-
1
-
-
77955422240
-
Object detection with discriminatively trained part-based models
-
[1] Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D., Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32:9 (2010), 1627–1645.
-
(2010)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.32
, Issue.9
, pp. 1627-1645
-
-
Felzenszwalb, P.F.1
Girshick, R.B.2
McAllester, D.3
Ramanan, D.4
-
2
-
-
24644524200
-
Visual categorization with bags of keypoints
-
[2] G. Csurka, C.R. Dance, L. Fan, J. Willamowski, C. Bray, Visual categorization with bags of keypoints, in: Workshop on Statistical Learning in Computer Vision, ECCV, 2004, pp. 1–22.
-
(2004)
Workshop on Statistical Learning in Computer Vision, ECCV
, pp. 1-22
-
-
Csurka, G.1
Dance, C.R.2
Fan, L.3
Willamowski, J.4
Bray, C.5
-
3
-
-
84959872385
-
Recurrent convolutional neural networks for text classification
-
[3] S. Lai, L. Xu, K. Liu, J. Zhao, Recurrent convolutional neural networks for text classification, in: Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.
-
(2015)
Twenty-Ninth AAAI Conference on Artificial Intelligence
-
-
Lai, S.1
Xu, L.2
Liu, K.3
Zhao, J.4
-
4
-
-
84978952442
-
Character-aware neural language models
-
arXiv:1508.06615
-
[4] Y. Kim, Y. Jernite, D. Sontag, A.M. Rush, Character-aware neural language models, arXiv:1508.06615.
-
-
-
Kim, Y.1
Jernite, Y.2
Sontag, D.3
Rush, A.M.4
-
5
-
-
84937936034
-
Convolutional neural network architectures for matching natural language sentences
-
[5] B. Hu, Z. Lu, H. Li, Q. Chen, Convolutional neural network architectures for matching natural language sentences, in: Advances in Neural Information Processing Systems, 2014, pp. 2042–2050.
-
(2014)
Advances in Neural Information Processing Systems
, pp. 2042-2050
-
-
Hu, B.1
Lu, Z.2
Li, H.3
Chen, Q.4
-
7
-
-
84998951147
-
-
Massively multitask networks for drug discovery,. arXiv:1502.02072
-
[7] B. Ramsundar, S. Kearnes, P. Riley, D. Webster, D. Konerding, V. Pande, Massively multitask networks for drug discovery, arXiv:1502.02072.
-
-
-
Ramsundar, B.1
Kearnes, S.2
Riley, P.3
Webster, D.4
Konerding, D.5
Pande, V.6
-
8
-
-
84962184840
-
Atomnet: a deep convolutional neural network for bioactivity prediction in structure-based drug discovery
-
arXiv:1510.02855
-
[8] I. Wallach, M. Dzamba, A. Heifets, Atomnet: a deep convolutional neural network for bioactivity prediction in structure-based drug discovery, arXiv:1510.02855.
-
-
-
Wallach, I.1
Dzamba, M.2
Heifets, A.3
-
9
-
-
84968643983
-
Computer-aided pulmonary embolism detection using a novel vessel-aligned multi-planar image representation and convolutional neural networks
-
[9] N. Tajbakhsh, M.B. Gotway, J. Liang, Computer-aided pulmonary embolism detection using a novel vessel-aligned multi-planar image representation and convolutional neural networks, in: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, 2015.
-
(2015)
Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015
-
-
Tajbakhsh, N.1
Gotway, M.B.2
Liang, J.3
-
10
-
-
84983655863
-
A comprehensive computer-aided polyp detection system for colonoscopy videos
-
[10] N. Tajbakhsh, S.R. Gurudu, J. Liang, A comprehensive computer-aided polyp detection system for colonoscopy videos, in: International Conference on Information Processing in Medical Imaging, Springer, 2015, pp. 327–338.
-
(2015)
International Conference on Information Processing in Medical Imaging, Springer
, pp. 327-338
-
-
Tajbakhsh, N.1
Gurudu, S.R.2
Liang, J.3
-
11
-
-
84998698947
-
-
Improving computer-aided detection using convolutional neural networks and random view aggregation,. arXiv:1505.03046
-
[11] H.R. Roth, L. Lu, J. Liu, J. Yao, A. Seff, C. Kevin, L. Kim, R.M. Summers, Improving computer-aided detection using convolutional neural networks and random view aggregation, arXiv:1505.03046.
