-
1
-
-
3242810561
-
Differential calculus over general base fields and rings
-
Bertram W., Glöckner H., Neeb K.-H.: Differential calculus over general base fields and rings. Expo. Math. 22, 213-282 (2004)
-
(2004)
Expo. Math.
, vol.22
, pp. 213-282
-
-
Bertram, W.1
Glöckner, H.2
Neeb, K.-H.3
-
4
-
-
0002734990
-
Infinite-dimensional Lie groups without completeness restrictions
-
Strasburger A. et al. (eds.) Banach Center Publ.
-
Glöckner, H.: Infinite-dimensional Lie groups without completeness restrictions. In: Strasburger A. et al. (eds.) Geometry and Analysis on Finite- and Infinite-Dimensional Lie Groups, Vol. 55, pp. 43-59. Banach Center Publ. (2002)
-
(2002)
Geometry and Analysis on Finite- and Infinite-Dimensional Lie Groups
, vol.55
, pp. 43-59
-
-
Glöckner, H.1
-
5
-
-
1442303110
-
Direct limit Lie groups and manifolds
-
Glöckner H.: Direct limit Lie groups and manifolds. J. Math. Kyoto Univ. 43, 1-26 (2003)
-
(2003)
J. Math. Kyoto Univ.
, vol.43
, pp. 1-26
-
-
Glöckner, H.1
-
6
-
-
22144437298
-
n) as a Milnor-Lie group
-
n) as a Milnor-Lie group. Math. Nachr. 278, 1025-1032 (2005)
-
(2005)
Math. Nachr.
, vol.278
, pp. 1025-1032
-
-
Glöckner, H.1
-
7
-
-
33748993020
-
Fundamentals of direct limit Lie theory
-
Glöckner H.: Fundamentals of direct limit Lie theory. Compos. Math. 141, 1551-1577 (2005)
-
(2005)
Compos. Math.
, vol.141
, pp. 1551-1577
-
-
Glöckner, H.1
-
8
-
-
33847398770
-
Direct limits of infinite-dimensional Lie groups compared to direct limits in related categories
-
Glöckner H.: Direct limits of infinite-dimensional Lie groups compared to direct limits in related categories. J. Funct. Anal. 245, 19-61 (2007)
-
(2007)
J. Funct. Anal.
, vol.245
, pp. 19-61
-
-
Glöckner, H.1
-
13
-
-
0039192958
-
A Frobenius theorem for locally convex global analysis
-
Hiltunen, S.: A Frobenius theorem for locally convex global analysis. Monatsh. Math. 129, 109-117 (2000)
-
(2000)
Monatsh. Math.
, vol.129
, pp. 109-117
-
-
Hiltunen, S.1
-
14
-
-
0035743440
-
Inductive limits of topologies, their direct products, and problems related to algebraic structures
-
Hirai T., Shimomura H., Tatsuuma N., Hirai E.: Inductive limits of topologies, their direct products, and problems related to algebraic structures. J. Math. Kyoto Univ. 41, 475-505 (2001)
-
(2001)
J. Math. Kyoto Univ.
, vol.41
, pp. 475-505
-
-
Hirai, T.1
Shimomura, H.2
Tatsuuma, N.3
Hirai, E.4
-
16
-
-
76749171436
-
The Structure of Connected Pro-Lie Groups
-
EMS Publ. House, Zurich
-
Hofmann, K.H., Morris, S.A.: The Structure of Connected Pro-Lie Groups. EMS Tracts in Math. 2, EMS Publ. House, Zurich (2007)
-
(2007)
EMS Tracts in Math.
, vol.2
-
-
Hofmann, K.H.1
Morris, S.A.2
-
17
-
-
0003023917
-
The Convenient Setting of Global Analysis
-
Am. Math. Soc. Providence
-
Kriegl, A., Michor, P.W.: The Convenient Setting of Global Analysis. Mathematical Surveys and Monographs 53, Am. Math. Soc. Providence (1997).
-
(1997)
Mathematical Surveys and Monographs
, vol.53
-
-
Kriegl, A.1
Michor, P.W.2
-
19
-
-
0001335921
-
Remarks on infinite-dimensional Lie groups
-
North-Holland, Amsterdam
-
Milnor, J.: Remarks on infinite-dimensional Lie groups. In: Relativity, Groups and Topology, II (Les Houches, 1983), pp. 1007-1057. North-Holland, Amsterdam (1984)
-
(1984)
Relativity, Groups and Topology, II (Les Houches, 1983)
, pp. 1007-1057
-
-
Milnor, J.1
-
21
-
-
33749023336
-
Towards a Lie theory of locally convex groups
-
Neeb K.-H.: Towards a Lie theory of locally convex groups. Jpn. J. Math. 1, 291-468 (2006)
-
(2006)
Jpn. J. Math.
, vol.1
, pp. 291-468
-
-
Neeb, K.-H.1
-
22
-
-
84966233470
-
An example of an infinite Lie group
-
Pisanelli D.: An example of an infinite Lie group. Proc. Am. Math. Soc. 62, 156-160 (1977)
-
(1977)
Proc. Am. Math. Soc.
, vol.62
, pp. 156-160
-
-
Pisanelli, D.1
-
23
-
-
0347245055
-
Sur la théorie locale des pseudogroupes de transformations continus infinis I
-
Robart T., Kamran N.: Sur la théorie locale des pseudogroupes de transformations continus infinis I. Math. Ann. 308, 593-613 (1997)
-
(1997)
Math. Ann.
, vol.308
, pp. 593-613
-
-
Robart, T.1
Kamran, N.2
|