1977 The relationship between a commutative Banach algebra and its maximal ideal space J. Funct. Anal. 25 366 390 0353.46041 10.1016/0022-1236(77)90045-3 458180 Raeburn I. (1977). The relationship between a commutative Banach algebra and its maximal ideal space. J. Funct. Anal. 25: 366–390
    • (1977) J. Funct. Anal. , vol.25 , pp. 366-390
    • Raeburn, I.1
  • 27
    • 85121076493 scopus 로고    scopus 로고
    • 27. Rudin, W.: Functional Analysis. McGraw Hill (1973)
  • 28
    • 11144263893 scopus 로고    scopus 로고
    • Higher genus affine algebras of Krichever-Novikov type
    • 28. M. Schlichenmaier 2003 Higher genus affine algebras of Krichever-Novikov type Mosc. Math. J. 3 4 1395 1427 1115.17010 2058804 Schlichenmaier M. (2003). Higher genus affine algebras of Krichever-Novikov type. Mosc. Math. J. 3(4): 1395–1427
    • (2003) Mosc. Math. J. , vol.3 , Issue.4 , pp. 1395-1427
    • Schlichenmaier, M.1
  • 29
    • 0038689489 scopus 로고
    • Weakly dense subgroups of Banach spaces
    • 29. S.J. Sidney 1977 Weakly dense subgroups of Banach spaces Indiana Univ. Math. J. 26 6 981 986 0344.46033 10.1512/iumj.1977.26.26079 458134 Sidney S.J. (1977). Weakly dense subgroups of Banach spaces. Indiana Univ. Math. J. 26(6): 981–986
    • (1977) Indiana Univ. Math. J. , vol.26 , Issue.6 , pp. 981-986
    • Sidney, S.J.1
  • 30
    • 0010851527 scopus 로고
    • Fixed-point theorems for periodic transformations
    • 30. P.A. Smith 1941 Fixed-point theorems for periodic transformations Amer. J. Math. 63 1 8 0024.19004 10.2307/2371271 3199 Smith P.A. (1941). Fixed-point theorems for periodic transformations. Amer. J. Math. 63: 1–8
    • (1941) Amer. J. Math. , vol.63 , pp. 1-8
    • Smith, P.A.1
  • 31
    • 85121077095 scopus 로고    scopus 로고
    • 31. Wells, R.O. Jr.: Differential Analysis on Complex Manifolds. 2nd edn, Graduate Texts in Mathematics 65, Springer-Verlag, New York-Berlin (1980)
  • 32
    • 85121071038 scopus 로고    scopus 로고
    • 32. Wockel, Chr.: The Topology of Gauge Groups. (submitted) math-ph/0504076
  • 33
    • 33749003340 scopus 로고    scopus 로고
    • Smooth extensions and spaces of smooth and holomorphic mappings
    • 33. Chr. Wockel 2006 Smooth extensions and spaces of smooth and holomorphic mappings J. Geom. Symm. Phys. 5 118 126 1108.58006 2269885 Wockel Chr. (2006). Smooth extensions and spaces of smooth and holomorphic mappings. J. Geom. Symm. Phys. 5: 118–126
    • (2006) J. Geom. Symm. Phys. , vol.5 , pp. 118-126
    • Wockel, Chr.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.