메뉴 건너뛰기




Volumn 2, Issue , 2016, Pages 851-874

A kronecker-factored approximate fisher matrix for convolution layers

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CURVE FITTING; ITERATIVE METHODS; LEARNING SYSTEMS; PROBABILITY DISTRIBUTIONS; STOCHASTIC SYSTEMS;

EID: 84998893215     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (88)

References (43)
  • 1
    • 0000396062 scopus 로고    scopus 로고
    • Natural gradient works efficiently in learning
    • Amari, Shun-Ichi. Natural gradient works efficiently in learning. Neural Computation, 10(2):251-276, 1998.
    • (1998) Neural Computation , vol.10 , Issue.2 , pp. 251-276
    • Amari, S.-I.1
  • 4
    • 84877799221 scopus 로고    scopus 로고
    • Enhanced gradient for training restricted Boltzmann machines
    • Cho, K., Raiko, t., and Ilin, A. Enhanced gradient for training restricted Boltzmann machines. Neural Computation, 25:805-813, 2013.
    • (2013) Neural Computation , vol.25 , pp. 805-813
    • Cho, K.1    Raiko, T.2    Ilin, A.3
  • 8
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12:2121-2159, 2011.
    • (2011) Journal of Machine Learning Research , vol.12 , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 10
    • 0034167148 scopus 로고    scopus 로고
    • On "natural" learning and pruning in multilayered perceptrons
    • Heskes, Tom. On "natural" learning and pruning in multilayered perceptrons. Neural Computation, 12(4):881-901, 2000.
    • (2000) Neural Computation , vol.12 , Issue.4 , pp. 881-901
    • Heskes, T.1
  • 12
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • Ioffe, S. and Szegedy, C. Batch normalization: accelerating deep network training by reducing internal covariate shift. In International Conference on Machine Learning, 2015.
    • (2015) International Conference on Machine Learning
    • Ioffe, S.1    Szegedy, C.2
  • 22
    • 78149337911 scopus 로고    scopus 로고
    • CUDAMat: A CUDA-based matrix class for Python
    • University of Toronto
    • Mnih, V. CUDAMat: A CUDA-based matrix class for Python. Technical Report 004, University of Toronto, 2009.
    • (2009) Technical Report 004
    • Mnih, V.1
  • 23
    • 0001362410 scopus 로고
    • The Levenberg-Marquardt algorithm: Implementation and theory
    • Moré, J. J. The Levenberg-Marquardt algorithm: implementation and theory. Numerical analysis, pp. 105-116, 1978.
    • (1978) Numerical Analysis , pp. 105-116
    • Moré, J.J.1
  • 26
    • 84999035113 scopus 로고    scopus 로고
    • Riemannian metrics for neural networks I: Feedforward networks
    • Ollivier, Y. Riemannian metrics for neural networks I: feedforward networks. Information and Inference, 4(2):108-153, 2015.
    • (2015) Information and Inference , vol.4 , Issue.2 , pp. 108-153
    • Ollivier, Y.1
  • 31
    • 77955989954 scopus 로고    scopus 로고
    • Modeling pixel means and covariances using factorized third-order Boltzmann machines
    • Ranzato, M. and Hinton, G. E. Modeling pixel means and covariances using factorized third-order Boltzmann machines. In Computer Vision and Pattern Recognition, 2010.
    • (2010) Computer Vision and Pattern Recognition
    • Ranzato, M.1    Hinton, G.E.2
  • 32
    • 0036631778 scopus 로고    scopus 로고
    • Fast curvature matrix-vector products for second-order gradient descent
    • Schraudolph, Nicol N. Fast curvature matrix-vector products for second-order gradient descent. Neural Computation, 14, 2002.
    • (2002) Neural Computation , pp. 14
    • Schraudolph, N.N.1
  • 38
    • 77952681438 scopus 로고    scopus 로고
    • A tutorial on stochastic approximation algorithms for training restricted Boltzmann machines and deep belief nets
    • Jan.
    • Swersky, K., Chen, Bo, Marlin, B., and de Freitas, N. A tutorial on stochastic approximation algorithms for training restricted Boltzmann machines and deep belief nets. In Information Theory and Applications Workshop (ITA), 2010, pp. 1-10, Jan 2010.
    • (2010) Information Theory and Applications Workshop (ITA), 2010 , pp. 1-10
    • Swersky, K.1    Chen, B.2    Marlin, B.3    Freitas, N.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.