-
1
-
-
2342559271
-
A short review of nanoelectronic architectures
-
[1] Forshaw, M., Stadler, R., Crawley, D., Nikoli, K., A short review of nanoelectronic architectures. Nanotechnology 15 (2004), S220–S223.
-
(2004)
Nanotechnology
, vol.15
, pp. S220-S223
-
-
Forshaw, M.1
Stadler, R.2
Crawley, D.3
Nikoli, K.4
-
2
-
-
84857880627
-
Graphene doping: a review
-
[2] Guo, B., Fang, L., Zhang, B., Gong, J.R., Graphene doping: a review. Insciences J., 2011, 80–89.
-
(2011)
Insciences J.
, pp. 80-89
-
-
Guo, B.1
Fang, L.2
Zhang, B.3
Gong, J.R.4
-
3
-
-
84863719915
-
Thermal transport in graphene
-
[3] Sadeghi, M.M., Pettes, M.T., Shi, L., Thermal transport in graphene. Solid State Commun. 152 (2012), 1321–1330.
-
(2012)
Solid State Commun.
, vol.152
, pp. 1321-1330
-
-
Sadeghi, M.M.1
Pettes, M.T.2
Shi, L.3
-
4
-
-
77957691219
-
Flexural phonons and thermal transport in graphene
-
[4] Lindsay, L., Broido, D.A., Mingo, N., Flexural phonons and thermal transport in graphene. Phys. Rev. B, 82, 2010, 115427.
-
(2010)
Phys. Rev. B
, vol.82
, pp. 115427
-
-
Lindsay, L.1
Broido, D.A.2
Mingo, N.3
-
5
-
-
80051917397
-
Thermal transport in graphene-based nanocomposite
-
[5] Hu, L., Desai, T., Keblinski, P., Thermal transport in graphene-based nanocomposite. J. Appl. Phys., 110, 2011, 033517.
-
(2011)
J. Appl. Phys.
, vol.110
, pp. 033517
-
-
Hu, L.1
Desai, T.2
Keblinski, P.3
-
6
-
-
68949143372
-
First-principles analysis of lattice thermal conductivity in monolayer and bilayer graphene
-
[6] Kong, B.D., Paul, S., Nardelli, M.B., Kim, K.W., First-principles analysis of lattice thermal conductivity in monolayer and bilayer graphene. Phys. Rev. B, 80, 2009, 033406.
-
(2009)
Phys. Rev. B
, vol.80
, pp. 033406
-
-
Kong, B.D.1
Paul, S.2
Nardelli, M.B.3
Kim, K.W.4
-
7
-
-
42349087225
-
Superior thermal conductivity of single-layer graphene
-
[7] Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Chun, N.L., Superior thermal conductivity of single-layer graphene. Nano Lett. 8 (2008), 902–907.
-
(2008)
Nano Lett.
, vol.8
, pp. 902-907
-
-
Balandin, A.A.1
Ghosh, S.2
Bao, W.3
Calizo, I.4
Teweldebrhan, D.5
Miao, F.6
Chun, N.L.7
-
8
-
-
77952975389
-
Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: effect of ribbon width, edge roughness, and hydrogen termination
-
[8] Evans, W.J., Hu, L., Keblinski, P., Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: effect of ribbon width, edge roughness, and hydrogen termination. Appl. Phys. Lett., 96, 2010, 203112.
-
(2010)
Appl. Phys. Lett.
, vol.96
, pp. 203112
-
-
Evans, W.J.1
Hu, L.2
Keblinski, P.3
-
9
-
-
77955231284
-
Graphene transistors
-
[9] Schwierz, F., Graphene transistors. Nat. Nanotechnol. 5 (2010), 487–496.
-
(2010)
Nat. Nanotechnol.
, vol.5
, pp. 487-496
-
-
Schwierz, F.1
-
10
-
-
70349630570
-
Application of graphene and graphene-based materials in clean energy-related devices
-
[10] Liang, M., Luo, B., Zhi, L., Application of graphene and graphene-based materials in clean energy-related devices. Int. J. Energy Res. 33 (2009), 1161–1170.
-
(2009)
Int. J. Energy Res.