-
-
-
Roth, H.R.1
Lu, L.2
Liu, J.3
Yao, J.4
Seff, A.5
Kevin, C.6
Kim, L.7
Summers, R.M.8
-
12
-
-
84947475390
-
Deeporgan: Multi-level deep convolutional networks for automated pancreas segmentation
-
[12] H.R. Roth, L. Lu, A. Farag, H.-C. Shin, J. Liu, E. B. Turkbey, R. M. Summers, Deeporgan: Multi-level deep convolutional networks for automated pancreas segmentation, in: International Conference on Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Springer, 2015, pp. 556–564.
-
(2015)
International Conference on Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Springer
, pp. 556-564
-
-
Roth, H.R.1
Lu, L.2
Farag, A.3
Shin, H.-C.4
Liu, J.5
Turkbey, E.B.6
Summers, R.M.7
-
13
-
-
84968649810
-
Convolutional neural networks for medical image analysis: fine tuning or full training?
-
[13] Tajbakhsh, N., Shin, J.Y., Gurudu, S.R., Hurst, R.T., Kendall, C.B., Gotway, M.B., Liang, J., Convolutional neural networks for medical image analysis: fine tuning or full training?. IEEE Trans. Med. Imaging 35:5 (2016), 1299–1312.
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, Issue.5
, pp. 1299-1312
-
-
Tajbakhsh, N.1
Shin, J.Y.2
Gurudu, S.R.3
Hurst, R.T.4
Kendall, C.B.5
Gotway, M.B.6
Liang, J.7
-
14
-
-
0036647658
-
Efficient approximation of neural filters for removing quantum noise from images
-
[14] Suzuki, K., Horiba, I., Sugie, N., Efficient approximation of neural filters for removing quantum noise from images. IEEE Trans. Signal Process. 50:7 (2002), 1787–1799.
-
(2002)
IEEE Trans. Signal Process.
, vol.50
, Issue.7
, pp. 1787-1799
-
-
Suzuki, K.1
Horiba, I.2
Sugie, N.3
-
15
-
-
0036826125
-
Neural filter with selection of input features and its application to image quality improvement of medical image sequences
-
[15] Suzuki, K., Horiba, I., Sugie, N., Nanki, M., Neural filter with selection of input features and its application to image quality improvement of medical image sequences. IEICE Trans. Inf. Syst. 85:10 (2002), 1710–1718.
-
(2002)
IEICE Trans. Inf. Syst.
, vol.85
, Issue.10
, pp. 1710-1718
-
-
Suzuki, K.1
Horiba, I.2
Sugie, N.3
Nanki, M.4
-
16
-
-
0038710369
-
Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography
-
[16] Suzuki, K., Armato, S.G. III, Li, F., Sone, S., Doi, K., Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography. Med. Phys. 30:7 (2003), 1602–1617.
-
(2003)
Med. Phys.
, vol.30
, Issue.7
, pp. 1602-1617
-
-
Suzuki, K.1
Armato, S.G.2
Li, F.3
Sone, S.4
Doi, K.5
-
17
-
-
25144514408
-
Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network
-
[17] Suzuki, K., Li, F., Sone, S., et al. Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network. IEEE Trans. Med. Imaging 24:9 (2005), 1138–1150.
-
(2005)
IEEE Trans. Med. Imaging
, vol.24
, Issue.9
, pp. 1138-1150
-
-
Suzuki, K.1
Li, F.2
Sone, S.3
-
18
-
-
33749391616
-
Massive-training artificial neural network (MTANN) for reduction of false positives in computer-aided detection of polyps: suppression of rectal tubes
-
[18] Suzuki, K., Yoshida, H., Näppi, J., Dachman, A.H., Massive-training artificial neural network (MTANN) for reduction of false positives in computer-aided detection of polyps: suppression of rectal tubes. Med. Phys. 33:10 (2006), 3814–3824.
-
(2006)
Med. Phys.
, vol.33
, Issue.10
, pp. 3814-3824
-
-
Suzuki, K.1
Yoshida, H.2
Näppi, J.3
Dachman, A.H.4
-
19
-
-
38849178080
-
Mixture of expert 3D massive-training ANNs for reduction of multiple types of false positives in CAD for detection of polyps in CT colonography
-
[19] Suzuki, K., Yoshida, H., Näppi, J., Armato, S.G. III, Dachman, A.H., Mixture of expert 3D massive-training ANNs for reduction of multiple types of false positives in CAD for detection of polyps in CT colonography. Med. Phys. 35:2 (2008), 694–703.
-
(2008)
Med. Phys.
