-
1
-
-
34547840270
-
Yeast responses to stresses associated with industrial brewery handling
-
[1] Gibson, B.R., Lawrence, S.J., Leclaire, J.P.R., et al. Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol. Rev. 31 (2007), 535–569, 10.1111/j.1574-6976.2007.00076.x.
-
(2007)
FEMS Microbiol. Rev.
, vol.31
, pp. 535-569
-
-
Gibson, B.R.1
Lawrence, S.J.2
Leclaire, J.P.R.3
-
3
-
-
77953578881
-
The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae
-
[3] Stanley, D., Bandara, A., Fraser, S., et al. The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. J. Appl. Microbiol. 109 (2010), 13–24, 10.1111/j.1365-2672.2009.04657.x.
-
(2010)
J. Appl. Microbiol.
, vol.109
, pp. 13-24
-
-
Stanley, D.1
Bandara, A.2
Fraser, S.3
-
4
-
-
0031957626
-
Ethanol-induced water stress in yeast
-
[4] Hallsworth, J.E., Ethanol-induced water stress in yeast. J. Ferment. Bioeng. 85 (1998), 125–137, 10.1016/S0922-338X(97)86756-6.
-
(1998)
J. Ferment. Bioeng.
, vol.85
, pp. 125-137
-
-
Hallsworth, J.E.1
-
5
-
-
34250792218
-
N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species
-
[5] Du, X., Takagi, H., N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species. Appl. Microbiol. Biotechnol. 75 (2007), 1343–1351, 10.1007/s00253-007-0940-x.
-
(2007)
Appl. Microbiol. Biotechnol.
, vol.75
, pp. 1343-1351
-
-
Du, X.1
Takagi, H.2
-
6
-
-
84887607047
-
Reactive oxygen species production induced by ethanol in Saccharomyces cerevisiae increases because of a dysfunctional mitochondrial iron-sulfur cluster assembly system
-
[6] Pérez-Gallardo, R.V., Briones, L.S., Díaz-Pérez, A.L., et al. Reactive oxygen species production induced by ethanol in Saccharomyces cerevisiae increases because of a dysfunctional mitochondrial iron-sulfur cluster assembly system. FEMS Yeast Res. 13 (2013), 804–819, 10.1111/1567-1364.12090.
-
(2013)
FEMS Yeast Res.
, vol.13
, pp. 804-819
-
-
Pérez-Gallardo, R.V.1
Briones, L.S.2
Díaz-Pérez, A.L.3
-
7
-
-
77955663173
-
Mechanisms of ethanol tolerance in Saccharomyces cerevisiae
-
[7] Ma, M., Liu, Z.L., Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 87 (2010), 829–845, 10.1007/s00253-010-2594-3.
-
(2010)
Appl. Microbiol. Biotechnol.
, vol.87
, pp. 829-845
-
-
Ma, M.1
Liu, Z.L.2
-
8
-
-
0027396022
-
The formation of methylglyoxal from triose phosphates. Investigation using a specific assay for methylglyoxal
-
[8] Phillips, S.A., Thornalley, P.J., The formation of methylglyoxal from triose phosphates. Investigation using a specific assay for methylglyoxal. Eur. J. Biochem. FEBS 212 (1993), 101–105.
-
(1993)
Eur. J. Biochem. FEBS
, vol.212
, pp. 101-105
-
-
Phillips, S.A.1
Thornalley, P.J.2
-
9
-
-
80051560164
-
Hsp31 of Escherichia coli K-12 is glyoxalase III
-
[9] Subedi, K.P., Choi, D., Kim, I., et al. Hsp31 of Escherichia coli K-12 is glyoxalase III. Mol. Microbiol. 81 (2011), 926–936, 10.1111/j.1365-2958.2011.07736.x.
-
(2011)
Mol. Microbiol.
, vol.81
, pp. 926-936
-
-
Subedi, K.P.1
Choi, D.2
Kim, I.3
-
10
-
-
0031566231
-
DJ-1, a novel oncogene which transforms mouse NIH3T3 cells in cooperation with ras
-
[10] Nagakubo, D., Taira, T., Kitaura, H., et al. DJ-1, a novel oncogene which transforms mouse NIH3T3 cells in cooperation with ras. Biochem. Biophys. Res. Commun. 231 (1997), 509–513, 10.1006/bbrc.1997.6132.
