-
1
-
-
33745467619
-
An algorithmic theory of learning: Robust concepts and random projection
-
Arriaga, Rosa I and Vempala, Santosh. An algorithmic theory of learning: Robust concepts and random projection. Machine Learning, 63(2):161-182, 2006.
-
(2006)
Machine Learning
, vol.63
, Issue.2
, pp. 161-182
-
-
Arriaga, R.I.1
Vempala, S.2
-
2
-
-
84997623459
-
Differentially private empirical risk minimization: Efficient algorithms and tight error bounds
-
Bassily, Raef, Smith, Adam, and Thakurta, Abhradeep. Differentially private empirical risk minimization: Efficient algorithms and tight error bounds. In FOCS. IEEE, 2014.
-
(2014)
FOCS. IEEE
-
-
Bassily, R.1
Smith, A.2
Thakurta, A.3
-
3
-
-
84871941776
-
The johnson-lindenstrauss transform itself preserves differential privacy
-
IEEE
-
Blocki, Jeremiah, Blum, Avrim, Datta, Anupam, and Shef-fet, Or. The johnson-lindenstrauss transform itself preserves differential privacy. In Foundations of Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium on, pp. 410-419. IEEE, 2012.
-
(2012)
Foundations of Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium on
, pp. 410-419
-
-
Blocki, J.1
Blum, A.2
Datta, A.3
Shef-Fet, O.4
-
8
-
-
79955858775
-
Differentially private empirical risk minimization
-
Chaudhuri, Kamalika, Monteleoni, Claire, and Sarwate, Anand D. Differentially private empirical risk minimization. The Journal of Machine Learning Research, 12:1069-1109, 2011.
-
(2011)
The Journal of Machine Learning Research
, vol.12
, pp. 1069-1109
-
-
Chaudhuri, K.1
Monteleoni, C.2
Sarwate, A.D.3
-
9
-
-
34548269362
-
Detection and estimation with compressive measurements
-
Davenport, Mark A, Wakin, Michael B, and Baraniuk, Richard G. Detection and estimation with compressive measurements. Dept. of ECE, Rice University, Tech. Rep, 2006.
-
(2006)
Dept. of ECE, Rice University, Tech. Rep
-
-
Davenport, M.A.1
Wakin, M.B.2
Baraniuk, R.G.3
-
11
-
-
84893480068
-
Local privacy and statistical minimax rates
-
IEEE
-
Duchi, John C, Jordan, Michael, Wainwright, Martin J, et al. Local privacy and statistical minimax rates. In Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on, pp. 429-438. IEEE, 2013.
-
(2013)
Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on
, pp. 429-438
-
-
Duchi, J.C.1
Jordan, M.2
Wainwright, M.J.3
-
12
-
-
84972531331
-
Enhancing access to microdata while protecting confidentiality: Prospects for the future
-
Duncan, George T, Pearson, Robert W, et al. Enhancing access to microdata while protecting confidentiality: Prospects for the future. Statistical Science, 6(3):219-232, 1991.
-
(1991)
Statistical Science
, vol.6
, Issue.3
, pp. 219-232
-
-
Duncan, G.T.1
Pearson, R.W.2
-
13
-
-
84905991151
-
The algorithmic foundations of differential privacy
-
Dwork, Cynthia and Roth, Aaron. The algorithmic foundations of differential privacy. Theoretical Computer Science, 9(3-4):211-407, 2013.
-
(2013)
Theoretical Computer Science
, vol.9
, Issue.3-4
, pp. 211-407
-
-
Dwork, C.1
Roth, A.2
-
14
-
-
33746037200
-
Our data, ourselves: Privacy via distributed noise generation
-
Springer
-
Dwork, Cynthia, Kenthapadi, Krishnaram, McSherry, Frank, Mironov, Ilya, and Naor, Moni. Our data, ourselves: Privacy via distributed noise generation. In EU-ROCRYPT, LNCS, pp. 486-503. Springer, 2006a.
-
(2006)
EU-ROCRYPT, LNCS
, pp. 486-503
-
-
Dwork, C.1
Kenthapadi, K.2
McSherry, F.3
Mironov, I.4
Naor, M.5
-
15
-
-
33746086554
-
Calibrating noise to sensitivity in private data analysis
-
Springer
-
Dwork, Cynthia, McSherry, Frank, Nissim, Kobbi, and Smith, Adam. Calibrating noise to sensitivity in private data analysis. In TCC, volume 3876 of LNCS, pp. 265284. Springer, 2006b.
