메뉴 건너뛰기




Volumn 9, Issue 1, 2016, Pages

Furfural tolerance and detoxification mechanism in Candida tropicalis

Author keywords

Alcohol dehydrogenase 1; Candida tropicalis; Furfural detoxification; Furfural tolerance

Indexed keywords

BACTERIA; BIOFUELS; BIOMASS; CANDIDA; CELLULOSE; DETOXIFICATION; DNA; ESCHERICHIA COLI; ETHANOL; FERMENTATION; FURFURAL; IONIC LIQUIDS; LIGNIN; METABOLIC ENGINEERING; METABOLISM; MICROORGANISMS; POLYMERASE CHAIN REACTION; YEAST;

EID: 84995739648     PISSN: 17546834     EISSN: None     Source Type: Journal    
DOI: 10.1186/s13068-016-0668-x     Document Type: Article
Times cited : (49)

References (47)
  • 1
    • 9944252948 scopus 로고    scopus 로고
    • Features of promising technologies for pretreatment of lignocellulosic biomass
    • 1:CAS:528:DC%2BD2cXhtVGgur%2FE
    • Mosier N, Wyman C, Dale B, Elander R, Lee Y, Holtzapple M, et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol. 2005;96(6):673-86.
    • (2005) Bioresour Technol , vol.96 , Issue.6 , pp. 673-686
    • Mosier, N.1    Wyman, C.2    Dale, B.3    Elander, R.4    Lee, Y.5    Holtzapple, M.6
  • 2
    • 84908545065 scopus 로고    scopus 로고
    • 2-catalyzed hydrolysis of corncob for xylose and xylitol production
    • 1:CAS:528:DC%2BC3sXhvValsLjK
    • 2-catalyzed hydrolysis of corncob for xylose and xylitol production. J Chem Technol Biotechnol. 2014;89(11):1720-6.
    • (2014) J Chem Technol Biotechnol , vol.89 , Issue.11 , pp. 1720-1726
    • Fan, X.1    Li, M.2    Zhang, J.3    Tang, P.4    Yuan, Q.5
  • 3
    • 84937405694 scopus 로고    scopus 로고
    • A novel cleaning process for industrial production of xylose in pilot scale from corncob by using screw-steam-explosive extruder
    • 1:CAS:528:DC%2BC2cXovFKqsrg%3D
    • Zhang HJ, Fan XG, Qiu XL, Zhang QX, Wang WY, Li SX, et al. A novel cleaning process for industrial production of xylose in pilot scale from corncob by using screw-steam-explosive extruder. Bioprocess Biosyst Eng. 2014;37(12):2425-36.
    • (2014) Bioprocess Biosyst Eng , vol.37 , Issue.12 , pp. 2425-2436
    • Zhang, H.J.1    Fan, X.G.2    Qiu, X.L.3    Zhang, Q.X.4    Wang, W.Y.5    Li, S.X.6
  • 4
    • 84906703402 scopus 로고    scopus 로고
    • Effects of acid impregnated steam explosion process on xylose recovery and enzymatic conversion of cellulose in corncob
    • 1:CAS:528:DC%2BC2cXhtlWju73J
    • Fan X, Cheng G, Zhang H, Li M, Wang S, Yuan Q. Effects of acid impregnated steam explosion process on xylose recovery and enzymatic conversion of cellulose in corncob. Carbohydr Polym. 2014;114:21-6.
    • (2014) Carbohydr Polym , vol.114 , pp. 21-26
    • Fan, X.1    Cheng, G.2    Zhang, H.3    Li, M.4    Wang, S.5    Yuan, Q.6
  • 5
    • 79959940437 scopus 로고    scopus 로고
    • An environmentally friendly and efficient method for xylitol bioconversion with high-temperature-steaming corncob hydrolysate by adapted Candida tropicalis
    • 1:CAS:528:DC%2BC3MXosFSqurc%3D
    • Wang L, Yang M, Fan X, Zhu X, Xu T, Yuan Q. An environmentally friendly and efficient method for xylitol bioconversion with high-temperature-steaming corncob hydrolysate by adapted Candida tropicalis. Process Biochem. 2011;46(8):1619-26.
