메뉴 건너뛰기




Volumn , Issue , 2012, Pages 410-419

The Johnson-Lindenstrauss transform itself preserves differential privacy

Author keywords

Differential privacy; Graph cuts

Indexed keywords

DIFFERENTIAL PRIVACIES; GAUSSIANS; GRAPH CUT; JOHNSON-LINDENSTRAUSS TRANSFORMS; RANDOM NOISE; SINGULAR VALUES; TWO-GRAPHS;

EID: 84871941776     PISSN: 02725428     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/FOCS.2012.67     Document Type: Conference Paper
Times cited : (207)

References (30)
  • 1
    • 33749033927 scopus 로고    scopus 로고
    • Kernels as features: On kernels, margins, and low-dimensional mappings
    • M.-F. Balcan, A. Blum, and S. Vempala. Kernels as features: On kernels, margins, and low-dimensional mappings. Machine Learning, 65(1):79-94, 2006.
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 79-94
    • Balcan, M.-F.1    Blum, A.2    Vempala, S.3
  • 4
    • 33244468835 scopus 로고    scopus 로고
    • Practical privacy: The sulq framework
    • ACM
    • A. Blum, C. Dwork, F McSherry, and K. Nissim. Practical privacy: the sulq framework. PODS '05, pages 128-138. ACM, 2005.
    • (2005) PODS '05 , pp. 128-138
    • Blum, A.1    Dwork, C.2    McSherry, F.3    Nissim, K.4
  • 5
    • 57049136138 scopus 로고    scopus 로고
    • A learning theory approach to non-interactive database privacy
    • ACM
    • A. Blum, K. Ligett, and A. Roth. A learning theory approach to non-interactive database privacy. In STOC, pages 609-618. ACM, 2008.
    • (2008) STOC , pp. 609-618
    • Blum, A.1    Ligett, K.2    Roth, A.3
  • 7
    • 77954786104 scopus 로고    scopus 로고
    • A sparse johnson: Lindenstrauss transform
    • ACM
    • Anirban Dasgupta, Ravi Kumar, and Tamás Sarlos. A sparse johnson: Lindenstrauss transform. STOC '10, pages 341-350. ACM, 2010.
    • (2010) STOC '10 , pp. 341-350
    • Dasgupta, A.1    Kumar, R.2    Sarlos, T.3
  • 8
    • 1142275486 scopus 로고    scopus 로고
    • Revealing information while preserving privacy
    • I. Dinur and K. Nissim. Revealing information while preserving privacy. In PODS, pages 202-210, 2003.
    • (2003) PODS , pp. 202-210
    • Dinur, I.1    Nissim, K.2
  • 9
    • 78650804208 scopus 로고    scopus 로고
    • A firm foundation for private data analysis
    • C. Dwork. A firm foundation for private data analysis. Commun. ACM, 54(1):86-95, 2011.
    • (2011) Commun. ACM , vol.54 , Issue.1 , pp. 86-95
    • Dwork, C.1
  • 10
    • 33746037200 scopus 로고    scopus 로고
    • Our data, ourselves: Privacy via distributed noise generation
    • C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our data, ourselves: Privacy via distributed noise generation. In EUROCRYPT, pages 486-503, 2006.
    • (2006) EUROCRYPT , pp. 486-503
    • Dwork, C.1    Kenthapadi, K.2    McSherry, F.3    Mironov, I.4    Naor, M.5
  • 11
    • 33745556605 scopus 로고    scopus 로고
    • Calibrating noise to sensitivity in private data analysis
    • Springer
    • C. Dwork, F. Mcsherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis. In TCC, pages 265-284. Springer, 2006.
    • (2006) TCC , pp. 265-284
    • Dwork, C.1    Mcsherry, F.2    Nissim, K.3    Smith, A.4
  • 12
    • 78751522594 scopus 로고    scopus 로고
    • Boosting and differential privacy
    • C. Dwork, G. Rothblum, and S. Vadhan. Boosting and differential privacy. In FOCS, 2010.
    • (2010) FOCS
    • Dwork, C.1    Rothblum, G.2    Vadhan, S.3
  • 13
    • 77957582791 scopus 로고    scopus 로고
    • Differential privacy for statistics: What we know and what we want to learn
    • C. Dwork and A. Smith. Differential privacy for statistics: What we know and what we want to learn. Journal of Privacy and Confidentiality, 1(2):2, 2010.
    • (2010) Journal of Privacy and Confidentiality , vol.1 , Issue.2 , pp. 2