, vol.35
, Issue.2
, pp. 694-703
-
-
Suzuki, K.1
Yoshida, H.2
Näppi, J.3
Armato, S.G.4
Dachman, A.H.5
-
20
-
-
73649110599
-
CT colonography:: advanced computer-aided detection scheme utilizing MTANNs for detection of “missed” polyps in a multicenter clinical trial
-
[20] Suzuki, K., Rockey, D.C., Dachman, A.H., CT colonography:: advanced computer-aided detection scheme utilizing MTANNs for detection of “missed” polyps in a multicenter clinical trial. Med. Phys. 37:1 (2010), 12–21.
-
(2010)
Med. Phys.
, vol.37
, Issue.1
, pp. 12-21
-
-
Suzuki, K.1
Rockey, D.C.2
Dachman, A.H.3
-
21
-
-
78149266353
-
Massive-training artificial neural network coupled with Laplacian-eigenfunction-based dimensionality reduction for computer-aided detection of polyps in CT colonography
-
[21] Suzuki, K., Zhang, J., Xu, J., Massive-training artificial neural network coupled with Laplacian-eigenfunction-based dimensionality reduction for computer-aided detection of polyps in CT colonography. IEEE Trans. Med. Imaging 29:11 (2010), 1907–1917.
-
(2010)
IEEE Trans. Med. Imaging
, vol.29
, Issue.11
, pp. 1907-1917
-
-
Suzuki, K.1
Zhang, J.2
Xu, J.3
-
22
-
-
79953671750
-
Massive-training support vector regression and gaussian process for false-positive reduction in computer-aided detection of polyps in CT colonography
-
[22] Xu, J.-W., Suzuki, K., Massive-training support vector regression and gaussian process for false-positive reduction in computer-aided detection of polyps in CT colonography. Med. Phys. 38:4 (2011), 1888–1902.
-
(2011)
Med. Phys.
, vol.38
, Issue.4
, pp. 1888-1902
-
-
Xu, J.-W.1
Suzuki, K.2
-
23
-
-
0019152630
-
Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
-
[23] Fukushima, K., Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36:4 (1980), 193–202.
-
(1980)
Biol. Cybern.
, vol.36
, Issue.4
, pp. 193-202
-
-
Fukushima, K.1
-
24
-
-
0347511637
-
Neocognitron capable of incremental learning
-
[24] Fukushima, K., Neocognitron capable of incremental learning. Neural Netw. 17:1 (2004), 37–46.
-
(2004)
Neural Netw.
, vol.17
, Issue.1
, pp. 37-46
-
-
Fukushima, K.1
-
25
-
-
0019777690
-
A simplified version of Kunihiko Fukushima's neocognitron
-
[25] Deutsch, S., A simplified version of Kunihiko Fukushima's neocognitron. Biol. Cybern. 42:1 (1981), 17–21.
-
(1981)
Biol. Cybern.
, vol.42
, Issue.1
, pp. 17-21
-
-
Deutsch, S.1
-
26
-
-
0000359337
-
Backpropagation applied to handwritten zip code recognition
-
[26] LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D., Backpropagation applied to handwritten zip code recognition. Neural Comput. 1:4 (1989), 541–551.
-
(1989)
Neural Comput.
, vol.1
, Issue.4
, pp. 541-551
-
-
LeCun, Y.1
Boser, B.2
Denker, J.S.3
Henderson, D.4
Howard, R.E.5
Hubbard, W.6
Jackel, L.D.7
-
27
-
-
84998696341
-
-
B.B. Le Cun, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, L.D. Jackel, Handwritten digit recognition with a back-propagation network, in: Advances in Neural Information Processing Systems, Citeseer, 1990.
-
[27] B.B. Le Cun, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, L.D. Jackel, Handwritten digit recognition with a back-propagation network, in: Advances in Neural Information Processing Systems, Citeseer, 1990.
-
-
-
-
28
-
-
84944325843
-
Automatic polyp detection in colonoscopy videos using an ensemble of convolutional neural networks
-
[28] N. Tajbakhsh, S. R. Gurudu, J. Liang, Automatic polyp detection in colonoscopy videos using an ensemble of convolutional neural networks, in: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), IEEE, 2015, pp. 79–83.
-
(2015)
2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), IEEE
, pp. 79-83
-
-
Tajbakhsh, N.1
Gurudu, S.R.2
Liang, J.3
-
29
-
-
84983670549
-
Multi-scale convolutional neural networks for lung nodule classification
-
[29] W. Shen, M. Zhou, F. Yang, C. Yang, J. Tian, Multi-scale convolutional neural networks for lung nodule classification, in: S. Ourselin, D.C. Alexander, C.-F. Westin, M.J. Cardoso (Eds.), International Conference on Information Processing in Medical Imaging, Lecture Notes in Computer Science, vol. 9123, Springer International Publishing, 2015, pp. 588–599.