    • (2011) Process Biochem , vol.46 , Issue.8 , pp. 1619-1626
    • Wang, L.1    Yang, M.2    Fan, X.3    Zhu, X.4    Xu, T.5    Yuan, Q.6
  • 6
    • 84891870970 scopus 로고    scopus 로고
    • Formation of degradation compounds from lignocellulosic biomass in the biorefinery: Sugar reaction mechanisms
    • 1:CAS:528:DC%2BC2cXhtlKgsLY%3D
    • Rasmussen H, Sørensen HR, Meyer AS. Formation of degradation compounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms. Carbohydr Res. 2014;385:45-57.
    • (2014) Carbohydr Res , vol.385 , pp. 45-57
    • Rasmussen, H.1    Sørensen, H.R.2    Meyer, A.S.3
  • 7
    • 0343618697 scopus 로고    scopus 로고
    • Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition
    • 1:CAS:528:DC%2BD3cXjt1Ggs7s%3D
    • Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol. 2000;74(1):25-33.
    • (2000) Bioresour Technol , vol.74 , Issue.1 , pp. 25-33
    • Palmqvist, E.1    Hahn-Hägerdal, B.2
  • 9
    • 0033938545 scopus 로고    scopus 로고
    • Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BD3cXkvVyhu78%3D
    • Taherzadeh M, Gustafsson L, Niklasson C, Lidén G. Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2000;53(6):701-8.
    • (2000) Appl Microbiol Biotechnol , vol.53 , Issue.6 , pp. 701-708
    • Taherzadeh, M.1    Gustafsson, L.2    Niklasson, C.3    Lidén, G.4
  • 10
    • 84855919532 scopus 로고    scopus 로고
    • Effect of various factors on ethanol yields from lignocellulosic biomass by Thermoanaerobacterium AK17
    • 1:CAS:528:DC%2BC3MXhsVWlsrjJ
    • Almarsdottir AR, Sigurbjornsdottir MA, Orlygsson J. Effect of various factors on ethanol yields from lignocellulosic biomass by Thermoanaerobacterium AK17. Biotechnol Bioeng. 2012;109(3):686-94.
    • (2012) Biotechnol Bioeng , vol.109 , Issue.3 , pp. 686-694
    • Almarsdottir, A.R.1    Sigurbjornsdottir, M.A.2    Orlygsson, J.3
  • 11
    • 0033527357 scopus 로고    scopus 로고
    • Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli
    • 1:CAS:528:DyaK1MXls1SqsLc%3D
    • Zaldivar J, Martinez A, Ingram LO. Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng. 1999;65(1):24-33.
    • (1999) Biotechnol Bioeng , vol.65 , Issue.1 , pp. 24-33
    • Zaldivar, J.1    Martinez, A.2    Ingram, L.O.3
  • 12
    • 0034608443 scopus 로고    scopus 로고
    • Effect of alcohol compounds found in hemicellulose hydrolysate on the growth and fermentation of ethanologenic Escherichia coli
    • 1:CAS:528:DC%2BD3cXjt1Grtb8%3D
    • Zaldivar J, Martinez A, Ingram LO. Effect of alcohol compounds found in hemicellulose hydrolysate on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng. 2000;68(5):524-30.
    • (2000) Biotechnol Bioeng , vol.68 , Issue.5 , pp. 524-530
    • Zaldivar, J.1    Martinez, A.2    Ingram, L.O.3
  • 13
    • 76749140881 scopus 로고    scopus 로고
    • Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae
    • Allen SA, Clark W, McCaffery J, Cai Z, Lanctot A, Slininger PJ, et al. Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol Biofuels. 2010;3(1):1.
    • (2010) Biotechnol Biofuels , vol.3 , Issue.1 , pp. 1
    • Allen, S.A.1    Clark, W.2    McCaffery, J.3    Cai, Z.4    Lanctot, A.5    Slininger, P.J.6
  • 14
    • 84886743604 scopus 로고    scopus 로고
    • Effect of selected aldehydes found in the corncob hemicellulose hydrolysate on the growth and xylitol fermentation of Candida tropicalis
    • 1:CAS:528:DC%2BC3sXhs1yisbbK
    • Wang L, Tang P, Fan X, Yuan Q. Effect of selected aldehydes found in the corncob hemicellulose hydrolysate on the growth and xylitol fermentation of Candida tropicalis. Biotechnol Prog. 2013;29(5):1181-9.
