메뉴 건너뛰기




Volumn 28, Issue 4, 2009, Pages 642-658

Working-correlation-structure identification in generalized estimating equations

Author keywords

Clustered data; Correlation information criterion; Correlation modelling; Covariance; Efficiency; Generalized estimating equations; Model selection; QIC; Working correlation structure

Indexed keywords

ADULT; ANALYTICAL ERROR; ARTICLE; CLUSTER ANALYSIS; CONTROLLED STUDY; CORRELATION ANALYSIS; CRITERION VARIABLE; FEMALE; GENERALIZED ESTIMATING EQUATION; HOSPITALIZATION; HUMAN; MALE; NEGATIVE SYNDROME; POSITIVE SYNDROME; SCHIZOPHRENIA; SIMULATION; STATISTICAL ANALYSIS; WORKING CORRELATION STRUCTURE; BIOMETRY; COMPUTER SIMULATION; METHODOLOGY; REGRESSION ANALYSIS; STATISTICAL MODEL;

EID: 63149190796     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.3489     Document Type: Article
Times cited : (137)

References (19)
  • 1
    • 3843096981 scopus 로고    scopus 로고
    • Working correlation structure misspecification, estimation and covariate design: Implications for generalized estimating equations performance
    • Wang Y-G, Carey V. Working correlation structure misspecification, estimation and covariate design: implications for generalized estimating equations performance. Biometrika 2003; 90:29-41.
    • (2003) Biometrika , vol.90 , pp. 29-41
    • Wang, Y.-G.1    Carey, V.2
  • 2
    • 34548304684 scopus 로고    scopus 로고
    • Selection of working correlation structure and best model in GEE analyses of longitudinal data
    • Cui J, Qian G. Selection of working correlation structure and best model in GEE analyses of longitudinal data. Communications in Statistics - Simulation and Computation 2007; 36:987-996.
    • (2007) Communications in Statistics - Simulation and Computation , vol.36 , pp. 987-996
    • Cui, J.1    Qian, G.2
  • 3
    • 0035102570 scopus 로고    scopus 로고
    • Akaike's information criterion in generalized estimating equations
    • Pan W. Akaike's information criterion in generalized estimating equations. Biometrics 2001; 57:120-125.
    • (2001) Biometrics , vol.57 , pp. 120-125
    • Pan, W.1
  • 4
    • 20744449127 scopus 로고    scopus 로고
    • Variable selection for marginal longitudinal generalized linear models
    • Cantoni E, Flemming JM, Ronchetti E. Variable selection for marginal longitudinal generalized linear models. Biometrics 2005; 61:507-514.
    • (2005) Biometrics , vol.61 , pp. 507-514
    • Cantoni, E.1    Flemming, J.M.2    Ronchetti, E.3
  • 5
    • 36849078144 scopus 로고    scopus 로고
    • QIC program and model selection in GEE analyses
    • Cui J. QIC program and model selection in GEE analyses. The Stata Journal 2007; 7:209-220.
    • (2007) The Stata Journal , vol.7 , pp. 209-220
    • Cui, J.1
  • 6
    • 0141464026 scopus 로고    scopus 로고
    • A generalized estimating equation approach to modelling foetal response in developmental toxicity studies when the number of implants is dose dependent
    • Kuk AYC. A generalized estimating equation approach to modelling foetal response in developmental toxicity studies when the number of implants is dose dependent. Applied Statistics 2003; 52:51-61.
    • (2003) Applied Statistics , vol.52 , pp. 51-61
    • Kuk, A.Y.C.1
  • 7
    • 36649025421 scopus 로고    scopus 로고
    • Criteria for working-correlation-structure selection in GEE: Assessment via simulation
    • Hin L-Y, Carey V, Wang Y-G. Criteria for working-correlation-structure selection in GEE: assessment via simulation. American Statistician 2007; 61:360-364.
    • (2007) American Statistician , vol.61 , pp. 360-364
    • Hin, L.-Y.1    Carey, V.2    Wang, Y.-G.3
  • 8
    • 77649173768 scopus 로고
    • Longitudinal data analysis using generalized linear models
    • Liang K-Y, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika 1986; 73:13-22.
    • (1986) Biometrika , vol.73 , pp. 13-22
    • Liang, K.-Y.1    Zeger, S.L.2
  • 11
    • 80053264999 scopus 로고
    • How biased is the apparent error rate of a prediction rule?
    • Efron B. How biased is the apparent error rate of a prediction rule? Journal of the American Statistical Association 1986; 81:461-470.
    • (1986) Journal of the American Statistical Association , vol.81 , pp. 461-470
    • Efron, B.1
  • 12
    • 4944239996 scopus 로고    scopus 로고
    • The estimation of prediction error: Covariance penalties and cross-validation
    • Efron B. The estimation of prediction error: covariance penalties and cross-validation. Journal of the American Statistical Association 2004; 99:619-632.
    • (2004) Journal of the American Statistical Association , vol.99 , pp. 619-632
    • Efron, B.1
  • 14
    • 67651135914 scopus 로고    scopus 로고
    • Carey V. Yags: Yet Another GEE Solver, R Package Version 4.0-2, 2004
    • Carey V. Yags: Yet Another GEE Solver, R Package Version 4.0-2, 2004.
  • 16
    • 67651127158 scopus 로고    scopus 로고
    • Leisch F, Weingessel A. Bindata: Generation of Artificial Binary Data, R Package Version 0.9-12, 2005
    • Leisch F, Weingessel A. Bindata: Generation of Artificial Binary Data, R Package Version 0.9-12, 2005.
  • 18
    • 9744251273 scopus 로고    scopus 로고
    • Effects of variance-function misspecification in analysis of longitudinal data
    • Wang YG, Lin X. Effects of variance-function misspecification in analysis of longitudinal data. Biometrics 2005; 61:413-421.
    • (2005) Biometrics , vol.61 , pp. 413-421
    • Wang, Y.G.1    Lin, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.