    • Dwork, C.1    Smith, A.2
  • 14
    • 79959740503 scopus 로고    scopus 로고
    • Privately releasing conjunctions and the statistical query barrier
    • A. Gupta, M. Hardt, A. Roth, and J. Ullman. Privately releasing conjunctions and the statistical query barrier. In STOC, pages 803-812, 2011.
    • (2011) STOC , pp. 803-812
    • Gupta, A.1    Hardt, M.2    Roth, A.3    Ullman, J.4
  • 15
    • 84863421549 scopus 로고    scopus 로고
    • Iterative constructions and private data release
    • A. Gupta, A. Roth, and J. Ullman. Iterative constructions and private data release. In TCC, pages 339-356, 2012.
    • (2012) TCC , pp. 339-356
    • Gupta, A.1    Roth, A.2    Ullman, J.3
  • 16
    • 79960425522 scopus 로고    scopus 로고
    • Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions
    • N. Halko, P-G. Martinsson, and J. Tropp. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review, 53(2):217-288, 2011.
    • (2011) SIAM Review , vol.53 , Issue.2 , pp. 217-288
    • Halko, N.1    Martinsson, P.-G.2    Tropp, J.3
  • 18
    • 84862594279 scopus 로고    scopus 로고
    • Beating randomized response on incoherent matrices
    • M. Hardt and A. Roth. Beating randomized response on incoherent matrices. In STOC, 2012.
    • (2012) STOC
    • Hardt, M.1    Roth, A.2
  • 19
    • 78751489078 scopus 로고    scopus 로고
    • A multiplicative weights mechanism for privacy-preserving data analysis
    • IEEE
    • M. Hardt and G.N. Rothblum. A multiplicative weights mechanism for privacy-preserving data analysis. In FOCS, pages 61-70. IEEE, 2010.
    • (2010) FOCS , pp. 61-70
    • Hardt, M.1    Rothblum, G.N.2
  • 20
    • 77951192010 scopus 로고    scopus 로고
    • Accurate estimation of the degree distribution of private networks
    • M. Hay, C. Li, G. Miklau, and D. Jensen. Accurate estimation of the degree distribution of private networks. In ICDM, pages 169-178, 2009.
    • (2009) ICDM , pp. 169-178
    • Hay, M.1    Li, C.2    Miklau, G.3    Jensen, D.4
  • 24
    • 70350678967 scopus 로고    scopus 로고
    • Differentially private recommender systems: Building privacy into the netflix prize contenders
    • F. McSherry and I. Mironov. Differentially private recommender systems: Building privacy into the netflix prize contenders. In KDD, pages 627-636, 2009.
    • (2009) KDD , pp. 627-636
    • McSherry, F.1    Mironov, I.2
  • 25
    • 46749128577 scopus 로고    scopus 로고
    • Mechanism design via differential privacy
    • F. McSherry and K. Talwar. Mechanism design via differential privacy. In FOCS, pages 94-103, 2007.
    • (2007) FOCS , pp. 94-103
    • McSherry, F.1    Talwar, K.2
  • 27
    • 35448955271 scopus 로고    scopus 로고
    • Smooth sensitivity and sampling in private data analysis
    • ACM, Full version
    • K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and sampling in private data analysis. In STOC, pages 75-84. ACM, 2007. Full version in: http://www.cse.psu.edu/~asmith/pubs/NRS07.
    • (2007) STOC , pp. 75-84
    • Nissim, K.1    Raskhodnikova, S.2    Smith, A.3
  • 28
    • 77954745685 scopus 로고    scopus 로고
    • Interactive privacy via the median mechanism
    • ACM
    • A. Roth and T. Roughgarden. Interactive privacy via the median mechanism. In STOC, pages 765-774. ACM, 2010.
    • (2010) STOC , pp. 765-774
    • Roth, A.1    Roughgarden, T.2
  • 30
    • 0013776710 scopus 로고
    • Randomized Response: A Survey Technique for Eliminating Evasive Answer Bias
    • March
    • S. Warner. Randomized Response: A Survey Technique for Eliminating Evasive Answer Bias. Journal of the American Statistical Association, 60(309), March 1965.
    • (1965) Journal of the American Statistical Association , vol.60 , Issue.309
    • Warner, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.