    • (2013) Biotechnol Prog , vol.29 , Issue.5 , pp. 1181-1189
    • Wang, L.1    Tang, P.2    Fan, X.3    Yuan, Q.4
  • 15
    • 84953776288 scopus 로고    scopus 로고
    • Transcriptional profiling reveals molecular basis and novel genetic targets for improved resistance to multiple fermentation inhibitors in Saccharomyces cerevisiae
    • Chen Y, Sheng J, Jiang T, Stevens J, Feng X, Wei N. Transcriptional profiling reveals molecular basis and novel genetic targets for improved resistance to multiple fermentation inhibitors in Saccharomyces cerevisiae. Biotechnol Biofuels. 2016;9(1):1.
    • (2016) Biotechnol Biofuels , vol.9 , Issue.1 , pp. 1
    • Chen, Y.1    Sheng, J.2    Jiang, T.3    Stevens, J.4    Feng, X.5    Wei, N.6
  • 16
    • 67649624927 scopus 로고    scopus 로고
    • Silencing of NADPH-dependent oxidoreductase genes (yqhD and dkgA) in furfural-resistant ethanologenic Escherichia coli
    • 1:CAS:528:DC%2BD1MXoslCgsLo%3D
    • Miller EN, Jarboe LR, Yomano L, York S, Shanmugam K, Ingram L. Silencing of NADPH-dependent oxidoreductase genes (yqhD and dkgA) in furfural-resistant ethanologenic Escherichia coli. Appl Environ Microbiol. 2009;75(13):4315-23.
    • (2009) Appl Environ Microbiol , vol.75 , Issue.13 , pp. 4315-4323
    • Miller, E.N.1    Jarboe, L.R.2    Yomano, L.3    York, S.4    Shanmugam, K.5    Ingram, L.6
  • 17
    • 70349432292 scopus 로고    scopus 로고
    • Furfural inhibits growth by limiting sulfur assimilation in ethanologenic Escherichia coli strain LY180
    • 1:CAS:528:DC%2BD1MXhtlWrtb%2FL
    • Miller EN, Jarboe LR, Turner PC, Pharkya P, Yomano LP, York SW, et al. Furfural inhibits growth by limiting sulfur assimilation in ethanologenic Escherichia coli strain LY180. Appl Environ Microbiol. 2009;75(19):6132-41.
    • (2009) Appl Environ Microbiol , vol.75 , Issue.19 , pp. 6132-6141
    • Miller, E.N.1    Jarboe, L.R.2    Turner, P.C.3    Pharkya, P.4    Yomano, L.P.5    York, S.W.6
  • 18
    • 79961034816 scopus 로고    scopus 로고
    • Increased furfural tolerance due to overexpression of NADH-dependent oxidoreductase FucO in Escherichia coli strains engineered for the production of ethanol and lactate
    • 1:CAS:528:DC%2BC3MXhtVKhsL%2FE
    • Wang X, Miller E, Yomano L, Zhang X, Shanmugam K, Ingram L. Increased furfural tolerance due to overexpression of NADH-dependent oxidoreductase FucO in Escherichia coli strains engineered for the production of ethanol and lactate. Appl Environ Microbiol. 2011;77(15):5132-40.
    • (2011) Appl Environ Microbiol , vol.77 , Issue.15 , pp. 5132-5140
    • Wang, X.1    Miller, E.2    Yomano, L.3    Zhang, X.4    Shanmugam, K.5    Ingram, L.6
  • 19
    • 66249112812 scopus 로고    scopus 로고
    • Comparative proteomic analysis of tolerance and adaptation of ethanologenic Saccharomyces cerevisiae to furfural, a lignocellulosic inhibitory compound
    • 1:CAS:528:DC%2BD1MXntlSgtrc%3D
    • Lin FM, Qiao B, Yuan YJ. Comparative proteomic analysis of tolerance and adaptation of ethanologenic Saccharomyces cerevisiae to furfural, a lignocellulosic inhibitory compound. Appl Environ Microbiol. 2009;75(11):3765-76.