, vol.33
, pp. 1161-1170
-
-
Liang, M.1
Luo, B.2
Zhi, L.3
-
11
-
-
84857881592
-
The application of graphene as electrodes in electrical and optical devices
-
[11] Jo, G., Choe, M., Lee, S., Park, W., Kahng, Y.H., Lee, T., The application of graphene as electrodes in electrical and optical devices. Nanotechnology, 23, 2012, 112001.
-
(2012)
Nanotechnology
, vol.23
, pp. 112001
-
-
Jo, G.1
Choe, M.2
Lee, S.3
Park, W.4
Kahng, Y.H.5
Lee, T.6
-
12
-
-
84870032455
-
Thermal properties of graphene: fundamentals and applications
-
[12] Pop, E., Varshney, V., Roy, A.K., Thermal properties of graphene: fundamentals and applications. MRS Bull. 37 (2012), 1273–1281.
-
(2012)
MRS Bull.
, vol.37
, pp. 1273-1281
-
-
Pop, E.1
Varshney, V.2
Roy, A.K.3
-
13
-
-
77950791436
-
Two-dimensional phonon transport in supported graphene
-
[13] Seol, J.H., Jo, I., Moore, A.L., Lindsay, L., Aitken, Z.H., Pettes, M.T., Li, X., Yao, Z., Huang, R., Broido, D., Two-dimensional phonon transport in supported graphene. Science 328 (2010), 213–216.
-
(2010)
Science
, vol.328
, pp. 213-216
-
-
Seol, J.H.1
Jo, I.2
Moore, A.L.3
Lindsay, L.4
Aitken, Z.H.5
Pettes, M.T.6
Li, X.7
Yao, Z.8
Huang, R.9
Broido, D.10
-
14
-
-
77958050751
-
Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite
-
[14] Jang, W., Chen, Z., Bao, W., Lau, C.N., Dames, C., Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite. Nano Lett. 10 (2010), 3909–3913.
-
(2010)
Nano Lett.
, vol.10
, pp. 3909-3913
-
-
Jang, W.1
Chen, Z.2
Bao, W.3
Lau, C.N.4
Dames, C.5
-
15
-
-
84871810605
-
Substrate coupling suppresses size dependence of thermal conductivity in supported graphene
-
[15] Chen, J., Zhang, G., Li, B., Substrate coupling suppresses size dependence of thermal conductivity in supported graphene. Nanoscale 5 (2013), 532–536.
-
(2013)
Nanoscale
, vol.5
, pp. 532-536
-
-
Chen, J.1
Zhang, G.2
Li, B.3
-
16
-
-
84866307416
-
Phonon engineering in nanostructures: controlling interfacial thermal resistance in multilayer-graphene/dielectric heterojunctions
-
[16] Mao, R., Kong, B.D., Kim, K.W., Jayasekera, T., Calzolari, A., Buongiorno Nardelli, M., Phonon engineering in nanostructures: controlling interfacial thermal resistance in multilayer-graphene/dielectric heterojunctions. Appl. Phys. Lett., 101, 2012, 113111.
-
(2012)
Appl. Phys. Lett.
, vol.101
, pp. 113111
-
-
Mao, R.1
Kong, B.D.2
Kim, K.W.3
Jayasekera, T.4
Calzolari, A.5
Buongiorno Nardelli, M.6
-
17
-
-
84930046094
-
Thermal transport across graphene/SiC interface: effects of atomic bond and crystallinity of substrate
-
[17] Li, M., Zhang, J., Hu, X., Yue, Y., Thermal transport across graphene/SiC interface: effects of atomic bond and crystallinity of substrate. Appl. Phys. A 119 (2015), 415–424.
-
(2015)
Appl. Phys. A
, vol.119
, pp. 415-424
-
-
Li, M.1
Zhang, J.2
Hu, X.3
Yue, Y.4
-
18
-
-
70350393233
-
Thermal contact resistance between graphene and silicon dioxide
-
[18] Chen, Z., Jang, W., Bao, W., Lau, C.N., Dames, C., Thermal contact resistance between graphene and silicon dioxide. Appl. Phys. Lett., 95, 2009, 161910.