-
(2015)
S. Ourselin, D.C. Alexander, C.-F. Westin, M.J. Cardoso (Eds.), International Conference on Information Processing in Medical Imaging, Lecture Notes in Computer Science, vol. 9123, Springer International Publishing
, pp. 588-599
-
-
Shen, W.1
Zhou, M.2
Yang, F.3
Yang, C.4
Tian, J.5
-
30
-
-
84909644435
-
-
A new 2.5d representation for lymph node detection using random sets of deep convolutional neural network observations, in: P. Golland, N. Hata, C. Barillot, J. Hornegger, R. Howe (Eds.), International Conference on Medical Image Computing and Computer-Assisted Intervention-MICCAI 2014, Lecture Notes in Computer Science, vol. 8673, Springer International Publishing
-
[30] H. Roth, L. Lu, A. Seff, K. Cherry, J. Hoffman, S. Wang, J. Liu, E. Turkbey, R. Summers, A new 2.5d representation for lymph node detection using random sets of deep convolutional neural network observations, in: P. Golland, N. Hata, C. Barillot, J. Hornegger, R. Howe (Eds.), International Conference on Medical Image Computing and Computer-Assisted Intervention-MICCAI 2014, Lecture Notes in Computer Science, vol. 8673, Springer International Publishing, 2014, pp. 520–527.
-
(2014)
, pp. 520-527
-
-
Roth, H.1
Lu, L.2
Seff, A.3
Cherry, K.4
Hoffman, J.5
Wang, S.6
Liu, J.7
Turkbey, E.8
Summers, R.9
-
31
-
-
84921492033
-
Deep convolutional neural networks for multi-modality isointense infant brain image segmentation
-
[31] Zhang, W., Li, R., Deng, H., Wang, L., Lin, W., Ji, S., Shen, D., Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage 108 (2015), 214–224.
-
(2015)
NeuroImage
, vol.108
, pp. 214-224
-
-
Zhang, W.1
Li, R.2
Deng, H.3
Wang, L.4
Lin, W.5
Ji, S.6
Shen, D.7
-
32
-
-
84998751408
-
-
Brain tumor segmentation with deep neural networks,. arXiv:1505.03540
-
[32] M. Havaei, A. Davy, D. Warde-Farley, A. Biard, A. Courville, Y. Bengio, C. Pal, P.-M. Jodoin, H. Larochelle, Brain tumor segmentation with deep neural networks, arXiv:1505.03540.
-
-
-
Havaei, M.1
Davy, A.2
Warde-Farley, D.3
Biard, A.4
Courville, A.5
Bengio, Y.6
Pal, C.7
Jodoin, P.-M.8
Larochelle, H.9
-
34
-
-
84937472647
-
Delving deep into rectifiers: surpassing human-level performance on imagenet classification
-
arXiv:1502.01852
-
[34] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: surpassing human-level performance on imagenet classification, arXiv:1502.01852.
-
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
35
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
[35] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: Advances in Neural Information Processing Systems, 2012, pp. 1097–1105.
-
(2012)
Advances in Neural Information Processing Systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
36
-
-
84904163933
-
Dropout: a simple way to prevent neural networks from overfitting
-
[36] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15:1 (2014), 1929–1958.
-
(2014)
J. Mach. Learn. Res.
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
37
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
[37] R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, in: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2014, pp. 580–587.
-
(2014)
2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE
, pp. 580-587
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
38
-
-
0032565365
-
Mass screening for lung cancer with mobile spiral computed tomography scanner
-
[38] Sone, S., Takashima, S., Li, F., Yang, Z., Honda, T., Maruyama, Y., Hasegawa, M., Yamanda, T., Kubo, K., Hanamura, K., et al. Mass screening for lung cancer with mobile spiral computed tomography scanner. Lancet 351:9111 (1998), 1242–1245.
