메뉴 건너뛰기




Volumn 31, Issue , 2015, Pages 303-312

Private Multiplicative Weights beyond Linear Queries

Author keywords

Convex Optimization; Differential Privacy; Statistical Estimation

Indexed keywords

ARTIFICIAL INTELLIGENCE; CONVEX OPTIMIZATION; DATABASE SYSTEMS; FUNCTIONS; LEARNING SYSTEMS; QUERY PROCESSING;

EID: 84955286201     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2745754.2745755     Document Type: Conference Paper
Times cited : (56)

References (30)
  • 1
    • 84871023469 scopus 로고    scopus 로고
    • The multiplicative weights update method: A meta-Algorithm and applications
    • S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: a meta-Algorithm and applications. Theory of Computing, 8(1):121-164, 2012.
    • (2012) Theory of Computing , vol.8 , Issue.1 , pp. 121-164
    • Arora, S.1    Hazan, E.2    Kale, S.3
  • 3
    • 84955300801 scopus 로고    scopus 로고
    • Private empirical risk minimization, revisited
    • abs/1405.7085
    • R. Bassily, A. Smith, and A. Thakurta. Private empirical risk minimization, revisited. CoRR, abs/1405.7085, 2014.
    • (2014) CoRR
    • Bassily, R.1    Smith, A.2    Thakurta, A.3
  • 4
    • 84885226635 scopus 로고    scopus 로고
    • Private learning and sanitization: Pure vs. Approximate differential privacy
    • Springer, 21-23 August
    • A. Beimel, K. Nissim, and U. Stemmer. Private learning and sanitization: Pure vs. approximate differential privacy. In APPROX-RANDOM, pages 363-378. Springer, 21-23 August 2013.
    • (2013) APPROX-RANDOM , pp. 363-378
    • Beimel, A.1    Nissim, K.2    Stemmer, U.3
  • 5
    • 57049136138 scopus 로고    scopus 로고
    • A learning theory approach to non-interactive database privacy
    • ACM 17-20 May
    • A. Blum, K. Ligett, and A. Roth. A learning theory approach to non-interactive database privacy. In ACM Symposium on Theory of Computing (STOC '08), pages 609-618. ACM, 17-20 May 2008.
    • (2008) ACM Symposium on Theory of Computing (STOC '08 , pp. 609-618
    • Blum, A.1    Ligett, K.2    Roth, A.3
  • 10
    • 70350682013 scopus 로고    scopus 로고
    • Differential privacy and robust statistics
    • ACM, 31 May-2 June
    • C. Dwork and J. Lei. Differential privacy and robust statistics. In ACM Symposium on Theory of Computing (STOC '09), pages 371-380. ACM, 31 May-2 June 2009.
    • (2009) ACM Symposium on Theory of Computing (STOC '09 , pp. 371-380
    • Dwork, C.1    Lei, J.2
  • 11
    • 33745556605 scopus 로고    scopus 로고
    • Calibrating noise to sensitivity in private data analysis
    • Springer, 4-7 March
    • C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis. In Theory of Cryptography (TCC '06), pages 265-284. Springer, 4-7 March 2006.
    • (2006) Theory of Cryptography (TCC '06 , pp. 265-284
    • Dwork, C.1    McSherry, F.2    Nissim, K.3    Smith, A.4
  • 12
    • 70350689921 scopus 로고    scopus 로고
    • On the complexity of differentially private data release: Eficient algorithms and hardness results
    • ACM, 31 May-2 June
    • C. Dwork, M. Naor, O. Reingold, G. N. Rothblum, and S. P. Vadhan. On the complexity of differentially private data release: eficient algorithms and hardness results. In ACM Symposium on Theory of Computing (STOC '09), pages 381-390. ACM, 31 May-2 June 2009.
    • (2009) ACM Symposium on Theory of Computing (STOC '09 , pp. 381-390
    • Dwork, C.1    Naor, M.2    Reingold, O.3    Rothblum, G.N.4    Vadhan, S.P.5
  • 13
    • 84939624267 scopus 로고    scopus 로고
    • Eficient algorithms for privately releasing marginals via convex relaxations
    • abs/1308.1385
    • C. Dwork, A. Nikolov, and K. Talwar. Eficient algorithms for privately releasing marginals via convex relaxations. CoRR, abs/1308.1385, 2013.
    • (2013) CoRR
    • Dwork, C.1    Nikolov, A.2    Talwar, K.3
  • 17
    • 84863421549 scopus 로고    scopus 로고
    • Iterative constructions and private data release
    • Springer, 19-21 March
    • A. Gupta, A. Roth, and J. Ullman. Iterative constructions and private data release. In Theory of Cryptography (TCC '12), pages 339-356. Springer, 19-21 March 2012.
    • (2012) Theory of Cryptography (TCC '12 , pp. 339-356
    • Gupta, A.1    Roth, A.2    Ullman, J.3
  • 18
    • 84877755332 scopus 로고    scopus 로고
