메뉴 건너뛰기




Volumn 1, Issue , 2016, Pages 750-761

Efficient private empirical risk minimization for high-dimensional learning

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLUSTERING ALGORITHMS; DATA PRIVACY; LEARNING SYSTEMS;

EID: 84997824414     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (19)

References (48)
  • 1
    • 33745467619 scopus 로고    scopus 로고
    • An algorithmic theory of learning: Robust concepts and random projection
    • Arriaga, Rosa I and Vempala, Santosh. An algorithmic theory of learning: Robust concepts and random projection. Machine Learning, 63(2):161-182, 2006.
    • (2006) Machine Learning , vol.63 , Issue.2 , pp. 161-182
    • Arriaga, R.I.1    Vempala, S.2
  • 2
    • 84997623459 scopus 로고    scopus 로고
    • Differentially private empirical risk minimization: Efficient algorithms and tight error bounds
    • Bassily, Raef, Smith, Adam, and Thakurta, Abhradeep. Differentially private empirical risk minimization: Efficient algorithms and tight error bounds. In FOCS. IEEE, 2014.
    • (2014) FOCS. IEEE
    • Bassily, R.1    Smith, A.2    Thakurta, A.3
  • 4
    • 84958778248 scopus 로고    scopus 로고
    • Toward a unified theory of sparse dimensionality reduction in euclidean space
    • Association for Computing Machinery
    • Bourgain, Jean, Sjoerd, Dirksen, and Nelson, Jelani. Toward a unified theory of sparse dimensionality reduction in euclidean space. In Proceedings of the 47th ACM Symposium on Theory of Computing. Association for Computing Machinery, 2015.
    • (2015) Proceedings of the 47th ACM Symposium on Theory of Computing
    • Bourgain, J.1    Sjoerd, D.2    Nelson, J.3
  • 12
    • 84972531331 scopus 로고
    • Enhancing access to microdata while protecting confidentiality: Prospects for the future
    • Duncan, George T, Pearson, Robert W, et al. Enhancing access to microdata while protecting confidentiality: Prospects for the future. Statistical Science, 6(3):219-232, 1991.
    • (1991) Statistical Science , vol.6 , Issue.3 , pp. 219-232
    • Duncan, G.T.1    Pearson, R.W.2
  • 13
    • 84905991151 scopus 로고    scopus 로고
    • The algorithmic foundations of differential privacy
    • Dwork, Cynthia and Roth, Aaron. The algorithmic foundations of differential privacy. Theoretical Computer Science, 9(3-4):211-407, 2013.
    • (2013) Theoretical Computer Science , vol.9 , Issue.3-4 , pp. 211-407
    • Dwork, C.1    Roth, A.2
  • 14
    • 33746037200 scopus 로고    scopus 로고
    • Our data, ourselves: Privacy via distributed noise generation
    • Springer
    • Dwork, Cynthia, Kenthapadi, Krishnaram, McSherry, Frank, Mironov, Ilya, and Naor, Moni. Our data, ourselves: Privacy via distributed noise generation. In EU-ROCRYPT, LNCS, pp. 486-503. Springer, 2006a.
    • (2006) EU-ROCRYPT, LNCS , pp. 486-503
    • Dwork, C.1    Kenthapadi, K.2    McSherry, F.3    Mironov, I.4    Naor, M.5
  • 15
    • 33746086554 scopus 로고    scopus 로고
    • Calibrating noise to sensitivity in private data analysis
    • Springer
    • Dwork, Cynthia, McSherry, Frank, Nissim, Kobbi, and Smith, Adam. Calibrating noise to sensitivity in private data analysis. In TCC, volume 3876 of LNCS, pp. 265284. Springer, 2006b.
    • (2006) TCC, Volume 3876 of LNCS , pp. 265284
    • Dwork, C.1    McSherry, F.2    Nissim, K.3    Smith, A.4
  • 17
    • 84897524278 scopus 로고    scopus 로고
    • Compressed least-squares regression on sparse spaces
