메뉴 건너뛰기




Volumn 278, Issue 9, 2005, Pages 1025-1032

Diff (Rn) as a Milnor-Lie group

Author keywords

Almost local map; Compact support; Convenient differential calculus; Diffeomorphism group; Infinite dimensional Lie group; Keller's C c theory; Non compact manifold; Smoothness; Test function

Indexed keywords


EID: 22144437298     PISSN: 0025584X     EISSN: None     Source Type: Journal    
DOI: 10.1002/mana.200310288     Document Type: Article
Times cited : (12)

References (18)
  • 2
    • 0002734990 scopus 로고    scopus 로고
    • Infinite-dimensional Lie groups without completeness restrictions
    • edited by A. Strasburger, J. Hilgert and K.-H. Neeb (Institute of Mathematics, Polish Academy of Sciences, Warsaw)
    • H. Glöckner, Infinite-dimensional Lie groups without completeness restrictions, in: Geometry and Analysis on Finite-and Infinite-Dimensional Lie Groups, Banach Center Publications Vol. 55, edited by A. Strasburger, J. Hilgert and K.-H. Neeb (Institute of Mathematics, Polish Academy of Sciences, Warsaw, 2002), pp. 53-59.
    • (2002) Geometry and Analysis on Finite-and Infinite-Dimensional Lie Groups, Banach Center Publications , vol.55 , pp. 53-59
    • Glöckner, H.1
  • 3
    • 0036808583 scopus 로고    scopus 로고
    • Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups
    • H. Glöckner, Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups, J. Funct. Analysis 194, 347-409 (2002).
    • (2002) J. Funct. Analysis , vol.194 , pp. 347-409
    • Glöckner, H.1
  • 5
    • 85159526317 scopus 로고    scopus 로고
    • Discontinuous non-linear mappings on locally convex direct limits
    • to appear in (2006), cf. arXiv:math.GN/0503387
    • H. Glöckner, Discontinuous non-linear mappings on locally convex direct limits, to appear in Publ. Math. Debrecen 69 (2006), cf. arXiv:math.GN/0503387.
    • Publ. Math. Debrecen , vol.69
    • Glöckner, H.1
  • 8
    • 84966236065 scopus 로고
    • The inverse function theorem of Nash and Moser
    • R. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7, 65-222 (1982).
    • (1982) Bull. Amer. Math. Soc. , vol.7 , pp. 65-222
    • Hamilton, R.1
  • 11
    • 49949143181 scopus 로고
    • On a differential structure for the group of diffeomorphism
    • J. Leslie, On a differential structure for the group of diffeomorphism, Topology 6, 263-271 (1967).
    • (1967) Topology , vol.6 , pp. 263-271
    • Leslie, J.1
  • 14
    • 0001335921 scopus 로고
    • Remarks on infinite-dimensional Lie groups
    • edited by B. DeWitt and R. Stora (North-Holland, Amsterdam)
    • J. Milnor, Remarks on infinite-dimensional Lie groups, in: Relativity, Groups and Topology II, edited by B. DeWitt and R. Stora (North-Holland, Amsterdam, 1983), pp. 1008-1057.
    • (1983) Relativity, Groups and Topology II , pp. 1008-1057
    • Milnor, J.1
  • 15
    • 0001860769 scopus 로고    scopus 로고
    • Infinite-dimensional groups and their representations
    • edited by A. Huckleberry and T. Wurzbacher (Birkhäuser, Basel)
    • K.-H. Neeb, Infinite-dimensional groups and their representations, in: Infinite-Dimensional Kähler Manifolds, edited by A. Huckleberry and T. Wurzbacher (Birkhäuser, Basel, 2001), pp. 131-178.
    • (2001) Infinite-dimensional Kähler Manifolds , pp. 131-178
    • Neeb, K.-H.1
  • 16
    • 22144451166 scopus 로고    scopus 로고
    • H. Omori, Infinite-Dimensional Lie Groups (Amer. Math. Soc., Providence, RI, 1997)
    • H. Omori, Infinite-Dimensional Lie Groups (Amer. Math. Soc., Providence, RI, 1997).
  • 17
    • 0032245438 scopus 로고    scopus 로고
    • On group topologies and unitary representations of inductive limits of topological groups and the case of the group of diffeomorphisms
    • N. Tatsuuma, H. Shimomura, and T. Hirai, On group topologies and unitary representations of inductive limits of topological groups and the case of the group of diffeomorphisms, J. Math. Kyoto Univ. 38, 551-578 (1998).
    • (1998) J. Math. Kyoto Univ. , vol.38 , pp. 551-578
    • Tatsuuma, N.1    Shimomura, H.2    Hirai, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.