    • A simple and practical algorithm for differentially private data release
    • 3-6 December
    • M. Hardt, K. Ligett, and F. McSherry. A simple and practical algorithm for differentially private data release. In Neural Information Processing Systems (NIPS '12), pages 2348-2356, 3-6 December 2012.
    • (2012) Neural Information Processing Systems (NIPS '12 , pp. 2348-2356
    • Hardt, M.1    Ligett, K.2    McSherry, F.3
  • 19
    • 78751489078 scopus 로고    scopus 로고
    • A multiplicative weights mechanism for privacy-preserving data analysis
    • IEEE Computer Society, 23-26 October
    • M. Hardt and G. N. Rothblum. A multiplicative weights mechanism for privacy-preserving data analysis. In IEEE Symposium on Foundations of Computer Science (FOCS '10), pages 61-70. IEEE Computer Society, 23-26 October 2010.
    • (2010) IEEE Symposium on Foundations of Computer Science (FOCS '10 , pp. 61-70
    • Hardt, M.1    Rothblum, G.N.2
  • 21
    • 84919969763 scopus 로고    scopus 로고
    • Preventing false discovery in interactive data analysis is hard
    • October
    • M. Hardt and J. Ullman. Preventing false discovery in interactive data analysis is hard. In FOCS. IEEE, October 19-21 2014.
    • (2014) FOCS. IEEE , pp. 19-21
    • Hardt, M.1    Ullman, J.2
  • 22
    • 84919831631 scopus 로고    scopus 로고
    • Near) dimension independent risk bounds for differentially private learning
    • JMLR.org, 21-26 June
    • P. Jain and A. G. Thakurta. (near) dimension independent risk bounds for differentially private learning. In ICML, pages 476-484. JMLR.org, 21-26 June 2014.
    • (2014) ICML , pp. 476-484
    • Jain, P.1    Thakurta, A.G.2
  • 23
    • 84876061488 scopus 로고    scopus 로고
    • The power of linear reconstruction attacks
    • SIAM, 6-8 Jan
    • S. P. Kasiviswanathan, M. Rudelson, and A. Smith. The power of linear reconstruction attacks. In SODA, pages 1415-1433. SIAM, 6-8 Jan 2013.
    • (2013) SODA , pp. 1415-1433
    • Kasiviswanathan, S.P.1    Rudelson, M.2    Smith, A.3
  • 24
    • 84920035372 scopus 로고    scopus 로고
    • Private convex optimization for empirical risk minimization with applications to high-dimensional regression
    • JMLR.org, 25-27 June
    • D. Kifer, A. D. Smith, and A. Thakurta. Private convex optimization for empirical risk minimization with applications to high-dimensional regression. In Conference on Learning Theory (COLT '12), pages 25.1-25.40. JMLR.org, 25-27 June 2012.
    • (2012) Conference on Learning Theory (COLT '12 , pp. 251-2540
    • Kifer, D.1    Smith, A.D.2    Thakurta, A.3
  • 25
    • 46749128577 scopus 로고    scopus 로고
    • Mechanism design via differential privacy
    • IEEE Computer Society, 20-23 October
    • F. McSherry and K. Talwar. Mechanism design via differential privacy. In FOCS, pages 94-103. IEEE Computer Society, 20-23 October 2007.
    • (2007) FOCS , pp. 94-103
    • McSherry, F.1    Talwar, K.2
  • 27
    • 84898021295 scopus 로고    scopus 로고
    • Differentially private feature selection via stability arguments, and the robustness of the lasso
    • JMLR.org, 12-14 June
    • A. Thakurta and A. Smith. Differentially private feature selection via stability arguments, and the robustness of the lasso. In Conference on Learning Theory (COLT '13), pages 819-850. JMLR.org, 12-14 June 2013.
    • (2013) Conference on Learning Theory (COLT '13 , pp. 819-850
    • Thakurta, A.1    Smith, A.2
  • 29
    • 84879825242 scopus 로고    scopus 로고
    • Answering n2+o1) counting queries with differential privacy is hard
    • ACM, 1-4 June
    • J. Ullman. Answering n2+o(1) counting queries with differential privacy is hard. In ACM Symposium on Theory of Computing (STOC '13), pages 361-370. ACM, 1-4 June 2013.
    • (2013) ACM Symposium on Theory of Computing (STOC '13 , pp. 361-370
    • Ullman, J.1
  • 30
    • 79953172891 scopus 로고    scopus 로고
    • Pcps and the hardness of generating private synthetic data
    • Springer, 28-30 March
    • J. Ullman and S. P. Vadhan. PCPs and the hardness of generating private synthetic data. In Theory of Cryptography (TCC '11), pages 400-416. Springer, 28-30 March 2011.
    • (2011) Theory of Cryptography (TCC '11 , pp. 400-416
    • Ullman, J.1    Vadhan, S.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.