-
(2009)
Appl. Phys. Lett.
, vol.95
, pp. 161910
-
-
Chen, Z.1
Jang, W.2
Bao, W.3
Lau, C.N.4
Dames, C.5
-
19
-
-
78449274442
-
Heat conduction across monolayer and few-layer graphenes
-
[19] Koh, Y.K., Bae, M.H., Cahill, D.G., Pop, E., Heat conduction across monolayer and few-layer graphenes. Nano Lett. 10 (2010), 4363–4368.
-
(2010)
Nano Lett.
, vol.10
, pp. 4363-4368
-
-
Koh, Y.K.1
Bae, M.H.2
Cahill, D.G.3
Pop, E.4
-
20
-
-
84896862310
-
Five orders of magnitude reduction in energy coupling across corrugated graphene/substrate interfaces
-
[20] Tang, X., Xu, S., Zhang, J., Wang, X., Five orders of magnitude reduction in energy coupling across corrugated graphene/substrate interfaces. ACS Appl. Mater. Interfaces 6 (2014), 2809–2818.
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 2809-2818
-
-
Tang, X.1
Xu, S.2
Zhang, J.3
Wang, X.4
-
21
-
-
77952410071
-
Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition
-
[21] Cai, W., Moore, A.L., Zhu, Y., Li, X., Chen, S., Shi, L., Ruoff, R.S., Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 10 (2010), 1645–1651.
-
(2010)
Nano Lett.
, vol.10
, pp. 1645-1651
-
-
Cai, W.1
Moore, A.L.2
Zhu, Y.3
Li, X.4
Chen, S.5
Shi, L.6
Ruoff, R.S.7
-
22
-
-
84937205862
-
High accuracy determination of the thermal properties of supported 2D materials
-
[22] Judek, J., Gertych, A.P., Swiniarski, M., Lapinska, A., Duzynska, A., Zdrojek, M., High accuracy determination of the thermal properties of supported 2D materials. Sci. Rep., 5, 2015, 12422.
-
(2015)
Sci. Rep.
, vol.5
, pp. 12422
-
-
Judek, J.1
Gertych, A.P.2
Swiniarski, M.3
Lapinska, A.4
Duzynska, A.5
Zdrojek, M.6
-
23
-
-
84874900961
-
Fundamentals of Heat and Mass Transfer
-
John Wiley & Sons
-
[23] Bergman, T.L., Incropera, F.P., DeWitt, D.P., Lavine, A.S., Fundamentals of Heat and Mass Transfer. 2011, John Wiley & Sons.
-
(2011)
-
-
Bergman, T.L.1
Incropera, F.P.2
DeWitt, D.P.3
Lavine, A.S.4
-
24
-
-
77956264198
-
Thermal transport in multiwall carbon nanotube buckypapers
-
[24] Yue, Y., Huang, X., Wang, X., Thermal transport in multiwall carbon nanotube buckypapers. Phys. Lett. A 374 (2010), 4144–4151.
-
(2010)
Phys. Lett. A
, vol.374
, pp. 4144-4151
-
-
Yue, Y.1
Huang, X.2
Wang, X.3
-
25
-
-
69549127857
-
Characterization of thermal transport in micro/nanoscale wires by steady-state electro-Raman-thermal technique
-
[25] Yue, Y., Eres, G., Wang, X., Guo, L., Characterization of thermal transport in micro/nanoscale wires by steady-state electro-Raman-thermal technique. Appl. Phys. A 97 (2009), 19–23.
-
(2009)
Appl. Phys. A
, vol.97
, pp. 19-23
-
-
Yue, Y.1
Eres, G.2
Wang, X.3
Guo, L.4
-
26
-
-
84863767957
-
Sub-wavelength temperature probing in near-field laser heating by particles
-
[26] Tang, X., Yue, Y., Chen, X., Wang, X., Sub-wavelength temperature probing in near-field laser heating by particles. Opt. Express 20 (2012), 14152–14167.