-
(2006)
TCC, Volume 3876 of LNCS
, pp. 265284
-
-
Dwork, C.1
McSherry, F.2
Nissim, K.3
Smith, A.4
-
17
-
-
84897524278
-
Compressed least-squares regression on sparse spaces
-
Fard, Mahdi Milani, Grinberg, Yuri, Pineau, Joelle, and Precup, Doina. Compressed least-squares regression on sparse spaces. In AAAI, 2012.
-
(2012)
AAAI
-
-
Fard, M.M.1
Grinberg, Y.2
Pineau, J.3
Precup, D.4
-
21
-
-
84897517341
-
Differentially private online learning
-
Jain, Prateek, Kothari, Pravesh, and Thakurta, Abhradeep. Differentially private online learning. In COLT 2012, pp. 24.1-24.34, 2012.
-
(2012)
COLT 2012
, pp. 241-2434
-
-
Jain, P.1
Kothari, P.2
Thakurta, A.3
-
24
-
-
84885642084
-
Privacy via the johnson-lindenstrauss transform
-
Kenthapadi, Krishnaram, Korolova, Aleksandra, Mironov, Ilya, and Mishra, Nina. Privacy via the johnson-lindenstrauss transform. Journal of Privacy and Confidentiality, 5(1):39-71, 2013.
-
(2013)
Journal of Privacy and Confidentiality
, vol.5
, Issue.1
, pp. 39-71
-
-
Kenthapadi, K.1
Korolova, A.2
Mironov, I.3
Mishra, N.4
-
25
-
-
84904192038
-
Private convex empirical risk minimization and highdimensional regression
-
Kifer, Daniel, Smith, Adam, and Thakurta, Abhradeep. Private convex empirical risk minimization and highdimensional regression. Journal of Machine Learning Research, 1:41, 2012.
-
(2012)
Journal of Machine Learning Research
, vol.1
, pp. 41
-
-
Kifer, D.1
Smith, A.2
Thakurta, A.3
-
27
-
-
84856463292
-
Randomized algorithms for matrices and data
-
Mahoney, Michael W. Randomized algorithms for matrices and data. Foundations and Trends in Machine Learning, 3(2):123-224, 2011.
-
(2011)
Foundations and Trends in Machine Learning
, vol.3
, Issue.2
, pp. 123-224
-
-
Mahoney, M.W.1
-
29
-
-
46749128577
-
Mechanism design via differential privacy
-
IEEE
-
McSherry, Frank and Talwar, Kunal. Mechanism design via differential privacy. In FOCS, pp. 94-103. IEEE, 2007.
-
(2007)
FOCS
, pp. 94-103
-
-
McSherry, F.1
Talwar, K.2
-
30
-
-
21344462036
-
Geometric parameters in learning theory
-
Springer
-
Mendelson, Shahar. Geometric parameters in learning theory. In Geometric aspects of functional analysis, pp. 193-235. Springer, 2004.
-
(2004)
Geometric Aspects of Functional Analysis
, pp. 193-235
-
-
Mendelson, S.1
-
31
-
-
38849196916
-
Reconstruction and subgaussian operators in asymptotic geometric analysis
-
Mendelson, Shahar, Pajor, Alain, and Tomczak-Jaegermann, Nicole. Reconstruction and subgaussian operators in asymptotic geometric analysis. Geometric and Functional Analysis, 17(4):1248-1282, 2007.
-
(2007)
Geometric and Functional Analysis
, vol.17
, Issue.4
, pp. 1248-1282
-
-
Mendelson, S.1
Pajor, A.2
Tomczak-Jaegermann, N.3
-
32
-
-
84983098256
-
(Nearly) optimal differentially private stochastic multi-arm bandits
-
Mishra, Nikita and Thakurta, Abhradeep. (nearly) optimal differentially private stochastic multi-arm bandits. In UAI, pp. 592-601, 2015.
-
(2015)
UAI
, pp. 592-601
-
-
Mishra, N.1
Thakurta, A.2
-
33
-
-
80955145156
-
-
arXiv preprint arXiv:0911.5708
-
Rubinstein, Benjamin IP, Bartlett, Peter L, Huang, Ling, and Taft, Nina. Learning in a large function space: Privacy-preserving mechanisms for svm learning. arXiv preprint arXiv:0911.5708, 2009.