-
(1997)
Biochem. Biophys. Res. Commun.
, vol.231
, pp. 509-513
-
-
Nagakubo, D.1
Taira, T.2
Kitaura, H.3
-
11
-
-
0032552851
-
Molecular cloning and expression of rat contraception associated protein 1 (CAP1), a protein putatively involved in fertilization
-
[11] Wagenfeld, A., Gromoll, J., Cooper, T.G., Molecular cloning and expression of rat contraception associated protein 1 (CAP1), a protein putatively involved in fertilization. Biochem. Biophys. Res. Commun. 251 (1998), 545–549, 10.1006/bbrc.1998.9512.
-
(1998)
Biochem. Biophys. Res. Commun.
, vol.251
, pp. 545-549
-
-
Wagenfeld, A.1
Gromoll, J.2
Cooper, T.G.3
-
12
-
-
0033103726
-
Identification and characterization of a novel protein that regulates RNA-protein interaction
-
[12] Hod, Y., Pentyala, S.N., Whyard, T.C., El-Maghrabi, M.R., Identification and characterization of a novel protein that regulates RNA-protein interaction. J. Cell. Biochem. 72 (1999), 435–444.
-
(1999)
J. Cell. Biochem.
, vol.72
, pp. 435-444
-
-
Hod, Y.1
Pentyala, S.N.2
Whyard, T.C.3
El-Maghrabi, M.R.4
-
13
-
-
1642527499
-
DJ-1 has a role in antioxidative stress to prevent cell death
-
[13] Taira, T., Saito, Y., Niki, T., et al. DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep. 5 (2004), 213–218, 10.1038/sj.embor.7400074.
-
(2004)
EMBO Rep.
, vol.5
, pp. 213-218
-
-
Taira, T.1
Saito, Y.2
Niki, T.3
-
14
-
-
84947914546
-
Activation of endogenous antioxidants as a common therapeutic strategy against cancer, neurodegeneration and cardiovascular diseases: a lesson learnt from DJ-1
-
[14] Chan, J.Y.H., Chan, S.H.H., Activation of endogenous antioxidants as a common therapeutic strategy against cancer, neurodegeneration and cardiovascular diseases: a lesson learnt from DJ-1. Pharmacol. Ther. 156 (2015), 69–74, 10.1016/j.pharmthera.2015.09.005.
-
(2015)
Pharmacol. Ther.
, vol.156
, pp. 69-74
-
-
Chan, J.Y.H.1
Chan, S.H.H.2
-
15
-
-
84864021706
-
Human DJ-1 and its homologs are novel glyoxalases
-
[15] Lee, J., Song, J., Kwon, K., et al. Human DJ-1 and its homologs are novel glyoxalases. Hum. Mol. Genet. 21 (2012), 3215–3225, 10.1093/hmg/dds155.
-
(2012)
Hum. Mol. Genet.
, vol.21
, pp. 3215-3225
-
-
Lee, J.1
Song, J.2
Kwon, K.3
-
16
-
-
84892632521
-
A glutathione-independent glyoxalase of the DJ-1 superfamily plays an important role in managing metabolically generated methylglyoxal in Candida albicans
-
[16] Hasim, S., Hussin, N.A., Alomar, F., et al. A glutathione-independent glyoxalase of the DJ-1 superfamily plays an important role in managing metabolically generated methylglyoxal in Candida albicans. J. Biol. Chem. 289 (2014), 1662–1674, 10.1074/jbc.M113.505784.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 1662-1674
-
-
Hasim, S.1
Hussin, N.A.2
Alomar, F.3
-
17
-
-
77951243670
-
Changes in the proteome of Candida albicans in response to azole, polyene, and echinocandin antifungal agents
-
[17] Hoehamer, C.F., Cummings, E.D., Hilliard, G.M., Rogers, P.D., Changes in the proteome of Candida albicans in response to azole, polyene, and echinocandin antifungal agents. Antimicrob. Agents Chemother. 54 (2010), 1655–1664, 10.1128/AAC.00756-09.