-
(2012)
Opt. Express
, vol.20
, pp. 14152-14167
-
-
Tang, X.1
Yue, Y.2
Chen, X.3
Wang, X.4
-
27
-
-
84872711390
-
Nanoscale thermal probing
-
[27] Yue, Y., Wang, X., Nanoscale thermal probing. Nano Rev., 3, 2012, 11586.
-
(2012)
Nano Rev.
, vol.3
, pp. 11586
-
-
Yue, Y.1
Wang, X.2
-
28
-
-
79959808381
-
Noncontact sub-10 nm temperature measurement in near-field laser heating
-
[28] Yue, Y., Chen, X., Wang, X., Noncontact sub-10 nm temperature measurement in near-field laser heating. ACS Nano 5 (2011), 4466–4475.
-
(2011)
ACS Nano
, vol.5
, pp. 4466-4475
-
-
Yue, Y.1
Chen, X.2
Wang, X.3
-
29
-
-
38849149693
-
Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature
-
[29] Kitamura, R., Pilon, L., Jonasz, M., Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. Appl. Opt. 46 (2007), 8118–8133.
-
(2007)
Appl. Opt.
, vol.46
, pp. 8118-8133
-
-
Kitamura, R.1
Pilon, L.2
Jonasz, M.3
-
30
-
-
33847762932
-
Spatially resolved Raman spectroscopy of single- and few-layer graphene
-
[30] Graf, D., Molitor, F., Ensslin, K., Stampfer, C., Jungen, A., Hierold, C., Wirtz, L., Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett. 7 (2007), 238–242.
-
(2007)
Nano Lett.
, vol.7
, pp. 238-242
-
-
Graf, D.1
Molitor, F.2
Ensslin, K.3
Stampfer, C.4
Jungen, A.5
Hierold, C.6
Wirtz, L.7
-
31
-
-
66749119012
-
Large-area synthesis of high-quality and uniform graphene films on copper foils
-
[31] Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324 (2016), 1312–1314.
-
(2016)
Science
, vol.324
, pp. 1312-1314
-
-
Li, X.1
Cai, W.2
An, J.3
Kim, S.4
Nah, J.5
Yang, D.6
Piner, R.7
Velamakanni, A.8
-
32
-
-
79961022208
-
Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition
-
[32] Liu, W., Li, H., Xu, C., Khatami, Y., Banerjee, K., Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition. Carbon 49 (2011), 4122–4130.
-
(2011)
Carbon
, vol.49
, pp. 4122-4130
-
-
Liu, W.1
Li, H.2
Xu, C.3
Khatami, Y.4
Banerjee, K.5
-
33
-
-
80051621131
-
Negative thermal expansion coefficient of graphene measured by Raman spectroscopy
-
[33] Yoon, D., Son, Y.W., Cheong, H., Negative thermal expansion coefficient of graphene measured by Raman spectroscopy. Nano Lett. 11 (2011), 3227–3231.
-
(2011)
Nano Lett.
, vol.11
, pp. 3227-3231
-
-
Yoon, D.1
Son, Y.W.2
Cheong, H.3
-
34
-
-
82555189941
-
Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC
-
[34] Yue, Y., Zhang, J., Wang, X., Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC. Small 7 (2011), 3324–3333.
-
(2011)
Small
, vol.7
, pp. 3324-3333
-
-
Yue, Y.1
Zhang, J.2
Wang, X.3
-
35
-
-
84863767957
-
Sub-wavelength temperature probing in nearfield laser heating by particles
-
[35] Tang, X., Yue, Y., Chen, X., Wang, X., Sub-wavelength temperature probing in nearfield laser heating by particles. Opt. Express 20 (2012), 14152–14167.
-
(2012)
Opt. Express
, vol.20
, pp. 14152-14167
-
-
Tang, X.1
Yue, Y.2
Chen, X.3
Wang, X.4
-
36
-
-
36449004963
-
Thermal conduction in metallized silicon-dioxide layers on silicon
-
[36] Käding, O.W., Skurk, H., Goodson, K.E., Thermal conduction in metallized silicon-dioxide layers on silicon. Appl. Phys. Lett., 65, 1994, 1629.
-
(1994)
Appl. Phys. Lett.