-
(1998)
Lancet
, vol.351
, Issue.9111
, pp. 1242-1245
-
-
Sone, S.1
Takashima, S.2
Li, F.3
Yang, Z.4
Honda, T.5
Maruyama, Y.6
Hasegawa, M.7
Yamanda, T.8
Kubo, K.9
Hanamura, K.10
-
39
-
-
0036892529
-
Lung cancers missed at low-dose helical CT screening in a general population: comparison of clinical, histopathologic, and imaging findings 1
-
[39] Li, F., Sone, S., Abe, H., MacMahon, H., Armato, S.G., Doi, K., Lung cancers missed at low-dose helical CT screening in a general population: comparison of clinical, histopathologic, and imaging findings 1. Radiology 225:3 (2002), 673–683.
-
(2002)
Radiology
, vol.225
, Issue.3
, pp. 673-683
-
-
Li, F.1
Sone, S.2
Abe, H.3
MacMahon, H.4
Armato, S.G.5
Doi, K.6
-
40
-
-
84913555165
-
Caffe: convolutional architecture for fast feature embedding
-
arXiv:1408.5093
-
[40] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, T. Darrell, Caffe: convolutional architecture for fast feature embedding, arXiv:1408.5093.
-
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
41
-
-
12244309097
-
Maximum likelihood fitting of FROC curves under an initial-detection-and-candidate-analysis model
-
[42] Edwards, D.C., Kupinski, M.A., Metz, C.E., Nishikawa, R.M., Maximum likelihood fitting of FROC curves under an initial-detection-and-candidate-analysis model. Med. Phys. 29:12 (2002), 2861–2870.
-
(2002)
Med. Phys.
, vol.29
, Issue.12
, pp. 2861-2870
-
-
Edwards, D.C.1
Kupinski, M.A.2
Metz, C.E.3
Nishikawa, R.M.4
-
42
-
-
84998543877
-
Fine-tuned convolutional neural nets for cardiac MRI acquisition plane recognition
-
[43] Margeta, J., Criminisi, A., Cabrera Lozoya, R., Lee, D.C., Ayache, N., Fine-tuned convolutional neural nets for cardiac MRI acquisition plane recognition. Comput. Methods Biomech. Biomed. Eng.: Imaging Vis., 2015, 1–11.
-
(2015)
Comput. Methods Biomech. Biomed. Eng.: Imaging Vis.
, pp. 1-11
-
-
Margeta, J.1
Criminisi, A.2
Cabrera Lozoya, R.3
Lee, D.C.4
Ayache, N.5
-
43
-
-
84943754825
-
Deep learning with non-medical training used for chest pathology identification
-
SPIE Medical Imaging, International Society for Optics and Photonics, 2015, p. 94140V.
-
[44] Y. Bar, I. Diamant, L. Wolf, H. Greenspan, Deep learning with non-medical training used for chest pathology identification, in: SPIE Medical Imaging, International Society for Optics and Photonics, 2015, p. 94140V.
-
-
-
Bar, Y.1
Diamant, I.2
Wolf, L.3
Greenspan, H.4
-
44
-
-
0142089902
-
Investigation of new psychophysical measures for evaluation of similar images on thoracic computed tomography for distinction between benign and malignant nodules
-
[45] Li, Q., Li, F., Shiraishi, J., Katsuragawa, S., Sone, S., Doi, K., Investigation of new psychophysical measures for evaluation of similar images on thoracic computed tomography for distinction between benign and malignant nodules. Med. Phys. 30:10 (2003), 2584–2593.
-
(2003)
Med. Phys.
, vol.30
, Issue.10
, pp. 2584-2593
-
-
Li, Q.1
Li, F.2
Shiraishi, J.3
Katsuragawa, S.4
Sone, S.5
Doi, K.6
-
45
-
-
84914145602
-
Improved boosting performance by explicit handling of ambiguous positive examples
-
[46] M. Kobetski, J. Sullivan, Improved boosting performance by explicit handling of ambiguous positive examples, in: Pattern Recognition Applications and Methods, Advances in Intelligent Systems and Computing, vol. 318, 2015, pp. 17–37.
-
(2015)
Pattern Recognition Applications and Methods, Advances in Intelligent Systems and Computing
, vol.318
, pp. 17-37
-
-
Kobetski, M.1
Sullivan, J.2
-
47
-
-
25144467873
-
How can a massive training artificial neural network (MTANN) be trained with a small number of cases in the distinction between nodules and vessels in thoracic CT?
-
[48] Suzuki, K., Doi, K., How can a massive training artificial neural network (MTANN) be trained with a small number of cases in the distinction between nodules and vessels in thoracic CT?. Acad. Radiol. 12:10 (2005), 1333–1341.
-
(2005)
Acad. Radiol.
, vol.12
, Issue.10
, pp. 1333-1341
-
-
Suzuki, K.1
Doi, K.2
|