-
(2010)
Antimicrob. Agents Chemother.
, vol.54
, pp. 1655-1664
-
-
Hoehamer, C.F.1
Cummings, E.D.2
Hilliard, G.M.3
Rogers, P.D.4
-
18
-
-
84953320340
-
Presence of unique glyoxalase III proteins in plants indicates the existence of shorter route for methylglyoxal detoxification
-
[18] Ghosh, A., Kushwaha, H.R., Hasan, M.R., et al. Presence of unique glyoxalase III proteins in plants indicates the existence of shorter route for methylglyoxal detoxification. Sci. Rep., 6, 2016, 18358, 10.1038/srep18358.
-
(2016)
Sci. Rep.
, vol.6
, pp. 18358
-
-
Ghosh, A.1
Kushwaha, H.R.2
Hasan, M.R.3
-
19
-
-
33947535819
-
Saccharomyces cerevisiae Hsp31p, a stress response protein conferring protection against reactive oxygen species
-
[19] Skoneczna, A., Miciałkiewicz, A., Skoneczny, M., Saccharomyces cerevisiae Hsp31p, a stress response protein conferring protection against reactive oxygen species. Free Radic. Biol. Med. 42 (2007), 1409–1420, 10.1016/j.freeradbiomed.2007.01.042.
-
(2007)
Free Radic. Biol. Med.
, vol.42
, pp. 1409-1420
-
-
Skoneczna, A.1
Miciałkiewicz, A.2
Skoneczny, M.3
-
20
-
-
84900475985
-
Yeast DJ-1 superfamily members are required for diauxic-shift reprogramming and cell survival in stationary phase
-
[20] Miller-Fleming, L., Antas, P., Pais, T.F., et al. Yeast DJ-1 superfamily members are required for diauxic-shift reprogramming and cell survival in stationary phase. Proc. Natl. Acad. Sci. U. S. A. 111 (2014), 7012–7017, 10.1073/pnas.1319221111.
-
(2014)
Proc. Natl. Acad. Sci. U. S. A.
, vol.111
, pp. 7012-7017
-
-
Miller-Fleming, L.1
Antas, P.2
Pais, T.F.3
-
21
-
-
84949008984
-
Absence of the Yeast Hsp31 chaperones of the DJ-1 superfamily perturbs cytoplasmic protein quality control in late growth phase
-
[21] Amm, I., Norell, D., Wolf, D.H., Absence of the Yeast Hsp31 chaperones of the DJ-1 superfamily perturbs cytoplasmic protein quality control in late growth phase. PLoS One, 10, 2015, e0140363, 10.1371/journal.pone.0140363.
-
(2015)
PLoS One
, vol.10
, pp. e0140363
-
-
Amm, I.1
Norell, D.2
Wolf, D.H.3
-
22
-
-
84943811273
-
Hsp31 Is a stress response chaperone that intervenes in the protein misfolding process
-
[22] Tsai, C.-J., Aslam, K., Drendel, H.M., et al. Hsp31 Is a stress response chaperone that intervenes in the protein misfolding process. J. Biol. Chem. 290 (2015), 24816–24834, 10.1074/jbc.M115.678367.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 24816-24834
-
-
Tsai, C.-J.1
Aslam, K.2
Drendel, H.M.3
-
23
-
-
84945897705
-
Robust glyoxalase activity of Hsp31, a ThiJ/DJ-1/PfpI family member protein, is critical for oxidative stress resistance in Saccharomyces cerevisiae
-
[23] Bankapalli, K., Saladi, S., Awadia, S.S., et al. Robust glyoxalase activity of Hsp31, a ThiJ/DJ-1/PfpI family member protein, is critical for oxidative stress resistance in Saccharomyces cerevisiae. J. Biol. Chem. 290 (2015), 26491–26507, 10.1074/jbc.M115.673624.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 26491-26507
-
-
Bankapalli, K.1
Saladi, S.2
Awadia, S.S.3
-
24
-
-
84900497210
-
Metabolic role for yeast DJ-1 superfamily proteins
-
[24] Wilson, M.A., Metabolic role for yeast DJ-1 superfamily proteins. Proc. Natl. Acad. Sci. U. S. A. 111 (2014), 6858–6859, 10.1073/pnas.1405511111.
