메뉴 건너뛰기




Volumn 12, Issue 4, 2000, Pages 881-901

On "natural" learning and pruning in multilayered perceptrons

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; DECISION TREE; NEUROSURGERY;

EID: 0034167148     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/089976600300015637     Document Type: Article
Times cited : (86)

References (19)
  • 1
    • 0000511749 scopus 로고
    • Adaptive decorrelation
    • I. Aleksander & J. Taylor (Eds.), Amsterdam: North-Holland
    • Almeida, L., & Silva, F. (1992). Adaptive decorrelation. In I. Aleksander & J. Taylor (Eds.), Artificial neural networks, 2 (pp. 149-156). Amsterdam: North-Holland.
    • (1992) Artificial Neural Networks , vol.2 , pp. 149-156
    • Almeida, L.1    Silva, F.2
  • 3
    • 0000396062 scopus 로고    scopus 로고
    • Natural gradient works efficiently in learning
    • Amari, S. (1998). Natural gradient works efficiently in learning. Neural Computation, 10, 251-276.
    • (1998) Neural Computation , vol.10 , pp. 251-276
    • Amari, S.1
  • 4
    • 0033055103 scopus 로고    scopus 로고
    • Dynamics of multilayer networks in the vicinity of temporary minima
    • Ampazis, N., Perantonis, S., & Taylor, J. (1999). Dynamics of multilayer networks in the vicinity of temporary minima. Neural Networks, 12, 43-58.
    • (1999) Neural Networks , vol.12 , pp. 43-58
    • Ampazis, N.1    Perantonis, S.2    Taylor, J.3
  • 6
    • 0032100159 scopus 로고    scopus 로고
    • Assessing the importance of features for multi-layer perceptrons
    • Egmont-Petersen, M., Talmon, J., Hasman, A., & Ambergen, A. (1998). Assessing the importance of features for multi-layer perceptrons. Neural Networks, 11, 623-635.
    • (1998) Neural Networks , vol.11 , pp. 623-635
    • Egmont-Petersen, M.1    Talmon, J.2    Hasman, A.3    Ambergen, A.4
  • 8
    • 0001234705 scopus 로고
    • Second order derivatives for network pruning: Optimal brain surgeon
    • S. Hanson, J. Cowan, & L. Giles (Eds.), San Mateo, CA: Morgan Kaufmann
    • Hassibi, B., & Stork, D. (1993). Second order derivatives for network pruning: Optimal brain surgeon. In S. Hanson, J. Cowan, & L. Giles (Eds.), Advances in neural information processing systems, 5 (pp. 164-171). San Mateo, CA: Morgan Kaufmann.
    • (1993) Advances in Neural Information Processing Systems , vol.5 , pp. 164-171
    • Hassibi, B.1    Stork, D.2
  • 9
    • 0031582568 scopus 로고    scopus 로고
    • Learning in two-layered networks with correlated examples
    • Heskes, T., & Coolen, J. (1997). Learning in two-layered networks with correlated examples. Journal of Physics A, 30, 4983-4992.
    • (1997) Journal of Physics A , vol.30 , pp. 4983-4992
    • Heskes, T.1    Coolen, J.2
  • 10
    • 0001488889 scopus 로고
    • Analysis of learning processes of chaotic time series by neural networks
    • Hondou, T., & Sawada, Y. (1994). Analysis of learning processes of chaotic time series by neural networks. Progress in Theoretical Physics, 91, 397-402.
    • (1994) Progress in Theoretical Physics , vol.91 , pp. 397-402
    • Hondou, T.1    Sawada, Y.2
  • 11
    • 0008815681 scopus 로고    scopus 로고
    • Exponentiated gradient versus gradient descent for linear predictors
    • Kivinen, J., & Warmuth, M. (1997). Exponentiated gradient versus gradient descent for linear predictors. Information and Computation, 132, 1-63.
    • (1997) Information and Computation , vol.132 , pp. 1-63
    • Kivinen, J.1    Warmuth, M.2
  • 12
    • 0033561861 scopus 로고    scopus 로고
    • Pruning using parameter and neuronal metrics
    • Laar, P. v. d., & Heskes, T. (1999). Pruning using parameter and neuronal metrics. Neural Computation, 11, 977-993.
    • (1999) Neural Computation , vol.11 , pp. 977-993
    • Laar, P.V.D.1    Heskes, T.2
  • 14
    • 85156214178 scopus 로고    scopus 로고
    • Pruning with generalization based weight saliencies: γOBD, γOBS
    • D. Touretzky, M. Mozer, & M. Hasselmo (Eds.), Cambridge, MA: MIT Press
    • Pedersen, M., Hansen, L., & Larsen, J. (1996). Pruning with generalization based weight saliencies: γOBD, γOBS. In D. Touretzky, M. Mozer, & M. Hasselmo (Eds.), Advances in neural information processing systems, 8 (pp. 521-527). Cambridge, MA: MIT Press.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 521-527
    • Pedersen, M.1    Hansen, L.2    Larsen, J.3
  • 15
    • 0000198852 scopus 로고    scopus 로고
    • Natural gradient descent for on-line learning
    • Rattray, M., Saad, D., & Amari, S. (1998). Natural gradient descent for on-line learning. Physical Review Letters, 81, 5461.
    • (1998) Physical Review Letters , vol.81 , pp. 5461
    • Rattray, M.1    Saad, D.2    Amari, S.3
  • 16
    • 4243050152 scopus 로고
    • Exact solution for on-line learning in multilayer neural networks
    • Saad, D., & Solla, S. (1995). Exact solution for on-line learning in multilayer neural networks. Physical Review Letters, 74, 4337.
    • (1995) Physical Review Letters , vol.74 , pp. 4337
    • Saad, D.1    Solla, S.2
  • 17
    • 84899002752 scopus 로고    scopus 로고
    • Fast network pruning and feature extraction using the unit-OBS algorithm
    • M. Mozer, M. Jordan & T. Petsche (Eds.), Cambridge, MA: MIT Press
    • Stahlberger, A., & Riedmiller, M. (1997). Fast network pruning and feature extraction using the unit-OBS algorithm. In M. Mozer, M. Jordan & T. Petsche (Eds.), Advances in neural information processing systems, 9 (pp. 655-661). Cambridge, MA: MIT Press.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 655-661
    • Stahlberger, A.1    Riedmiller, M.2
  • 18
    • 0030588653 scopus 로고    scopus 로고
    • How dependencies between successive examples affect on-line learning
    • Wiegerinck, W., & Heskes, T. (1996). How dependencies between successive examples affect on-line learning. Neural Computation, 8, 1743-1765.
    • (1996) Neural Computation , vol.8 , pp. 1743-1765
    • Wiegerinck, W.1    Heskes, T.2
  • 19
    • 84899033584 scopus 로고    scopus 로고
    • The efficiency and robustness of natural gradient descent learning rule
    • M. Kearns, M. Jordan, & S. Solla (Eds.), Cambridge, MA: MIT Press
    • Yang, H., & Amari, S. (1998). The efficiency and robustness of natural gradient descent learning rule. In M. Kearns, M. Jordan, & S. Solla (Eds.), Advances in neural information processing systems, 10 (pp. 385-391). Cambridge, MA: MIT Press.
    • (1998) Advances in Neural Information Processing Systems , vol.10 , pp. 385-391
    • Yang, H.1    Amari, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.