메뉴 건너뛰기




Volumn 63, Issue , 2017, Pages 476-486

Comparing two classes of end-to-end machine-learning models in lung nodule detection and classification: MTANNs vs. CNNs

Author keywords

Classification; Computer aided diagnosis; Convolution neural network; Deep learning; Focal lesions; Image based machine learning; Lung nodules; Massive training artificial neural network; Patch based machine learning

Indexed keywords

ARTIFICIAL INTELLIGENCE; BIOLOGICAL ORGANS; CLASSIFICATION (OF INFORMATION); COMPUTER AIDED DIAGNOSIS; COMPUTER AIDED INSTRUCTION; COMPUTER VISION; COMPUTERIZED TOMOGRAPHY; CONVOLUTION; DIAGNOSIS; IMAGE ANALYSIS; LEARNING ALGORITHMS; MEDICAL IMAGING; NETWORK ARCHITECTURE; NEURAL NETWORKS; SEMANTICS;

EID: 84998787346     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2016.09.029     Document Type: Article
Times cited : (183)

References (47)
  • 4
    • 84978952442 scopus 로고    scopus 로고
    • Character-aware neural language models
    • arXiv:1508.06615
    • [4] Y. Kim, Y. Jernite, D. Sontag, A.M. Rush, Character-aware neural language models, arXiv:1508.06615.
    • Kim, Y.1    Jernite, Y.2    Sontag, D.3    Rush, A.M.4
  • 5
    • 84937936034 scopus 로고    scopus 로고
    • Convolutional neural network architectures for matching natural language sentences
    • [5] B. Hu, Z. Lu, H. Li, Q. Chen, Convolutional neural network architectures for matching natural language sentences, in: Advances in Neural Information Processing Systems, 2014, pp. 2042–2050.
    • (2014) Advances in Neural Information Processing Systems , pp. 2042-2050
    • Hu, B.1    Lu, Z.2    Li, H.3    Chen, Q.4
  • 8
    • 84962184840 scopus 로고    scopus 로고
    • Atomnet: a deep convolutional neural network for bioactivity prediction in structure-based drug discovery
    • arXiv:1510.02855
    • [8] I. Wallach, M. Dzamba, A. Heifets, Atomnet: a deep convolutional neural network for bioactivity prediction in structure-based drug discovery, arXiv:1510.02855.
    • Wallach, I.1    Dzamba, M.2    Heifets, A.3
  • 9
    • 84968643983 scopus 로고    scopus 로고
    • Computer-aided pulmonary embolism detection using a novel vessel-aligned multi-planar image representation and convolutional neural networks
    • [9] N. Tajbakhsh, M.B. Gotway, J. Liang, Computer-aided pulmonary embolism detection using a novel vessel-aligned multi-planar image representation and convolutional neural networks, in: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, 2015.
    • (2015) Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015
    • Tajbakhsh, N.1    Gotway, M.B.2    Liang, J.3
  • 11
    • 84998698947 scopus 로고    scopus 로고
    • Improving computer-aided detection using convolutional neural networks and random view aggregation,. arXiv:1505.03046
    • [11] H.R. Roth, L. Lu, J. Liu, J. Yao, A. Seff, C. Kevin, L. Kim, R.M. Summers, Improving computer-aided detection using convolutional neural networks and random view aggregation, arXiv:1505.03046.
    • Roth, H.R.1    Lu, L.2    Liu, J.3    Yao, J.4    Seff, A.5    Kevin, C.6    Kim, L.7    Summers, R.M.8
  • 14
    • 0036647658 scopus 로고    scopus 로고
    • Efficient approximation of neural filters for removing quantum noise from images
    • [14] Suzuki, K., Horiba, I., Sugie, N., Efficient approximation of neural filters for removing quantum noise from images. IEEE Trans. Signal Process. 50:7 (2002), 1787–1799.
    • (2002) IEEE Trans. Signal Process. , vol.50 , Issue.7 , pp. 1787-1799
    • Suzuki, K.1    Horiba, I.2    Sugie, N.3
  • 15
    • 0036826125 scopus 로고    scopus 로고
    • Neural filter with selection of input features and its application to image quality improvement of medical image sequences
    • [15] Suzuki, K., Horiba, I., Sugie, N., Nanki, M., Neural filter with selection of input features and its application to image quality improvement of medical image sequences. IEICE Trans. Inf. Syst. 85:10 (2002), 1710–1718.
    • (2002) IEICE Trans. Inf. Syst. , vol.85 , Issue.10 , pp. 1710-1718
    • Suzuki, K.1    Horiba, I.2    Sugie, N.3    Nanki, M.4
  • 16
    • 0038710369 scopus 로고    scopus 로고
    • Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography
    • [16] Suzuki, K., Armato, S.G. III, Li, F., Sone, S., Doi, K., Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography. Med. Phys. 30:7 (2003), 1602–1617.
    • (2003) Med. Phys. , vol.30 , Issue.7 , pp. 1602-1617
    • Suzuki, K.1    Armato, S.G.2    Li, F.3    Sone, S.4    Doi, K.5
  • 17
    • 25144514408 scopus 로고    scopus 로고
    • Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network
