메뉴 건너뛰기




Volumn 57, Issue 1, 2001, Pages 34-42

Maximum likelihood analysis of logistic regression models with incomplete covariate data and auxiliary information

Author keywords

Conditional independence assumption; EM algorithm; Joint maximization; Logistic regression model; Missing covariates, Surrogate information; Two stage designs

Indexed keywords

REGRESSION ANALYSIS;

EID: 0035102876     PISSN: 0006341X     EISSN: None     Source Type: Journal    
DOI: 10.1111/j.0006-341X.2001.00034.x     Document Type: Article
Times cited : (34)

References (41)
  • 23
    • 85153322971 scopus 로고    scopus 로고
    • Version 3.4 Supplement, Seattle, Washington: Mathsoft, Data Analysis Products Division
    • (1996) Splus
  • 26
    • 0001553032 scopus 로고
    • Inference using surrogate outcome data and a validation sample
    • (1992) Biometrika , vol.79 , pp. 355-365
    • Pepe, M.S.1
  • 27
    • 11144345693 scopus 로고
    • A mean score method for missing and auxiliary covariate data in regression models
    • (1995) Biometrika , vol.82 , pp. 299-314
    • Reilly, M.1    Pepe, M.S.2
  • 35
    • 0031014468 scopus 로고    scopus 로고
    • Some issues in estimating the effect of prognostic factors from incomplete covariate data
    • (1997) Statistics in Medicine , vol.16 , pp. 57-72
    • Vach, W.1
  • 36
    • 0029048659 scopus 로고
    • Logistic regression with incompletely observed categorical covariates - Investigating the sensitivity against violation of the missing at random assumption
    • (1995) Statistics in Medicine , vol.14 , pp. 1315-1329
    • Vach, W.1    Blettner, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.