-
(2014)
Proc. Natl. Acad. Sci. U. S. A.
, vol.111
, pp. 6858-6859
-
-
Wilson, M.A.1
-
25
-
-
84899966329
-
Identification of glutathione (GSH)-independent glyoxalase III from Schizosaccharomyces pombe
-
[25] Zhao, Q., Su, Y., Wang, Z., et al. Identification of glutathione (GSH)-independent glyoxalase III from Schizosaccharomyces pombe. BMC Evol. Biol., 14, 2014, 86, 10.1186/1471-2148-14-86.
-
(2014)
BMC Evol. Biol.
, vol.14
, pp. 86
-
-
Zhao, Q.1
Su, Y.2
Wang, Z.3
-
26
-
-
84879026126
-
The glyoxalase pathway: the first hundred years… and beyond
-
[26] Sousa Silva, M., Gomes, R.A., Ferreira, A.E.N., et al. The glyoxalase pathway: the first hundred years… and beyond. Biochem. J. 453 (2013), 1–15, 10.1042/BJ20121743.
-
(2013)
Biochem. J.
, vol.453
, pp. 1-15
-
-
Sousa Silva, M.1
Gomes, R.A.2
Ferreira, A.E.N.3
-
27
-
-
0023034916
-
Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions
-
[27] Myers, A.M., Tzagoloff, A., Kinney, D.M., Lusty, C.J., Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions. Gene 45 (1986), 299–310.
-
(1986)
Gene
, vol.45
, pp. 299-310
-
-
Myers, A.M.1
Tzagoloff, A.2
Kinney, D.M.3
Lusty, C.J.4
-
28
-
-
0034663706
-
Oxygen and haem regulate the synthesis of peroxisomal proteins: catalase A, acyl-CoA oxidase and Pex1p in the yeast Saccharomyces cerevisiae; the regulation of these proteins by oxygen is not mediated by haem
-
[28] Skoneczny, M., Rytka, J., Oxygen and haem regulate the synthesis of peroxisomal proteins: catalase A, acyl-CoA oxidase and Pex1p in the yeast Saccharomyces cerevisiae; the regulation of these proteins by oxygen is not mediated by haem. Biochem. J. 350:Pt 1 (2000), 313–319.
-
(2000)
Biochem. J.
, vol.350
, pp. 313-319
-
-
Skoneczny, M.1
Rytka, J.2
-
29
-
-
71849104860
-
Protein measurement with the Folin phenol reagent
-
[29] Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193 (1951), 265–275.
-
(1951)
J. Biol. Chem.
, vol.193
, pp. 265-275
-
-
Lowry, O.H.1
Rosebrough, N.J.2
Farr, A.L.3
Randall, R.J.4
-
30
-
-
0035186283
-
Parallel and comparative analysis of the proteome and transcriptome of sorbic acid-stressed Saccharomyces cerevisiae
-
[30] de Nobel, H., Lawrie, L., Brul, S., et al. Parallel and comparative analysis of the proteome and transcriptome of sorbic acid-stressed Saccharomyces cerevisiae. Yeast 18 (2001), 1413–1428, 10.1002/yea.793.
-
(2001)
Yeast
, vol.18
, pp. 1413-1428
-
-
de Nobel, H.1
Lawrie, L.2
Brul, S.3
-
31
-
-
33747337558
-
Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p
-
[31] Kawahata, M., Masaki, K., Fujii, T., Iefuji, H., Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res. 6 (2006), 924–936, 10.1111/j.1567-1364.2006.00089.x.
-
(2006)
FEMS Yeast Res.