    • [17] Suzuki, K., Li, F., Sone, S., et al. Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network. IEEE Trans. Med. Imaging 24:9 (2005), 1138–1150.
    • (2005) IEEE Trans. Med. Imaging , vol.24 , Issue.9 , pp. 1138-1150
    • Suzuki, K.1    Li, F.2    Sone, S.3
  • 18
    • 33749391616 scopus 로고    scopus 로고
    • Massive-training artificial neural network (MTANN) for reduction of false positives in computer-aided detection of polyps: suppression of rectal tubes
    • [18] Suzuki, K., Yoshida, H., Näppi, J., Dachman, A.H., Massive-training artificial neural network (MTANN) for reduction of false positives in computer-aided detection of polyps: suppression of rectal tubes. Med. Phys. 33:10 (2006), 3814–3824.
    • (2006) Med. Phys. , vol.33 , Issue.10 , pp. 3814-3824
    • Suzuki, K.1    Yoshida, H.2    Näppi, J.3    Dachman, A.H.4
  • 19
    • 38849178080 scopus 로고    scopus 로고
    • Mixture of expert 3D massive-training ANNs for reduction of multiple types of false positives in CAD for detection of polyps in CT colonography
    • [19] Suzuki, K., Yoshida, H., Näppi, J., Armato, S.G. III, Dachman, A.H., Mixture of expert 3D massive-training ANNs for reduction of multiple types of false positives in CAD for detection of polyps in CT colonography. Med. Phys. 35:2 (2008), 694–703.
    • (2008) Med. Phys. , vol.35 , Issue.2 , pp. 694-703
    • Suzuki, K.1    Yoshida, H.2    Näppi, J.3    Armato, S.G.4    Dachman, A.H.5
  • 20
    • 73649110599 scopus 로고    scopus 로고
    • CT colonography:: advanced computer-aided detection scheme utilizing MTANNs for detection of “missed” polyps in a multicenter clinical trial
    • [20] Suzuki, K., Rockey, D.C., Dachman, A.H., CT colonography:: advanced computer-aided detection scheme utilizing MTANNs for detection of “missed” polyps in a multicenter clinical trial. Med. Phys. 37:1 (2010), 12–21.
    • (2010) Med. Phys. , vol.37 , Issue.1 , pp. 12-21
    • Suzuki, K.1    Rockey, D.C.2    Dachman, A.H.3
  • 21
    • 78149266353 scopus 로고    scopus 로고
    • Massive-training artificial neural network coupled with Laplacian-eigenfunction-based dimensionality reduction for computer-aided detection of polyps in CT colonography
    • [21] Suzuki, K., Zhang, J., Xu, J., Massive-training artificial neural network coupled with Laplacian-eigenfunction-based dimensionality reduction for computer-aided detection of polyps in CT colonography. IEEE Trans. Med. Imaging 29:11 (2010), 1907–1917.
    • (2010) IEEE Trans. Med. Imaging , vol.29 , Issue.11 , pp. 1907-1917
    • Suzuki, K.1    Zhang, J.2    Xu, J.3
  • 22
    • 79953671750 scopus 로고    scopus 로고
    • Massive-training support vector regression and gaussian process for false-positive reduction in computer-aided detection of polyps in CT colonography
    • [22] Xu, J.-W., Suzuki, K., Massive-training support vector regression and gaussian process for false-positive reduction in computer-aided detection of polyps in CT colonography. Med. Phys. 38:4 (2011), 1888–1902.
    • (2011) Med. Phys. , vol.38 , Issue.4 , pp. 1888-1902
    • Xu, J.-W.1    Suzuki, K.2
  • 23
    • 0019152630 scopus 로고
    • Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • [23] Fukushima, K., Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36:4 (1980), 193–202.
    • (1980) Biol. Cybern. , vol.36 , Issue.4 , pp. 193-202
    • Fukushima, K.1
  • 24
    • 0347511637 scopus 로고    scopus 로고
    • Neocognitron capable of incremental learning
    • [24] Fukushima, K., Neocognitron capable of incremental learning. Neural Netw. 17:1 (2004), 37–46.
    • (2004) Neural Netw. , vol.17 , Issue.1 , pp. 37-46
    • Fukushima, K.1
  • 25
    • 0019777690 scopus 로고
    • A simplified version of Kunihiko Fukushima's neocognitron
    • [25] Deutsch, S., A simplified version of Kunihiko Fukushima's neocognitron. Biol. Cybern. 42:1 (1981), 17–21.
    • (1981) Biol. Cybern. , vol.42 , Issue.1 , pp. 17-21
    • Deutsch, S.1
  • 27
    • 84998696341 scopus 로고    scopus 로고
    • B.B. Le Cun, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, L.D. Jackel, Handwritten digit recognition with a back-propagation network, in: Advances in Neural Information Processing Systems, Citeseer, 1990.
    • [27] B.B. Le Cun, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, L.D. Jackel, Handwritten digit recognition with a back-propagation network, in: Advances in Neural Information Processing Systems, Citeseer, 1990.
  • 30
    • 84909644435 scopus 로고    scopus 로고
