-
1
-
-
85039581789
-
-
Darmstadt University of Technology, Department of Mathematics, preprint, March; also arXiv:math.GM/0303300
-
W. Bertram, H. Glöckner and K.-H. Neeb, Differential calculus, manifolds and Lie groups over arbitrary infinite fields, Darmstadt University of Technology, Department of Mathematics, preprint 2270, March 2003; also arXiv:math.GM/0303300.
-
(2003)
Differential Calculus, Manifolds and Lie Groups over Arbitrary Infinite Fields
, vol.2270
-
-
Bertram, W.1
Glöckner, H.2
Neeb, K.-H.3
-
2
-
-
0011798456
-
The topology of finitely open sets is not a vector space topology
-
T. M. Bisgaard, The topology of finitely open sets is not a vector space topology, Arch. Math. 60 (1993), 546-553.
-
(1993)
Arch. Math.
, vol.60
, pp. 546-553
-
-
Bisgaard, T.M.1
-
5
-
-
0003535772
-
-
Allyn and Bacon, Boston
-
J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.
-
(1966)
Topology
-
-
Dugundji, J.1
-
6
-
-
0039374857
-
On the bamboo-shoot topology of certain inductive limits of topological groups
-
T. Edamatsu, On the bamboo-shoot topology of certain inductive limits of topological groups, J. Math. Kyoto Univ. 39-4 (1999), 715-724.
-
(1999)
J. Math. Kyoto Univ.
, vol.39
, Issue.4
, pp. 715-724
-
-
Edamatsu, T.1
-
8
-
-
85039585036
-
-
Department of Mathematics, preprint, February
-
H. Glöckner, Direct limit Lie groups and manifolds, Darmstadt University of Technology, Department of Mathematics, preprint 2025, February 1999.
-
(1999)
Direct Limit Lie Groups and Manifolds, Darmstadt University of Technology
, vol.2025
-
-
Glöckner, H.1
-
9
-
-
0036808583
-
Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups
-
_, Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups, J. Funct. Anal. 194 (2002), 347-409.
-
(2002)
J. Funct. Anal.
, vol.194
, pp. 347-409
-
-
-
11
-
-
84966236065
-
The inverse function theorem of Nash and Moser
-
R. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1982), 65-222.
-
(1982)
Bull. Amer. Math. Soc.
, vol.7
, pp. 65-222
-
-
Hamilton, R.1
-
12
-
-
0011289005
-
Some theorems on direct limits of expanding systems of manifolds
-
V. L. Hansen, Some theorems on direct limits of expanding systems of manifolds, Math. Scand. 29 (1971), 5-36.
-
(1971)
Math. Scand.
, vol.29
, pp. 5-36
-
-
Hansen, V.L.1
-
13
-
-
0042298568
-
Functional Analysis and Semi-Groups
-
New York
-
E. Hille, Functional Analysis and Semi-Groups, Amer. Math. Soc. Colloq. Publ. 31, New York, 1948.
-
(1948)
Amer. Math. Soc. Colloq. Publ.
, vol.31
-
-
Hille, E.1
-
14
-
-
0035743440
-
Inductive limits of topologies, their direct product, and problems related to algebraic structures
-
T. Hirai, H. Shimomura, N. Tatsuuma and E. Hirai, Inductive limits of topologies, their direct product, and problems related to algebraic structures, J. Math. Kyoto Univ. 41-3 (2001), 475-505.
-
(2001)
J. Math. Kyoto Univ.
, vol.41
, Issue.3
, pp. 475-505
-
-
Hirai, T.1
Shimomura, H.2
Tatsuuma, N.3
Hirai, E.4
-
17
-
-
0011798812
-
The finite topology of a linear space
-
S. Kakutani and V. Klee, The finite topology of a linear space, Arch. Math. 14 (1963), 55-58.
-
(1963)
Arch. Math.
, vol.14
, pp. 55-58
-
-
Kakutani, S.1
Klee, V.2
-
18
-
-
0001433519
-
Cartesian products of reals
-
S. Kaplan, Cartesian products of reals, Amer. J. Math. 74 (1952), 936-954.
-
(1952)
Amer. J. Math.
, vol.74
, pp. 936-954
-
-
Kaplan, S.1
-
20
-
-
0001198355
-
Irreducible representations of inductive limits of groups
-
engl. transl.
-
V. I. Kolomytsev and Yu. S. Samoilenko, Irreducible representations of inductive limits of groups, Ukrain. Mat. Zh. 29 (1977), engl. transl., 402-405.