    • (2009) Appl Environ Microbiol , vol.75 , Issue.11 , pp. 3765-3776
    • Lin, F.M.1    Qiao, B.2    Yuan, Y.J.3
  • 20
    • 84857689737 scopus 로고    scopus 로고
    • 2 confers furfural resistance and increases the initial fermentation rate in ethanol production
    • 1:CAS:528:DC%2BC38XpslSjsrs%3D
    • 2 confers furfural resistance and increases the initial fermentation rate in ethanol production. J Biosci Bioeng. 2012;113(4):451-5.
    • (2012) J Biosci Bioeng , vol.113 , Issue.4 , pp. 451-455
    • Sasano, Y.1    Watanabe, D.2    Ukibe, K.3    Inai, T.4    Ohtsu, I.5    Shimoi, H.6
  • 21
    • 84880978562 scopus 로고    scopus 로고
    • Roles of the Yap1 transcription factor and antioxidants in Saccharomyces cerevisiae's tolerance to furfural and 5-hydroxymethylfurfural, which function as thiol-reactive electrophiles generating oxidative stress
    • 1:CAS:528:DC%2BC3sXht1artb3I
    • Kim D, Hahn JS. Roles of the Yap1 transcription factor and antioxidants in Saccharomyces cerevisiae's tolerance to furfural and 5-hydroxymethylfurfural, which function as thiol-reactive electrophiles generating oxidative stress. Appl Environ Microbiol. 2013;79(16):5069-77.
    • (2013) Appl Environ Microbiol , vol.79 , Issue.16 , pp. 5069-5077
    • Kim, D.1    Hahn, J.S.2
  • 22
    • 33745667335 scopus 로고    scopus 로고
    • Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BD28XmtFCgur0%3D
    • Gorsich S, Dien B, Nichols N, Slininger P, Liu Z, Skory C. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2006;71(3):339-49.
    • (2006) Appl Microbiol Biotechnol , vol.71 , Issue.3 , pp. 339-349
    • Gorsich, S.1    Dien, B.2    Nichols, N.3    Slininger, P.4    Liu, Z.5    Skory, C.6
  • 23
    • 84898538435 scopus 로고    scopus 로고
    • Analysis of biodegradation performance of furfural and 5-hydroxymethylfurfural by Amorphotheca resinae ZN1
    • Ran H, Zhang J, Gao Q, Lin Z, Bao J. Analysis of biodegradation performance of furfural and 5-hydroxymethylfurfural by Amorphotheca resinae ZN1. Biotechnol Biofuels. 2014;7(1):1.
    • (2014) Biotechnol Biofuels , vol.7 , Issue.1 , pp. 1
    • Ran, H.1    Zhang, J.2    Gao, Q.3    Lin, Z.4    Bao, J.5
  • 24
    • 84878836519 scopus 로고    scopus 로고
    • Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway
    • 1:CAS:528:DC%2BC3sXjsFGnt7w%3D
    • Ishii J, Yoshimura K, Hasunuma T, Kondo A. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway. Appl Microbiol Biotechnol. 2013;97(6):2597-607.
    • (2013) Appl Microbiol Biotechnol , vol.97 , Issue.6 , pp. 2597-2607
    • Ishii, J.1    Yoshimura, K.2    Hasunuma, T.3    Kondo, A.4
  • 25
    • 41549139616 scopus 로고    scopus 로고
    • Identification of an NADH-dependent 5-hydroxymethylfurfural-reducing alcohol dehydrogenase in Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BD1cXkt1ajur4%3D
    • Laadan B, Almeida JR, Rådström P, Hahn-Hägerdal B, Gorwa-Grauslund M. Identification of an NADH-dependent 5-hydroxymethylfurfural-reducing alcohol dehydrogenase in Saccharomyces cerevisiae. Yeast. 2008;25(3):191-8.