    • A new 2.5d representation for lymph node detection using random sets of deep convolutional neural network observations, in: P. Golland, N. Hata, C. Barillot, J. Hornegger, R. Howe (Eds.), International Conference on Medical Image Computing and Computer-Assisted Intervention-MICCAI 2014, Lecture Notes in Computer Science, vol. 8673, Springer International Publishing
    • [30] H. Roth, L. Lu, A. Seff, K. Cherry, J. Hoffman, S. Wang, J. Liu, E. Turkbey, R. Summers, A new 2.5d representation for lymph node detection using random sets of deep convolutional neural network observations, in: P. Golland, N. Hata, C. Barillot, J. Hornegger, R. Howe (Eds.), International Conference on Medical Image Computing and Computer-Assisted Intervention-MICCAI 2014, Lecture Notes in Computer Science, vol. 8673, Springer International Publishing, 2014, pp. 520–527.
    • (2014) , pp. 520-527
    • Roth, H.1    Lu, L.2    Seff, A.3    Cherry, K.4    Hoffman, J.5    Wang, S.6    Liu, J.7    Turkbey, E.8    Summers, R.9
  • 31
    • 84921492033 scopus 로고    scopus 로고
    • Deep convolutional neural networks for multi-modality isointense infant brain image segmentation
    • [31] Zhang, W., Li, R., Deng, H., Wang, L., Lin, W., Ji, S., Shen, D., Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage 108 (2015), 214–224.
    • (2015) NeuroImage , vol.108 , pp. 214-224
    • Zhang, W.1    Li, R.2    Deng, H.3    Wang, L.4    Lin, W.5    Ji, S.6    Shen, D.7
  • 34
    • 84937472647 scopus 로고    scopus 로고
    • Delving deep into rectifiers: surpassing human-level performance on imagenet classification
    • arXiv:1502.01852
    • [34] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: surpassing human-level performance on imagenet classification, arXiv:1502.01852.
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 39
    • 0036892529 scopus 로고    scopus 로고
    • Lung cancers missed at low-dose helical CT screening in a general population: comparison of clinical, histopathologic, and imaging findings 1
    • [39] Li, F., Sone, S., Abe, H., MacMahon, H., Armato, S.G., Doi, K., Lung cancers missed at low-dose helical CT screening in a general population: comparison of clinical, histopathologic, and imaging findings 1. Radiology 225:3 (2002), 673–683.
    • (2002) Radiology , vol.225 , Issue.3 , pp. 673-683
    • Li, F.1    Sone, S.2    Abe, H.3    MacMahon, H.4    Armato, S.G.5    Doi, K.6
  • 41
    • 12244309097 scopus 로고    scopus 로고
    • Maximum likelihood fitting of FROC curves under an initial-detection-and-candidate-analysis model
    • [42] Edwards, D.C., Kupinski, M.A., Metz, C.E., Nishikawa, R.M., Maximum likelihood fitting of FROC curves under an initial-detection-and-candidate-analysis model. Med. Phys. 29:12 (2002), 2861–2870.
    • (2002) Med. Phys. , vol.29 , Issue.12 , pp. 2861-2870
    • Edwards, D.C.1    Kupinski, M.A.2    Metz, C.E.3    Nishikawa, R.M.4
  • 43
    • 84943754825 scopus 로고    scopus 로고
    • Deep learning with non-medical training used for chest pathology identification
    • SPIE Medical Imaging, International Society for Optics and Photonics, 2015, p. 94140V.
    • [44] Y. Bar, I. Diamant, L. Wolf, H. Greenspan, Deep learning with non-medical training used for chest pathology identification, in: SPIE Medical Imaging, International Society for Optics and Photonics, 2015, p. 94140V.
    • Bar, Y.1    Diamant, I.2    Wolf, L.3    Greenspan, H.4
  • 44
    • 0142089902 scopus 로고    scopus 로고
    • Investigation of new psychophysical measures for evaluation of similar images on thoracic computed tomography for distinction between benign and malignant nodules
    • [45] Li, Q., Li, F., Shiraishi, J., Katsuragawa, S., Sone, S., Doi, K., Investigation of new psychophysical measures for evaluation of similar images on thoracic computed tomography for distinction between benign and malignant nodules. Med. Phys. 30:10 (2003), 2584–2593.
    • (2003) Med. Phys. , vol.30 , Issue.10 , pp. 2584-2593
    • Li, Q.1    Li, F.2    Shiraishi, J.3    Katsuragawa, S.4    Sone, S.5    Doi, K.6
  • 47
    • 25144467873 scopus 로고    scopus 로고
    • How can a massive training artificial neural network (MTANN) be trained with a small number of cases in the distinction between nodules and vessels in thoracic CT?
    • [48] Suzuki, K., Doi, K., How can a massive training artificial neural network (MTANN) be trained with a small number of cases in the distinction between nodules and vessels in thoracic CT?. Acad. Radiol. 12:10 (2005), 1333–1341.
    • (2005) Acad. Radiol. , vol.12 , Issue.10 , pp. 1333-1341
    • Suzuki, K.1    Doi, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.