메뉴 건너뛰기




Volumn 154, Issue 6, 2007, Pages 1126-1133

Direct limit groups do not have small subgroups

Author keywords

Direct limit; Direct limit group; Inductive limit; Infinite dimensional Lie group; Small subgroup; Torsion subgroup

Indexed keywords


EID: 33846849587     PISSN: 01668641     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.topol.2006.11.003     Document Type: Article
Times cited : (2)

References (17)
  • 1
    • 0242694349 scopus 로고    scopus 로고
    • Contributions to the duality theory of Abelian topological groups and to the theory of nuclear groups
    • Außenhofer L. Contributions to the duality theory of Abelian topological groups and to the theory of nuclear groups. Dissertationes Math. 384 (1999)
    • (1999) Dissertationes Math. , vol.384
    • Außenhofer, L.1
  • 4
    • 84961475044 scopus 로고
    • Lokalkonvexe Sequenzen mit kompakten Abbildungen
    • Floret K. Lokalkonvexe Sequenzen mit kompakten Abbildungen. J. Reine Angew. Math. 247 (1971) 155-195
    • (1971) J. Reine Angew. Math. , vol.247 , pp. 155-195
    • Floret, K.1
  • 5
    • 0036808583 scopus 로고    scopus 로고
    • Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups
    • Glöckner H. Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups. J. Funct. Anal. 194 (2002) 347-409
    • (2002) J. Funct. Anal. , vol.194 , pp. 347-409
    • Glöckner, H.1
  • 6
    • 1442303110 scopus 로고    scopus 로고
    • Direct limit Lie groups and manifolds
    • Glöckner H. Direct limit Lie groups and manifolds. J. Math. Kyoto Univ. 43 (2003) 1-26
    • (2003) J. Math. Kyoto Univ. , vol.43 , pp. 1-26
    • Glöckner, H.1
  • 7
    • 33749024896 scopus 로고    scopus 로고
    • Lie groups of germs of analytic mappings
    • Infinite Dimensional Groups and Manifolds. Wurzbacher T. (Ed), de Gruyter, Berlin
    • Glöckner H. Lie groups of germs of analytic mappings. In: Wurzbacher T. (Ed). Infinite Dimensional Groups and Manifolds. IRMA Lecture Notes in Math. and Theor. Physics (2004), de Gruyter, Berlin 1-16
    • (2004) IRMA Lecture Notes in Math. and Theor. Physics , pp. 1-16
    • Glöckner, H.1
  • 8
    • 33748993020 scopus 로고    scopus 로고
    • Fundamentals of direct limit Lie theory
    • Glöckner H. Fundamentals of direct limit Lie theory. Compos. Math. 141 (2005) 1551-1577
    • (2005) Compos. Math. , vol.141 , pp. 1551-1577
    • Glöckner, H.1
  • 11
    • 0011289005 scopus 로고
    • Some theorems on direct limits of expanding systems of manifolds
    • Hansen V.L. Some theorems on direct limits of expanding systems of manifolds. Math. Scand. 29 (1971) 5-36
    • (1971) Math. Scand. , vol.29 , pp. 5-36
    • Hansen, V.L.1
  • 12
    • 0035743440 scopus 로고    scopus 로고
    • Inductive limits of topologies, their direct products, and problems related to algebraic structures
    • Hirai T., Shimomura H., Tatsuuma N., and Hirai E. Inductive limits of topologies, their direct products, and problems related to algebraic structures. J. Math. Kyoto Univ. 41 (2001) 475-505
    • (2001) J. Math. Kyoto Univ. , vol.41 , pp. 475-505
    • Hirai, T.1    Shimomura, H.2    Tatsuuma, N.3    Hirai, E.4
  • 14
    • 0001335921 scopus 로고
    • Remarks on infinite-dimensional Lie groups
    • DeWitt B., and Stora R. (Eds), North-Holland, Amsterdam
    • Milnor J. Remarks on infinite-dimensional Lie groups. In: DeWitt B., and Stora R. (Eds). Relativité, Groupes et Topologie II (1984), North-Holland, Amsterdam 1007-1057
    • (1984) Relativité, Groupes et Topologie II , pp. 1007-1057
    • Milnor, J.1
  • 16
    • 33749023336 scopus 로고    scopus 로고
    • Towards a Lie theory of locally convex groups
    • Neeb K.-H. Towards a Lie theory of locally convex groups. Japan. J. Math. 1 (2006) 291-468
    • (2006) Japan. J. Math. , vol.1 , pp. 291-468
    • Neeb, K.-H.1
  • 17
    • 0032245438 scopus 로고    scopus 로고
    • On group topologies and unitary representations of inductive limits of topological groups and the case of the group of diffeomorphisms
    • Tatsuuma N., Shimomura H., and Hirai T. On group topologies and unitary representations of inductive limits of topological groups and the case of the group of diffeomorphisms. J. Math. Kyoto Univ. 38 (1998) 551-578
    • (1998) J. Math. Kyoto Univ. , vol.38 , pp. 551-578
    • Tatsuuma, N.1    Shimomura, H.2    Hirai, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.