메뉴 건너뛰기




Volumn , Issue , 2013, Pages

(Nearly) optimal algorithms for private online learning in full-information and bandit settings

Author keywords

[No Author keywords available]

Indexed keywords

E-LEARNING; OPTIMIZATION;

EID: 84898996940     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (167)

References (25)
  • 1
  • 2
    • 84860610530 scopus 로고    scopus 로고
    • Optimal algorithms for online convex optimization with multi-point bandit feedback
    • Alekh Agarwal, Ofer Dekel, and Lin Xiao. Optimal algorithms for online convex optimization with multi-point bandit feedback. In COLT, 2010.
    • (2010) COLT
    • Agarwal, A.1    Dekel, O.2    Xiao, L.3
  • 3
    • 84898063697 scopus 로고    scopus 로고
    • Competing in the dark: An efficient algorithm for bandit linear optimization
    • Jacob Abernethy, Elad Hazan, and Alexander Rakhlin. Competing in the dark: An efficient algorithm for bandit linear optimization. In COLT, 2008.
    • (2008) COLT
    • Abernethy, J.1    Hazan, E.2    Rakhlin, A.3
  • 5
    • 33244468835 scopus 로고    scopus 로고
    • Practical privacy: The SuLQ framework
    • Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practical privacy: The SuLQ framework. In PODS, 2005.
    • (2005) PODS
    • Blum, A.1    Dwork, C.2    McSherry, F.3    Nissim, K.4
  • 6
    • 74549118164 scopus 로고    scopus 로고
    • Privacy-preserving logistic regression
    • Kamalika Chaudhuri and Claire Monteleoni. Privacy-preserving logistic regression. In NIPS, 2008.
    • (2008) NIPS
    • Chaudhuri, K.1    Monteleoni, C.2
  • 8
    • 80052004303 scopus 로고    scopus 로고
    • Private and continual release of statistics
    • TH Hubert Chan, Elaine Shi, and Dawn Song. Private and continual release of statistics. In ICALP, 2010.
    • (2010) ICALP
    • Chan, T.H.H.1    Shi, E.2    Song, D.3
  • 10
    • 33746086554 scopus 로고    scopus 로고
    • Calibrating noise to sensitivity in private data analysis
    • Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in private data analysis. In TCC, 2006.
    • (2006) TCC
    • Dwork, C.1    McSherry, F.2    Nissim, K.3    Smith, A.4
  • 11
    • 79959952201 scopus 로고    scopus 로고
    • On the difficulties of disclosure prevention in statistical databases or the case for differential privacy
    • Cynthia Dwork and Moni Naor. On the difficulties of disclosure prevention in statistical databases or the case for differential privacy. J. Privacy and Confidentiality, 2(1), 2010.
    • (2010) J. Privacy and Confidentiality , vol.2 , Issue.1
    • Dwork, C.1    Naor, M.2
  • 13
    • 50249086141 scopus 로고    scopus 로고
    • Differential privacy
    • Cynthia Dwork. Differential privacy. In ICALP, 2006.
    • (2006) ICALP
    • Dwork, C.1
  • 14
    • 20744454447 scopus 로고    scopus 로고
    • Online convex optimization in the bandit setting: Gradient descent without a gradient
    • Abraham D Flaxman, Adam Tauman Kalai, and H Brendan McMahan. Online convex optimization in the bandit setting: gradient descent without a gradient. In SODA, 2005.
    • (2005) SODA
    • Flaxman, A.D.1    Kalai, A.T.2    McMahan, H.B.3
  • 17
    • 84897517341 scopus 로고    scopus 로고
    • Differentially private online learning
    • Prateek Jain, Pravesh Kothari, and Abhradeep Thakurta. Differentially private online learning. In COLT, 2012.
    • (2012) COLT
    • Jain, P.1    Kothari, P.2    Thakurta, A.3
  • 18
    • 84897528689 scopus 로고    scopus 로고
    • Differentially private learning with kernels
    • Prateek Jain and Abhradeep Thakurta. Differentially private learning with kernels. In ICML, 2013.
    • (2013) ICML
    • Jain, P.1    Thakurta, A.2
  • 20
    • 84862624687 scopus 로고    scopus 로고
    • A rigorous and customizable framework for privacy
    • Daniel Kifer and Ashwin Machanavajjhala. A rigorous and customizable framework for privacy. In PODS, 2012.
    • (2012) PODS
    • Kifer, D.1    MacHanavajjhala, A.2
  • 21
    • 57949117235 scopus 로고    scopus 로고
    • A note on differential privacy: Defining resistance to arbitrary side information
    • arXiv:0803.39461 [cs.CR]
    • Shiva Prasad Kasiviswanathan and Adam Smith. A note on differential privacy: Defining resistance to arbitrary side information. CoRR, arXiv:0803.39461 [cs.CR], 2008.
    • (2008) CoRR
    • Kasiviswanathan, S.P.1    Smith, A.2
  • 22
    • 84920035372 scopus 로고    scopus 로고
    • Private convex empirical risk minimization and high-dimensional regression
    • Daniel Kifer, Adam Smith, and Abhradeep Thakurta. Private convex empirical risk minimization and high-dimensional regression. In COLT, 2012.
    • (2012) COLT
    • Kifer, D.1    Smith, A.2    Thakurta, A.3
  • 24
    • 79959714549 scopus 로고    scopus 로고
    • Privacy-preserving statistical estimators with optimal convergence rates
    • Adam Smith. Privacy-preserving statistical estimators with optimal convergence rates. In STOC, 2011.
    • (2011) STOC
    • Smith, A.1
  • 25
    • 1942484421 scopus 로고    scopus 로고
    • Online convex programming and generalized infinitesimal gradient ascent
    • Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In ICML, 2003.
    • (2003) ICML
    • Zinkevich, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.