-
2
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, "Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations," in Proc. of International Conference on Machine Learning (ICML), 2009.
-
(2009)
Proc. of International Conference on Machine Learning (ICML)
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
3
-
-
84910651844
-
Deep learning in neural networks: An overview
-
J. Schmidhuber, "Deep learning in neural networks: An overview," Elsevier Neural Networks, 2015.
-
(2015)
Elsevier Neural Networks
-
-
Schmidhuber, J.1
-
5
-
-
84890478042
-
Building high-level features using large scale unsupervised learning
-
Q. V. Le, "Building high-level features using large scale unsupervised learning," Proc. of ICASSP, 2013.
-
(2013)
Proc. of ICASSP
-
-
Le, Q.V.1
-
6
-
-
85069497682
-
Project adam: Building an efficient and scalable deep learning training system
-
T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, "Project Adam: Building an Efficient and Scalable Deep Learning Training System", Proceedings of the 11th USENIX Symposium on Operating Systems Design and Implementation, 2014.
-
(2014)
Proceedings of the 11th USENIX Symposium on Operating Systems Design and Implementation
-
-
Chilimbi, T.1
Suzue, Y.2
Apacible, J.3
Kalyanaraman, K.4
-
7
-
-
84877760312
-
Large scale distributed deep networks
-
J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, Q. V. Le, and A. Y. Ng, "Large scale distributed deep networks," Proc. of Advances in Neural Information Processing Systems (NIPS), 2012.
-
(2012)
Proc. of Advances in Neural Information Processing Systems (NIPS)
-
-
Dean, J.1
Corrado, G.2
Monga, R.3
Chen, K.4
Devin, M.5
Mao, M.6
Ranzato, M.7
Senior, A.8
Tucker, P.9
Yang, K.10
Le, Q.V.11
Ng, A.Y.12
-
8
-
-
85005955564
-
Deep learning with COTS HPC systems
-
A. Coates, B. Huval, T. Wang, D. J. Wu, A. Y. Ng, and B. Catanzaro, "Deep learning with COTS HPC systems," Proc. of Advances in Neural Information Processing Systems (NIPS), 2013.
-
(2013)
Proc. of Advances in Neural Information Processing Systems (NIPS)
-
-
Coates, A.1
Huval, B.2
Wang, T.3
Wu, D.J.4
Ng, A.Y.5
Catanzaro, B.6
-
9
-
-
84913580146
-
Caffe: Convolutional architecture for fast feature embedding
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell, "Caffe: Convolutional architecture for fast feature embedding," Proc. of ACM International Conference on Multimedia, 2014.
-
(2014)
Proc. of ACM International Conference on Multimedia
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
10
-
-
78649669320
-
Deep, big, simple neural nets for handwritten digital recognition
-
D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber, "Deep, big, simple neural nets for handwritten digital recognition," Neural Computation, 2010.
-
(2010)
Neural Computation
-
-
Ciresan, D.C.1
Meier, U.2
Gambardella, L.M.3
Schmidhuber, J.4
-
11
-
-
84958055999
-
Theano: Deep learning on GPUs with Python
-
J. Bergstra, F. Bastien, O. Breuleux, P. Lamblin, R. Pascanu, O. Delalleau, G. Desjardins, D. Warde-Farley, I. Goodfellow, A. Bergeron, and Y. Bengio, "Theano: Deep learning on GPUs with Python," Journal of Machine Learning Research, 2011.
-
(2011)
Journal of Machine Learning Research
-
-
Bergstra, J.1
Bastien, F.2
Breuleux, O.3
Lamblin, P.4
Pascanu, R.5
Delalleau, O.6
Desjardins, G.7
Warde-Farley, D.8
Goodfellow, I.9
Bergeron, A.10
Bengio, Y.11
-
12
-
-
84955490700
-
Energy efficient RRAM spiking neural network for real time classification
-
ACM
-
Y. Wang, T. Tang, L. Xia, B. Li, P. Gu, H. Yang, H. Li, Y. Xie, "Energy Efficient RRAM Spiking Neural Network for Real Time Classification." In Proceedings of the 25th edition on Great Lakes Symposium on VLSI, pp. 189-194. ACM, 2015.
-
(2015)
Proceedings of the 25th Edition on Great Lakes Symposium on VLSI
, pp. 189-194
-
-
Wang, Y.1
Tang, T.2
Xia, L.3
Li, B.4
Gu, P.5
Yang, H.6
Li, H.7
Xie, Y.8
-
13
-
-
84861765357
-
Extraction of temporally correlated features from dynamic vision sensors with spike-timing-dependent plasticity
-
O. Bichler, D. Querlioz, S. J. Thorpe, J. P. Bourgoin, C. Gamrat, "Extraction of temporally correlated features from dynamic vision sensors with spike-timing-dependent plasticity." Neural Networks 32 (2012): 339-348.
-
(2012)
Neural Networks
, vol.32
, pp. 339-348
-
-
Bichler, O.1
Querlioz, D.2
Thorpe, S.J.3
Bourgoin, J.P.4
Gamrat, C.5
-
14
-
-
84887947383
-
Overview of the SpiNNaker system architecture
-
Dec.
-
S. B. Furber, D. R. Lester, L. A. Plana, J. D. Garside, E. Painkras, S. Temple, A. D. Brown, "Overview of the SpiNNaker System Architecture," in Computers, IEEE Transactions on, vol. 62, no. 12, pp. 2454-2467, Dec. 2013.