    • (2008) Yeast , vol.25 , Issue.3 , pp. 191-198
    • Laadan, B.1    Almeida, J.R.2    Rådström, P.3    Hahn-Hägerdal, B.4    Gorwa-Grauslund, M.5
  • 26
    • 84892374041 scopus 로고    scopus 로고
    • Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural
    • 1:CAS:528:DC%2BC3sXht1WqsrjE
    • Hasunuma T, Ismail KSK, Nambu Y, Kondo A. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural. J Biosci Bioeng. 2014;117(2):165-9.
    • (2014) J Biosci Bioeng , vol.117 , Issue.2 , pp. 165-169
    • Hasunuma, T.1    Ismail, K.S.K.2    Nambu, Y.3    Kondo, A.4
  • 27
    • 34948890986 scopus 로고    scopus 로고
    • Chemorheological analysis and model-free kinetics of acid catalysed furfuryl alcohol polymerization
    • 1:CAS:528:DC%2BD2sXhtFWru7bF
    • Guigo N, Mija A, Vincent L, Sbirrazzuoli N. Chemorheological analysis and model-free kinetics of acid catalysed furfuryl alcohol polymerization. Phys Chem Chem Phys. 2007;9(39):5359-66.
    • (2007) Phys Chem Chem Phys , vol.9 , Issue.39 , pp. 5359-5366
    • Guigo, N.1    Mija, A.2    Vincent, L.3    Sbirrazzuoli, N.4
  • 29
    • 84936947579 scopus 로고    scopus 로고
    • Metabolic responses in Candida tropicalis to complex inhibitors during xylitol bioconversion
    • 1:CAS:528:DC%2BC2MXhtFWgtrfK
    • Wang S, Li H, Fan X, Zhang J, Tang P, Yuan Q. Metabolic responses in Candida tropicalis to complex inhibitors during xylitol bioconversion. Fungal Genet Biol. 2015;82:1-8.
    • (2015) Fungal Genet Biol , vol.82 , pp. 1-8
    • Wang, S.1    Li, H.2    Fan, X.3    Zhang, J.4    Tang, P.5    Yuan, Q.6
  • 30
    • 84991501076 scopus 로고    scopus 로고
    • Xylose enhances furfural tolerance in Candida tropicalis by improving NADH recycle
    • 1:CAS:528:DC%2BC28Xhs1Gqtr%2FI
    • Wang S, He Z, Yuan Q. Xylose enhances furfural tolerance in Candida tropicalis by improving NADH recycle. Chem Eng Sci. 2017;158:37-40.
    • (2017) Chem Eng Sci , vol.158 , pp. 37-40
    • Wang, S.1    He, Z.2    Yuan, Q.3
  • 31
    • 33745170689 scopus 로고    scopus 로고
    • Production of xylitol from D-xylose by a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis
    • 1:CAS:528:DC%2BD28XmtV2gurw%3D
    • Ko BS, Kim J, Kim JH. Production of xylitol from D-xylose by a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis. Appl Environ Microbiol. 2006;72(6):4207-13.
    • (2006) Appl Environ Microbiol , vol.72 , Issue.6 , pp. 4207-4213
    • Ko, B.S.1    Kim, J.2    Kim, J.H.3
  • 32
    • 84857450275 scopus 로고    scopus 로고
    • Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis
    • 1:CAS:528:DC%2BC38Xht1yksw%3D%3D
    • Jeon WY, Yoon BH, Ko BS, Shim WY, Kim JH. Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis. Bioprocess Biosyst Eng. 2012;35(1-2):191-8.
    • (2012) Bioprocess Biosyst Eng , vol.35 , Issue.1-2 , pp. 191-198
    • Jeon, W.Y.1    Yoon, B.H.2    Ko, B.S.3    Shim, W.Y.4    Kim, J.H.5
  • 33
    • 33646183027 scopus 로고    scopus 로고
    • The Swi/Snf chromatin remodeling complex is essential for hyphal development in Candida albicans
    • 1:CAS:528:DC%2BD28XksFaru7c%3D
    • Mao X, Cao F, Nie X, Liu H, Chen J. The Swi/Snf chromatin remodeling complex is essential for hyphal development in Candida albicans. FEBS Lett. 2006;580(11):2615-22.