-
(1977)
Ukrain. Mat. Zh.
, vol.29
, pp. 402-405
-
-
Kolomytsev, V.I.1
Samoilenko, Yu.S.2
-
21
-
-
21744455992
-
Regular infinite dimensional Lie groups
-
A. Kriegl and P. W. Michor, Regular infinite dimensional Lie groups, J. Lie Theory 7 (1997), 61-99.
-
(1997)
J. Lie Theory
, vol.7
, pp. 61-99
-
-
Kriegl, A.1
Michor, P.W.2
-
22
-
-
85039586610
-
The Convenient Setting of Global Analysis
-
Providence R. I.
-
_, The Convenient Setting of Global Analysis, Amer. Math. Soc., Providence R. I., 1997.
-
(1997)
Amer. Math. Soc.
-
-
-
25
-
-
0001335921
-
Remarks on infinite dimensional Lie groups
-
B. DeWitt and R. Stora (eds.), North-Holland
-
J. Milnor, Remarks on infinite dimensional Lie groups, In: B. DeWitt and R. Stora (eds.), Relativity, Groups and Topology II, North-Holland, 1983.
-
(1983)
Relativity, Groups and Topology II
-
-
Milnor, J.1
-
28
-
-
0002794405
-
Locally convex Lie groups
-
_, Locally convex Lie groups, Nova J. of Alg. & Geom. 2-1 (1993), 59-87.
-
(1993)
Nova J. of Alg. & Geom.
, vol.2
, Issue.1
, pp. 59-87
-
-
-
29
-
-
0000481621
-
New classes of infinite-dimensional Lie groups
-
_, New classes of infinite-dimensional Lie groups, In: Proc. of Symposia in Pure Math. 56-2 (1994), 377-392.
-
(1994)
Proc. of Symposia in Pure Math.
, vol.56
, Issue.2
, pp. 377-392
-
-
-
30
-
-
23044528903
-
The Bott-Borel-Weil Theorem for direct limit groups
-
_, The Bott-Borel-Weil Theorem for direct limit groups, Trans. Amer. Math. Soc. 353 (2001), 4583-4622.
-
(2001)
Trans. Amer. Math. Soc.
, vol.353
, pp. 4583-4622
-
-
-
31
-
-
85039568421
-
Infinite-dimensional groups and their representations
-
A. T. Huckleberry and T. Wurzbacher (eds.), Oberwolfach; Birkhäuser Verlag, Basel
-
K.-H. Neeb, Infinite-dimensional groups and their representations, In: A. T. Huckleberry and T. Wurzbacher (eds.), DMV-Seminar Infinite Dimensional Kahler Manifolds, Oberwolfach, 1995; Birkhäuser Verlag, Basel, 2001.
-
(1995)
DMV-seminar Infinite Dimensional Kahler Manifolds
-
-
Neeb, K.-H.1
-
32
-
-
0001471212
-
Unitary representations of infinite dimensional pairs (G, K) and the formalism of R. Howe
-
A. Vershik and D. Zhelobenko (eds.), Gordon & Breach, New York
-
G. I. Ol'shanskiǐ, Unitary representations of infinite dimensional pairs (G, K) and the formalism of R. Howe, In: A. Vershik and D. Zhelobenko (eds.), Representations of Lie Groups and Related Topics, Gordon & Breach, New York, 1990, 269-463.
-
(1990)
Representations of Lie Groups and Related Topics
, pp. 269-463
-
-
Ol'shanskiǐ, G.I.1
-
34
-
-
0032245438
-
On group topologies and unitary representations of inductive limits of topological groups and the case of the group of diffeomorphisms
-
N. Tatsuuma, H. Shimomura and T. Hirai, On group topologies and unitary representations of inductive limits of topological groups and the case of the group of diffeomorphisms, J. Math. Kyoto Univ. 38 (1998), 551-578.
-
(1998)
J. Math. Kyoto Univ.
, vol.38
, pp. 551-578
-
-
Tatsuuma, N.1
Shimomura, H.2
Hirai, T.3
-
36
-
-
0039993830
-
Inductive limit of general linear groups
-
A. Yamasaki, Inductive limit of general linear groups, J. Math. Kyoto Univ. 38-4 (1998), 769-779.
-
(1998)
J. Math. Kyoto Univ.
, vol.38
, Issue.4
, pp. 769-779
-
-
Yamasaki, A.1
|