-
2
-
-
0002734990
-
Infinite-dimensional Lie groups without completeness restrictions
-
edited by A. Strasburger, J. Hilgert and K.-H. Neeb (Institute of Mathematics, Polish Academy of Sciences, Warsaw)
-
H. Glöckner, Infinite-dimensional Lie groups without completeness restrictions, in: Geometry and Analysis on Finite-and Infinite-Dimensional Lie Groups, Banach Center Publications Vol. 55, edited by A. Strasburger, J. Hilgert and K.-H. Neeb (Institute of Mathematics, Polish Academy of Sciences, Warsaw, 2002), pp. 53-59.
-
(2002)
Geometry and Analysis on Finite-and Infinite-Dimensional Lie Groups, Banach Center Publications
, vol.55
, pp. 53-59
-
-
Glöckner, H.1
-
3
-
-
0036808583
-
Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups
-
H. Glöckner, Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups, J. Funct. Analysis 194, 347-409 (2002).
-
(2002)
J. Funct. Analysis
, vol.194
, pp. 347-409
-
-
Glöckner, H.1
-
5
-
-
85159526317
-
Discontinuous non-linear mappings on locally convex direct limits
-
to appear in (2006), cf. arXiv:math.GN/0503387
-
H. Glöckner, Discontinuous non-linear mappings on locally convex direct limits, to appear in Publ. Math. Debrecen 69 (2006), cf. arXiv:math.GN/0503387.
-
Publ. Math. Debrecen
, vol.69
-
-
Glöckner, H.1
-
8
-
-
84966236065
-
The inverse function theorem of Nash and Moser
-
R. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7, 65-222 (1982).
-
(1982)
Bull. Amer. Math. Soc.
, vol.7
, pp. 65-222
-
-
Hamilton, R.1
-
11
-
-
49949143181
-
On a differential structure for the group of diffeomorphism
-
J. Leslie, On a differential structure for the group of diffeomorphism, Topology 6, 263-271 (1967).
-
(1967)
Topology
, vol.6
, pp. 263-271
-
-
Leslie, J.1
-
14
-
-
0001335921
-
Remarks on infinite-dimensional Lie groups
-
edited by B. DeWitt and R. Stora (North-Holland, Amsterdam)
-
J. Milnor, Remarks on infinite-dimensional Lie groups, in: Relativity, Groups and Topology II, edited by B. DeWitt and R. Stora (North-Holland, Amsterdam, 1983), pp. 1008-1057.
-
(1983)
Relativity, Groups and Topology II
, pp. 1008-1057
-
-
Milnor, J.1
-
15
-
-
0001860769
-
Infinite-dimensional groups and their representations
-
edited by A. Huckleberry and T. Wurzbacher (Birkhäuser, Basel)
-
K.-H. Neeb, Infinite-dimensional groups and their representations, in: Infinite-Dimensional Kähler Manifolds, edited by A. Huckleberry and T. Wurzbacher (Birkhäuser, Basel, 2001), pp. 131-178.
-
(2001)
Infinite-dimensional Kähler Manifolds
, pp. 131-178
-
-
Neeb, K.-H.1
-
16
-
-
22144451166
-
-
H. Omori, Infinite-Dimensional Lie Groups (Amer. Math. Soc., Providence, RI, 1997)
-
H. Omori, Infinite-Dimensional Lie Groups (Amer. Math. Soc., Providence, RI, 1997).
-
-
-
-
17
-
-
0032245438
-
On group topologies and unitary representations of inductive limits of topological groups and the case of the group of diffeomorphisms
-
N. Tatsuuma, H. Shimomura, and T. Hirai, On group topologies and unitary representations of inductive limits of topological groups and the case of the group of diffeomorphisms, J. Math. Kyoto Univ. 38, 551-578 (1998).
-
(1998)
J. Math. Kyoto Univ.
, vol.38
, pp. 551-578
-
-
Tatsuuma, N.1
Shimomura, H.2
Hirai, T.3
|