    • (2006) FEBS Lett , vol.580 , Issue.11 , pp. 2615-2622
    • Mao, X.1    Cao, F.2    Nie, X.3    Liu, H.4    Chen, J.5
  • 34
    • 0025326759 scopus 로고
    • Development of an integrative DNA transformation system for the yeast Candida tropicalis
    • 1:CAS:528:DyaK3cXkvFaktL8%3D
    • Haas L, Cregg J, Gleeson M. Development of an integrative DNA transformation system for the yeast Candida tropicalis. J Bacteriol. 1990;172(8):4571-7.
    • (1990) J Bacteriol , vol.172 , Issue.8 , pp. 4571-4577
    • Haas, L.1    Cregg, J.2    Gleeson, M.3
  • 35
    • 84941584809 scopus 로고    scopus 로고
    • Enzyme activity enhancement of chondroitinase ABC I from Proteus vulgaris by site-directed mutagenesis
    • 1:CAS:528:DC%2BC2MXhsVaisLvO
    • Chen Z, Li Y, Feng Y, Chen L, Yuan Q. Enzyme activity enhancement of chondroitinase ABC I from Proteus vulgaris by site-directed mutagenesis. RSC Adv. 2015;5(93):76040-7.
    • (2015) RSC Adv , vol.5 , Issue.93 , pp. 76040-76047
    • Chen, Z.1    Li, Y.2    Feng, Y.3    Chen, L.4    Yuan, Q.5
  • 36
    • 0030586862 scopus 로고    scopus 로고
    • Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae
    • 1:CAS:528:DyaK28XksFCjsrs%3D
    • Delgenes J, Moletta R, Navarro J. Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzyme Microb Technol. 1996;19(3):220-5.
    • (1996) Enzyme Microb Technol , vol.19 , Issue.3 , pp. 220-225
    • Delgenes, J.1    Moletta, R.2    Navarro, J.3
  • 37
    • 0019519729 scopus 로고
    • Inhibition of glycolysis by furfural in Saccharomyces cerevisiae
    • 1:CAS:528:DyaL3MXitVGitLg%3D
    • Banerjee N, Bhatnagar R, Viswanathan L. Inhibition of glycolysis by furfural in Saccharomyces cerevisiae. Eur J Appl Microbiol Biotechnol. 1981;11(4):226-8.
    • (1981) Eur J Appl Microbiol Biotechnol , vol.11 , Issue.4 , pp. 226-228
    • Banerjee, N.1    Bhatnagar, R.2    Viswanathan, L.3
  • 38
    • 84923059350 scopus 로고    scopus 로고
    • Inhibition of fermentative H 2 production by hydrolysis byproducts of lignocellulosic substrates
    • 1:CAS:528:DC%2BC2MXjtV2lsLw%3D
    • Siqueira MR, Reginatto V. Inhibition of fermentative H 2 production by hydrolysis byproducts of lignocellulosic substrates. Renew Energy. 2015;80:109-16.
    • (2015) Renew Energy , vol.80 , pp. 109-116
    • Siqueira, M.R.1    Reginatto, V.2
  • 39
    • 77952239808 scopus 로고    scopus 로고
    • Fermentation of corn fiber hydrolysate to lactic acid by the moderate thermophile Bacillus coagulans
    • 1:CAS:528:DC%2BC3cXls12htLw%3D
    • Bischoff KM, Liu S, Hughes SR, Rich JO. Fermentation of corn fiber hydrolysate to lactic acid by the moderate thermophile Bacillus coagulans. Biotechnol Lett. 2010;32(6):823-8.
    • (2010) Biotechnol Lett , vol.32 , Issue.6 , pp. 823-828
    • Bischoff, K.M.1    Liu, S.2    Hughes, S.R.3    Rich, J.O.4
  • 40
    • 67649795292 scopus 로고    scopus 로고
    • Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana
    • De Vrije T, Bakker RR, Budde MA, Lai MH, Mars AE, Claassen PA. Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Biotechnol Biofuels. 2009;2(1):1.