    • Fard, Mahdi Milani, Grinberg, Yuri, Pineau, Joelle, and Precup, Doina. Compressed least-squares regression on sparse spaces. In AAAI, 2012.
    • (2012) AAAI
    • Fard, M.M.1    Grinberg, Y.2    Pineau, J.3    Precup, D.4
  • 18
  • 21
    • 84897517341 scopus 로고    scopus 로고
    • Differentially private online learning
    • Jain, Prateek, Kothari, Pravesh, and Thakurta, Abhradeep. Differentially private online learning. In COLT 2012, pp. 24.1-24.34, 2012.
    • (2012) COLT 2012 , pp. 241-2434
    • Jain, P.1    Kothari, P.2    Thakurta, A.3
  • 25
    • 84904192038 scopus 로고    scopus 로고
    • Private convex empirical risk minimization and highdimensional regression
    • Kifer, Daniel, Smith, Adam, and Thakurta, Abhradeep. Private convex empirical risk minimization and highdimensional regression. Journal of Machine Learning Research, 1:41, 2012.
    • (2012) Journal of Machine Learning Research , vol.1 , pp. 41
    • Kifer, D.1    Smith, A.2    Thakurta, A.3
  • 27
  • 29
    • 46749128577 scopus 로고    scopus 로고
    • Mechanism design via differential privacy
    • IEEE
    • McSherry, Frank and Talwar, Kunal. Mechanism design via differential privacy. In FOCS, pp. 94-103. IEEE, 2007.
    • (2007) FOCS , pp. 94-103
    • McSherry, F.1    Talwar, K.2
  • 30
  • 31
    • 38849196916 scopus 로고    scopus 로고
    • Reconstruction and subgaussian operators in asymptotic geometric analysis
    • Mendelson, Shahar, Pajor, Alain, and Tomczak-Jaegermann, Nicole. Reconstruction and subgaussian operators in asymptotic geometric analysis. Geometric and Functional Analysis, 17(4):1248-1282, 2007.
    • (2007) Geometric and Functional Analysis , vol.17 , Issue.4 , pp. 1248-1282
    • Mendelson, S.1    Pajor, A.2    Tomczak-Jaegermann, N.3
  • 32
    • 84983098256 scopus 로고    scopus 로고
    • (Nearly) optimal differentially private stochastic multi-arm bandits
    • Mishra, Nikita and Thakurta, Abhradeep. (nearly) optimal differentially private stochastic multi-arm bandits. In UAI, pp. 592-601, 2015.
    • (2015) UAI , pp. 592-601
    • Mishra, N.1    Thakurta, A.2
  • 34
    • 85032751978 scopus 로고    scopus 로고
    • Signal processing and machine learning with differential privacy: Algorithms and challenges for continuous data
    • Sarwate, Anand D and Chaudhuri, Kamalika. Signal processing and machine learning with differential privacy: Algorithms and challenges for continuous data. Signal Processing Magazine, IEEE, 30(5):86-94, 2013.
    • (2013) Signal Processing Magazine, IEEE , vol.30 , Issue.5 , pp. 86-94
    • Sarwate, A.D.1    Chaudhuri, K.2
  • 37
    • 84898021295 scopus 로고    scopus 로고
    • Differentially private feature selection via stability arguments, and the robustness of the lasso
    • Smith, Adam and Thakurta, Abhradeep Guha. Differentially private feature selection via stability arguments, and the robustness of the lasso. In Conference on Learning Theory, pp. 819-850, 2013.
    • (2013) Conference on Learning Theory , pp. 819-850
    • Smith, A.1    Thakurta, A.G.2
  • 41
    • 84898996940 scopus 로고    scopus 로고
    • (Nearly) optimal algorithms for private online learning in full-information and bandit settings
    • Thakurta, Abhradeep Guha and Smith, Adam, (nearly) optimal algorithms for private online learning in full-information and bandit settings. In Advances in Neural Information Processing Systems, pp. 2733-2741, 2013.
    • (2013) Advances in Neural Information Processing Systems , pp. 2733-2741
    • Thakurta, A.G.1    Smith, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.