-
(2009)
Learning in a Large Function Space: Privacy-preserving Mechanisms for SVM Learning
-
-
Rubinstein, B.I.P.1
Bartlett, P.L.2
Huang, L.3
Taft, N.4
-
34
-
-
85032751978
-
Signal processing and machine learning with differential privacy: Algorithms and challenges for continuous data
-
Sarwate, Anand D and Chaudhuri, Kamalika. Signal processing and machine learning with differential privacy: Algorithms and challenges for continuous data. Signal Processing Magazine, IEEE, 30(5):86-94, 2013.
-
(2013)
Signal Processing Magazine, IEEE
, vol.30
, Issue.5
, pp. 86-94
-
-
Sarwate, A.D.1
Chaudhuri, K.2
-
35
-
-
84898064829
-
Stochastic convex optimization
-
Shalev-Shwartz, Shai, Shamir, Ohad, Srebro, Nathan, and Sridharan, Karthik. Stochastic convex optimization. In COLT, 2009.
-
(2009)
COLT
-
-
Shalev-Shwartz, S.1
Shamir, O.2
Srebro, N.3
Sridharan, K.4
-
37
-
-
84898021295
-
Differentially private feature selection via stability arguments, and the robustness of the lasso
-
Smith, Adam and Thakurta, Abhradeep Guha. Differentially private feature selection via stability arguments, and the robustness of the lasso. In Conference on Learning Theory, pp. 819-850, 2013.
-
(2013)
Conference on Learning Theory
, pp. 819-850
-
-
Smith, A.1
Thakurta, A.G.2
-
39
-
-
84965117147
-
Nearly optimal private lasso
-
Talwar, Kunal, Thakurta, Abhradeep, and 31Zhang, Li. Nearly optimal private lasso. In Advances in Neural Information Processing Systems, pp. 3007-3015, 2015b.
-
(2015)
Advances in Neural Information Processing Systems
, pp. 3007-3015
-
-
Talwar, K.1
Thakurta, A.2
Zhang, L.3
-
41
-
-
84898996940
-
(Nearly) optimal algorithms for private online learning in full-information and bandit settings
-
Thakurta, Abhradeep Guha and Smith, Adam, (nearly) optimal algorithms for private online learning in full-information and bandit settings. In Advances in Neural Information Processing Systems, pp. 2733-2741, 2013.
-
(2013)
Advances in Neural Information Processing Systems
, pp. 2733-2741
-
-
Thakurta, A.G.1
Smith, A.2
-
45
-
-
84969779036
-
A deterministic analysis of noisy sparse subspace clustering for dimensionality-reduced data
-
Wang, Yining, Wang, Yu-Xiang, and Singh, Aarti. A deterministic analysis of noisy sparse subspace clustering for dimensionality-reduced data. In Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pp. 1422-1431, 2015.
-
(2015)
Proceedings of the 32nd International Conference on Machine Learning (ICML-15)
, pp. 1422-1431
-
-
Wang, Y.1
Wang, Y.-X.2
Singh, A.3
-
46
-
-
61549128441
-
Robust face recognition via sparse representation
-
Wright, John, Yang, Allen Y, Ganesh, Arvind, Sastry, Shankar S, and Ma, Yi. Robust face recognition via sparse representation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 31(2):210-227, 2009.
-
(2009)
Pattern Analysis and Machine Intelligence, IEEE Transactions on
, vol.31
, Issue.2
, pp. 210-227
-
-
Wright, J.1
Yang, A.Y.2
Ganesh, A.3
Sastry, S.S.4
Ma, Y.5
-
47
-
-
61349111475
-
Compressed and privacy-sensitive sparse regression
-
Zhou, Shuheng, Lafferty, John, and Wasserman, Larry. Compressed and privacy-sensitive sparse regression. Information Theory, IEEE Transactions on, 55(2):846-866, 2009a.
-
(2009)
Information Theory, IEEE Transactions on
, vol.55
, Issue.2
, pp. 846-866
-
-
Zhou, S.1
Lafferty, J.2
Wasserman, L.3
-
48
-
-
70449464977
-
Differential privacy with compression
-
IEEE
-
Zhou, Shuheng, Ligett, Katrina, and Wasserman, Larry. Differential privacy with compression. In Information Theory, 2009. ISIT 2009. IEEE International Symposium on, pp. 2718-2722. IEEE, 2009b.
-
(2009)
Information Theory, 2009. ISIT 2009. IEEE International Symposium on
, pp. 2718-2722
-
-
Zhou, S.1
Ligett, K.2
Wasserman, L.3
|