    • (2009) Biotechnol Biofuels , vol.2 , Issue.1 , pp. 1
    • De Vrije, T.1    Bakker, R.R.2    Budde, M.A.3    Lai, M.H.4    Mars, A.E.5    Claassen, P.A.6
  • 41
    • 84924084640 scopus 로고    scopus 로고
    • A comparative multidimensional LC-MS proteomic analysis reveals mechanisms for furan aldehyde detoxification in Thermoanaerobacter pseudethanolicus 39E
    • Clarkson SM, Hamilton-Brehm SD, Giannone RJ, Engle NL, Tschaplinski TJ, Hettich RL, et al. A comparative multidimensional LC-MS proteomic analysis reveals mechanisms for furan aldehyde detoxification in Thermoanaerobacter pseudethanolicus 39E. Biotechnol Biofuels. 2014;7(1):1.
    • (2014) Biotechnol Biofuels , vol.7 , Issue.1 , pp. 1
    • Clarkson, S.M.1    Hamilton-Brehm, S.D.2    Giannone, R.J.3    Engle, N.L.4    Tschaplinski, T.J.5    Hettich, R.L.6
  • 43
    • 0002459726 scopus 로고
    • Purification and properties of the NAD+ -xylitol-dehydrogenase from the yeast Pichia stipitis
    • 1:CAS:528:DyaL1MXhs12js7c%3D
    • Rizzi M, Harwart K, Erlemann P, Bui-Thanh N-A, Dellweg H. Purification and properties of the NAD+ -xylitol-dehydrogenase from the yeast Pichia stipitis. J Ferment Bioeng. 1989;67(1):20-4.
    • (1989) J Ferment Bioeng , vol.67 , Issue.1 , pp. 20-24
    • Rizzi, M.1    Harwart, K.2    Erlemann, P.3    Bui-Thanh, N.-A.4    Dellweg, H.5
  • 44
    • 84953639145 scopus 로고    scopus 로고
    • Combinatorial application of two aldehyde oxidoreductases on isobutanol production in the presence of furfural
    • 1:CAS:528:DC%2BC2MXitVSktrvM
    • Seo H-M, Jeon J-M, Lee JH, Song H-S, Joo H-B, Park S-H, et al. Combinatorial application of two aldehyde oxidoreductases on isobutanol production in the presence of furfural. J Ind Microbiol Biotechnol. 2016;43(1):37-44.
    • (2016) J Ind Microbiol Biotechnol , vol.43 , Issue.1 , pp. 37-44
    • Seo, H.-M.1    Jeon, J.-M.2    Lee, J.H.3    Song, H.-S.4    Joo, H.-B.5    Park, S.-H.6
  • 45
    • 84890284546 scopus 로고    scopus 로고
    • Pulsed addition of HMF and furfural to batch-grown xylose-utilizing Saccharomyces cerevisiae results in different physiological responses in glucose and xylose consumption phase
    • Ask M, Bettiga M, Duraiswamy VR, Olsson L. Pulsed addition of HMF and furfural to batch-grown xylose-utilizing Saccharomyces cerevisiae results in different physiological responses in glucose and xylose consumption phase. Biotechnol Biofuels. 2013;6(1):1.
    • (2013) Biotechnol Biofuels , vol.6 , Issue.1 , pp. 1
    • Ask, M.1    Bettiga, M.2    Duraiswamy, V.R.3    Olsson, L.4
  • 46
    • 0033585830 scopus 로고    scopus 로고
    • Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture
    • 1:CAS:528:DyaK1MXns1CisA%3D%3D
    • Palmqvist E, Almeida JS, Hahn-Hägerdal B. Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture. Biotechnol Bioeng. 1999;62(4):447-54.
    • (1999) Biotechnol Bioeng , vol.62 , Issue.4 , pp. 447-454
    • Palmqvist, E.1    Almeida, J.S.2    Hahn-Hägerdal, B.3
  • 47
    • 38049001166 scopus 로고    scopus 로고
    • Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels
    • 1:CAS:528:DC%2BD1cXhtlSltQ%3D%3D
    • Atsumi S, Hanai T, Liao JC. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature. 2008;451(7174):86-9.
    • (2008) Nature , vol.451 , Issue.7174 , pp. 86-89
    • Atsumi, S.1    Hanai, T.2    Liao, J.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.