-
(2013)
Computers, IEEE Transactions on
, vol.62
, Issue.12
, pp. 2454-2467
-
-
Furber, S.B.1
Lester, D.R.2
Plana, L.A.3
Garside, J.D.4
Painkras, E.5
Temple, S.6
Brown, A.D.7
-
15
-
-
84905915006
-
A million spiking-neuron integrated circuit with a scalable communication network and interface
-
P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson et al. "A million spiking-neuron integrated circuit with a scalable communication network and interface." Science 345, no. 6197 (2014): 668-673.
-
(2014)
Science
, vol.345
, Issue.6197
, pp. 668-673
-
-
Merolla, P.A.1
Arthur, J.V.2
Alvarez-Icaza, R.3
Cassidy, A.S.4
Sawada, J.5
Akopyan, F.6
Jackson, B.L.7
-
16
-
-
0001790227
-
Stochastic computing systems
-
B. Gaines, "Stochastic computing systems," Advances in Information Systems Science, vol. 2, no. 2, pp. 37-172, 1969.
-
(1969)
Advances in Information Systems Science
, vol.2
, Issue.2
, pp. 37-172
-
-
Gaines, B.1
-
17
-
-
0035440487
-
Stochastic neural computation I: Computational elements
-
Sept
-
B. D. Brown and H. C. Card, "Stochastic neural computation I: computational elements," IEEE Trans. Comput., vol. 50, pp. 891-905, Sept. 2001.
-
(2001)
IEEE Trans. Comput.
, vol.50
, pp. 891-905
-
-
Brown, B.D.1
Card, H.C.2
-
18
-
-
78649938802
-
An architecture for fault-tolerant computation with stochastic logic
-
W. Qian, X. Li, Marc D. Riedel, K. Bazargan, and D. J. Lilja, "An architecture for fault-tolerant computation with stochastic logic," IEEE Trans. on Computers, vol. 60, no. 1, pp. 93-105, 2011.
-
(2011)
IEEE Trans. on Computers
, vol.60
, Issue.1
, pp. 93-105
-
-
Qian, W.1
Li, X.2
Riedel, M.D.3
Bazargan, K.4
Lilja, D.J.5
-
20
-
-
84974712282
-
Area-efficient error-resilient discrete fourier transformation design using stochastic computing
-
submitted to
-
B. Yuan, Y. Wang and Z. Wang, "Area-Efficient Error-Resilient Discrete Fourier Transformation Design using Stochastic Computing," submitted to Great Lake Symp. on VLSI (GLSVLSI'2016)
-
Great Lake Symp. on VLSI (GLSVLSI'2016)
-
-
Yuan, B.1
Wang, Y.2
Wang, Z.3
-
22
-
-
84973367184
-
-
available in
-
A. Ardakani, F. Leduc-Primeau, N. Onizawa, T. Hanyu and W. Gross, "VLSI Implementation of Deep Neural Network using Integral Stochastic Computing,", available in arxiv.org.
-
VLSI Implementation of Deep Neural Network Using Integral Stochastic Computing
-
-
Ardakani, A.1
Leduc-Primeau, F.2
Onizawa, N.3
Hanyu, T.4
Gross, W.5
-
24
-
-
40449132198
-
A stochastic-based FPGA controller for an induction motor drive with integrated neural network algorithms
-
D. Zhang and H. Li, "A stochastic-based FPGA controller for an induction motor drive with integrated neural network algorithms," IEEE Trans. Industrial Electronics, vol. 55, no. 2, pp. 551-561, 2008.
-
(2008)
IEEE Trans. Industrial Electronics
, vol.55
, Issue.2
, pp. 551-561
-
-
Zhang, D.1
Li, H.2
-
26
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever and G. E. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks," in Proc. of NIPS, 2012.
-
(2012)
Proc. of NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
27
-
-
33745899311
-
An efficient hardware architecture for a neural network activation function generator
-
D. Larkin, A. Kinane, V. Muresan and N. O'Connor, "An efficient hardware architecture for a neural network activation function generator," in Proc. of the ISNN Int. Symp. on Neural Networks, vol. 144, pp. 1319-1327, 2006.
-
(2006)
Proc. of the ISNN Int. Symp. on Neural Networks
, vol.144
, pp. 1319-1327
-
-
Larkin, D.1
Kinane, A.2
Muresan, V.3
O'Connor, N.4
-
28
-
-
0004001585
-
-
Springer
-
S. Brown, R. J. Francis, J. Rose, and Z. G. Vranesic, Field-Programmable Gate Arrays, Springer, 1992.
-
(1992)
Field-Programmable Gate Arrays
-
-
Brown, S.1
Francis, R.J.2
Rose, J.3
Vranesic, Z.G.4
-
29
-
-
70350060187
-
ORION 2.0: A fast and accurate NoC power and area model for early-stage design space exploration
-
A. B. Kahng, B. Li, L. S. Peh, and K. Samadi, "ORION 2.0: A fast and accurate NoC power and area model for early-stage design space exploration," Proc. of Design, Automation, and Test in Europe (DATE), 2009.
-
(2009)
Proc. of Design, Automation, and Test in Europe (DATE)
-
-
Kahng, A.B.1
Li, B.2
Peh, L.S.3
Samadi, K.4
-
31
-
-
84979557463
-
-
arXiv preprint arXiv
-
TTD Team, R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D. Bahdanau, N. Ballas et al. "Theano: A Python framework for fast computation of mathematical expressions." arXiv preprint arXiv, 2016.
-
(2016)
Theano: A Python Framework for Fast Computation of Mathematical Expressions
-
-
Al-Rfou, R.1
Alain, G.2
Almahairi, A.3
Angermueller, C.4
Bahdanau, D.5
Ballas, N.6
|