, vol.65
, pp. 1629
-
-
Käding, O.W.1
Skurk, H.2
Goodson, K.E.3
-
37
-
-
84941764498
-
Thermal transport across graphene and single layer hexagonal boron nitride
-
[37] Zhang, J., Hong, Y., Yue, Y., Thermal transport across graphene and single layer hexagonal boron nitride. J. Appl. Phys., 117, 2015, 134307.
-
(2015)
J. Appl. Phys.
, vol.117
, pp. 134307
-
-
Zhang, J.1
Hong, Y.2
Yue, Y.3
-
38
-
-
84555169244
-
Formation of ripples in graphene as a result of interfacial instabilities
-
[38] Paronyan, T.M., Pigos, E.M., Chen, G., Harutyunyan, A.R., Formation of ripples in graphene as a result of interfacial instabilities. ACS Nano 5 (2011), 9619–9627.
-
(2011)
ACS Nano
, vol.5
, pp. 9619-9627
-
-
Paronyan, T.M.1
Pigos, E.M.2
Chen, G.3
Harutyunyan, A.R.4
-
39
-
-
33847364563
-
The structure of suspended graphene sheets
-
[39] Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Booth, T.J., Roth, S., The structure of suspended graphene sheets. Nature 446 (2007), 60–63.
-
(2007)
Nature
, vol.446
, pp. 60-63
-
-
Meyer, J.C.1
Geim, A.K.2
Katsnelson, M.I.3
Novoselov, K.S.4
Booth, T.J.5
Roth, S.6
-
40
-
-
33748178464
-
Interfacial thermal resistance between carbon nanotubes: molecular dynamics simulations and analytical thermal modeling
-
[40] Zhong, H., Lukes, J.R., Interfacial thermal resistance between carbon nanotubes: molecular dynamics simulations and analytical thermal modeling. Phys. Rev. B, 74, 2006, 125403.
-
(2006)
Phys. Rev. B
, vol.74
, pp. 125403
-
-
Zhong, H.1
Lukes, J.R.2
-
41
-
-
84948748512
-
Thermal transport across atomic-layer material interfaces
-
[41] Yue, Y., Zhang, J., Tang, X., Xu, S., Wang, X., Thermal transport across atomic-layer material interfaces. Nanotechnol. Rev. 4 (2015), 533–555.
-
(2015)
Nanotechnol. Rev.
, vol.4
, pp. 533-555
-
-
Yue, Y.1
Zhang, J.2
Tang, X.3
Xu, S.4
Wang, X.5
-
42
-
-
45349092986
-
Fine structure constant defines visual transparency of graphene
-
[42] Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M., Geim, A.K., Fine structure constant defines visual transparency of graphene. Science, 320, 2008, 1308.
-
(2008)
Science
, vol.320
, pp. 1308
-
-
Nair, R.R.1
Blake, P.2
Grigorenko, A.N.3
Novoselov, K.S.4
Booth, T.J.5
Stauber, T.6
Peres, N.M.7
Geim, A.K.8
-
43
-
-
80052416365
-
Manipulating thermal conductivity through substrate coupling
-
[43] Guo, Z.X., Zhang, D., Gong, X.G., Manipulating thermal conductivity through substrate coupling. Phys. Rev. B, 84, 2011, 075470.
-
(2011)
Phys. Rev. B
, vol.84
, pp. 075470
-
-
Guo, Z.X.1
Zhang, D.2
Gong, X.G.3
-
44
-
-
80052407674
-
Effect of substrate modes on thermal transport in supported graphene
-
[44] Ong, Z.Y., Pop, E., Effect of substrate modes on thermal transport in supported graphene. Phys. Rev. B, 84, 2011, 075471.
-
(2011)
Phys. Rev. B
, vol.84
, pp. 075471
-
-
Ong, Z.Y.1
Pop, E.2
-
45
-
-
79952610371
-
Influence of polymeric residue on the thermal conductivity of suspended bilayer graphene
-
[45] Pettes, M.T., Jo, I., Yao, Z., Shi, L., Influence of polymeric residue on the thermal conductivity of suspended bilayer graphene. Nano Lett. 11 (2011), 1195–1200.
-
(2011)
Nano Lett.
