-
2
-
-
74549118164
-
Privacy-preserving logistic regression
-
Chaudhuri, Kamalika and Monteleoni, Claire. Privacy-preserving logistic regression. In NIPS, 2008.
-
(2008)
NIPS
-
-
Chaudhuri, K.1
Monteleoni, C.2
-
3
-
-
79955858775
-
Differentially private empirical risk minimiza tion
-
Chaudhuri, Kamalika, Monteleoni, Claire, and Sarwate, Anand D. Differentially private empirical risk minimiza tion. JMLR, 12:1069-1109, 2011.
-
(2011)
JMLR
, vol.12
, pp. 1069-1109
-
-
Chaudhuri, K.1
Monteleoni, C.2
Sarwate, A.D.3
-
5
-
-
57049085430
-
Our data, our selves: Privacy via distributed noise generation
-
Dwork, Cynthia, Kenthapadi, Krishnaram, McSherry, Frank, Mironov, Ilya, and Naor, Moni. Our data, our selves: Privacy via distributed noise generation. In EU-ROCRYPT, 2006a.
-
(2006)
EU-ROCRYPT
-
-
Dwork, C.1
Kenthapadi, K.2
McSherry, F.3
Mironov, I.4
Naor, M.5
-
6
-
-
33746086554
-
Calibrating noise to sensitivity in private data analysis
-
Dwork, Cynthia, McSherry, Frank, Nissim, Kobbi, and Smith, Adam. Calibrating noise to sensitivity in private data analysis. In TCC, 2006b.
-
(2006)
TCC
-
-
Dwork, C.1
McSherry, F.2
Nissim, K.3
Adam, S.4
-
7
-
-
77954717626
-
Differential privacy under continual ob servation
-
Dwork, Cynthia, Naor, Moni, Pitassi, Toniann, and Rothblum, Guy N. Differential privacy under continual ob servation. In STOC, 2010a.
-
(2010)
STOC
-
-
Dwork, C.1
Naor, M.2
Pitassi, T.3
Rothblum, G.N.4
-
8
-
-
77954717626
-
Differential privacy under continual ob servation
-
Dwork, Cynthia, Naor, Moni, Pitassi, Toniann, and Rothblum, Guy N. Differential privacy under continual ob servation. In Proceedings of the 42nd ACM symposium on Theory of computing, 2010b.
-
(2010)
Proceedings of the 42nd ACM Symposium on Theory of Computing
-
-
Cynthia, D.1
Moni, N.2
Toniann, P.3
Rothblum Guy, N.4
-
10
-
-
35348918820
-
Loga rithmic regret algorithms for online convex optimization
-
Hazan, Elad, Agarwal, Amit, and Kale, Satyen. Loga rithmic regret algorithms for online convex optimization. Machine Learning, 2007.
-
(2007)
Machine Learning
-
-
Elad, H.1
Amit, A.2
Satyen, K.3
-
11
-
-
84919824400
-
Differentially pri vate kernel learning
-
Jain, Prateek and Thakurta, Abhradeep. Differentially pri vate kernel learning. In ICML, 2013.
-
(2013)
ICML
-
-
Prateek, J.1
Abhradeep, T.2
-
12
-
-
84897517341
-
Differentially private online learning
-
Jain, Prateek, Kothari, Pravesh, and Thakurta, Abhradeep. Differentially private online learning. In COLT, 2012.
-
(2012)
COLT
-
-
Jain, P.1
Kothari, P.2
Thakurta, A.3
-
13
-
-
80555135310
-
On the complexity of linear prediction: Risk bounds, margin bounds, and regularization
-
Kakade, Sham M, Sridharan, Karthik, and Tewari, Ambuj. On the complexity of linear prediction: Risk bounds, margin bounds, and regularization. In NIPS, 2008.
-
(2008)
NIPS
-
-
Kakade Sham, M.1
Karthik, S.2
Ambuj, T.3
-
14
-
-
57949117235
-
A note on differential privacy: Defining resistance to arbitrary side information
-
arXiv: 0803.39461 [cs.CR]
-
Kasiviswanathan, Shiva Prasad and Smith, Adam. A note on differential privacy: Defining resistance to arbitrary side information. CoRR, arXiv:0803.39461 [cs.CR], 2008.
-
(2008)
CoRR
-
-
Kasiviswanathan, S.P.1
Smith, A.2
-
15
-
-
84919824399
-
Private convex empirical risk minimization and high-dimensional regression
-
Kifer, Daniel, Smith, Adam, and Thakurta, Abhradeep. Private convex empirical risk minimization and high-dimensional regression. In COLT, 2012.
-
(2012)
COLT
-
-
Daniel, K.1
Adam, S.2
Abhradeep, T.3
-
16
-
-
46749128577
-
Mechanism design via differential privacy
-
McSherry, Frank and Talwar, Kunal. Mechanism design via differential privacy. In FOCS, 2007.
-
(2007)
FOCS
-
-
McSherry, F.1
Talwar, K.2
-
17
-
-
84858717588
-
A unified framework for high-dimensional analysis of $m$-estimators with decompos able regularizes
-
Negahban, Sahand, Ravikumar, Pradeep, Wainwright, Martin J., and Yu, Bin. A unified framework for high-dimensional analysis of $m$-estimators with decompos able regularizes. In NIPS, 2009.
-
(2009)
NIPS
-
-
Negahban, S.1
Ravikumar, P.2
Wainwright, M.J.3
Yu, B.4
-
18
-
-
85161973081
-
Multiparty differential privacy via aggregation of locally trained classifiers
-
Pathak, Manas A., Rane, Shantanu, and Raj, Bhiksha. Multiparty differential privacy via aggregation of locally trained classifiers. In NIPS, 2010.
-
(2010)
NIPS
-
-
Pathak, M.A.1
Rane, S.2
Raj, B.3
-
19
-
-
80955145156
-
-
arXiv preprint arXiv:0911.5708
-
Rubinstein, Benjamin IP, Bartlett, Peter L, Huang, Ling, and Taft, Nina. Learning in a large function space: Privacy-preserving mechanisms for svm learning. arXiv preprint arXiv:0911.5708, 2009.
-
(2009)
Learning in A Large Function Space: Privacy-preserving Mechanisms for Svm Learning
-
-
Rubinstein, B.I.P.1
Bartlett, P.L.2
Huang, L.3
Taft, N.4
-
21
-
-
84898064829
-
Stochastic convex optimization
-
Shalev-Shwartz, Shai, Shamir, Ohad, Srebro, Nathan, and Sridharan, Karthik. Stochastic Convex Optimization. In COLT, 2009.
-
(2009)
COLT
-
-
Shalev-Shwartz, S.1
Shamir, O.2
Srebro, N.3
Sridharan, K.4
-
22
-
-
84937945584
-
Differentially pri vate feature selection via stability arguments, and the ro bustness of the lasso
-
Smith, Adam and Thakurta, Abhradeep. Differentially pri vate feature selection via stability arguments, and the ro bustness of the lasso. In COLT, 2013.
-
(2013)
COLT
-
-
Smith, A.1
Thakurta, A.2
-
24
-
-
0347067948
-
Covering number bounds of certain regular ized linear function classes
-
Zhang, Tong. Covering number bounds of certain regular ized linear function classes. Journal of Machine Learning Research, 2:527-550, 2002.
-
(2002)
Journal of Machine Learning Research
, vol.2
, pp. 527-550
-
-
Zhang, T.1
|