, vol.11
, pp. 1195-1200
-
-
Pettes, M.T.1
Jo, I.2
Yao, Z.3
Shi, L.4
-
47
-
-
84856965526
-
Manipulating thermal conductance at metal-graphene contacts via chemical functionalization
-
[47] Hopkins, P.E., Baraket, M., Barnat, E.V., Beechem, T.E., Kearney, S.P., Duda, J.C., Robinson, J.T., Walton, S.G., Manipulating thermal conductance at metal-graphene contacts via chemical functionalization. Nano Lett. 12 (2012), 590–595.
-
(2012)
Nano Lett.
, vol.12
, pp. 590-595
-
-
Hopkins, P.E.1
Baraket, M.2
Barnat, E.V.3
Beechem, T.E.4
Kearney, S.P.5
Duda, J.C.6
Robinson, J.T.7
Walton, S.G.8
-
48
-
-
84976407648
-
Simultaneous measurement of electrical and thermal conductivities of suspended monolayer graphene
-
[48] Wang, H., Kurata, K., Fukunaga, T., Ago, H., Takamatsu, H., Zhang, X., Ikuta, T., Takahashi, K., Nishiyama, T., Takata, Y., Simultaneous measurement of electrical and thermal conductivities of suspended monolayer graphene. J. Appl. Phys., 119, 2016, 244306.
-
(2016)
J. Appl. Phys.
, vol.119
, pp. 244306
-
-
Wang, H.1
Kurata, K.2
Fukunaga, T.3
Ago, H.4
Takamatsu, H.5
Zhang, X.6
Ikuta, T.7
Takahashi, K.8
Nishiyama, T.9
Takata, Y.10
-
49
-
-
79960640072
-
Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy
-
[49] Lee, J.U., Yoon, D., Kim, H., Lee, S.W., Cheong, H., Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy. Phys. Rev. B, 83, 2011, 081419.
-
(2011)
Phys. Rev. B
, vol.83
, pp. 081419
-
-
Lee, J.U.1
Yoon, D.2
Kim, H.3
Lee, S.W.4
Cheong, H.5
-
50
-
-
84898823803
-
Length-dependent thermal conductivity in suspended single-layer graphene
-
[50] Xu, X., Pereira, L.F., Wang, Y., Wu, J., Zhang, K., Zhao, X., Bae, S., Tinh Bui, C., Xie, R., Thong, J.T., Hong, B.H., Loh, K.P., Donadio, D., Li, B., Ozyilmaz, B., Length-dependent thermal conductivity in suspended single-layer graphene. Nat. Commun., 5, 2014, 3689.
-
(2014)
Nat. Commun.
, vol.5
, pp. 3689
-
-
Xu, X.1
Pereira, L.F.2
Wang, Y.3
Wu, J.4
Zhang, K.5
Zhao, X.6
Bae, S.7
Tinh Bui, C.8
Xie, R.9
Thong, J.T.10
Hong, B.H.11
Loh, K.P.12
Donadio, D.13
Li, B.14
Ozyilmaz, B.15
-
51
-
-
77951763787
-
Thermal conductivity of graphene in corbino membrane geometry
-
[51] Faugeras, C., Faugeras, B., Orlita, M., Potemski, M., Nair, R.R., Geim, A.K., Thermal conductivity of graphene in corbino membrane geometry. ACS Nano. 4 (2010), 1889–1892.
-
(2010)
ACS Nano.
, vol.4
, pp. 1889-1892
-
-
Faugeras, C.1
Faugeras, B.2
Orlita, M.3
Potemski, M.4
Nair, R.R.5
Geim, A.K.6
-
52
-
-
79951520545
-
Thermal transport in suspended and supported few-layer graphene
-
[52] Wang, Z., Xie, R., Bui, C.T., Liu, D., Ni, X., Li, B., Thong, J.T., Thermal transport in suspended and supported few-layer graphene. Nano Lett. 11 (2011), 113–118.
-
(2011)
Nano Lett.
, vol.11
, pp. 113-118
-
-
Wang, Z.1
Xie, R.2
Bui, C.T.3
Liu, D.4
Ni, X.5
Li, B.6
Thong, J.T.7
|