, vol.6
, pp. 924-936
-
-
Kawahata, M.1
Masaki, K.2
Fujii, T.3
Iefuji, H.4
-
32
-
-
77953603455
-
Physiological and molecular analysis of the stress response of Saccharomyces cerevisiae imposed by strong inorganic acid with implication to industrial fermentations
-
[32] de Melo, H.F., Bonini, B.M., Thevelein, J., et al. Physiological and molecular analysis of the stress response of Saccharomyces cerevisiae imposed by strong inorganic acid with implication to industrial fermentations. J. Appl. Microbiol. 109 (2010), 116–127, 10.1111/j.1365-2672.2009.04633.x.
-
(2010)
J. Appl. Microbiol.
, vol.109
, pp. 116-127
-
-
de Melo, H.F.1
Bonini, B.M.2
Thevelein, J.3
-
33
-
-
60549092710
-
Insights into yeast adaptive response to the agricultural fungicide mancozeb: a toxicoproteomics approach
-
[33] Santos, P.M., Simões, T., Sá-Correia, I., Insights into yeast adaptive response to the agricultural fungicide mancozeb: a toxicoproteomics approach. Proteomics 9 (2009), 657–670, 10.1002/pmic.200800452.
-
(2009)
Proteomics
, vol.9
, pp. 657-670
-
-
Santos, P.M.1
Simões, T.2
Sá-Correia, I.3
-
34
-
-
55049118189
-
Identifying gene regulatory modules of heat shock response in yeast
-
[34] Wu, W.-S., Li, W.-H., Identifying gene regulatory modules of heat shock response in yeast. BMC Genomics, 9, 2008, 439, 10.1186/1471-2164-9-439.
-
(2008)
BMC Genomics
, vol.9
, pp. 439
-
-
Wu, W.-S.1
Li, W.-H.2
-
35
-
-
41649104650
-
Activation of heat shock and antioxidant responses by the natural product celastrol: transcriptional signatures of a thiol-targeted molecule
-
[35] Trott, A., West, J.D., Klaić, L., et al. Activation of heat shock and antioxidant responses by the natural product celastrol: transcriptional signatures of a thiol-targeted molecule. Mol. Biol. Cell 19 (2008), 1104–1112, 10.1091/mbc.E07-10-1004.
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 1104-1112
-
-
Trott, A.1
West, J.D.2
Klaić, L.3
-
36
-
-
77956235998
-
The HOG pathway dictates the short-term translational response after hyperosmotic shock
-
[36] Warringer, J., Hult, M., Regot, S., et al. The HOG pathway dictates the short-term translational response after hyperosmotic shock. Mol. Biol. Cell 21 (2010), 3080–3092, 10.1091/mbc.E10-01-0006.
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 3080-3092
-
-
Warringer, J.1
Hult, M.2
Regot, S.3
-
37
-
-
0033637153
-
Genomic expression programs in the response of yeast cells to environmental changes
-
[37] Gasch, A.P., Spellman, P.T., Kao, C.M., et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11 (2000), 4241–4257.
-
(2000)
Mol. Biol. Cell
, vol.11
, pp. 4241-4257
-
-
Gasch, A.P.1
Spellman, P.T.2
Kao, C.M.3
-
38
-
-
84888241538
-
Genome-wide identification of genes involved in the positive and negative regulation of acetic acid-induced programmed cell death in Saccharomyces cerevisiae
-
[38] Sousa, M., Duarte, A.M., Fernandes, T.R., et al. Genome-wide identification of genes involved in the positive and negative regulation of acetic acid-induced programmed cell death in Saccharomyces cerevisiae. BMC Genomics, 14, 2013, 838, 10.1186/1471-2164-14-838.
-
(2013)
BMC Genomics
, vol.14
, pp. 838
-
-
Sousa, M.1
Duarte, A.M.2
Fernandes, T.R.3
-
39
-
-
0023545322
-
A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector
-
[39] Rose, M.D., Novick, P., Thomas, J.H., et al. A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene 60 (1987), 237–243.
-
(1987)
Gene
, vol.60
, pp. 237-243
-
-
Rose, M.D.1
Novick, P.2
Thomas, J.H.3
-
40
-
-
2542442466
-
Yeast activator proteins and stress response: an overview
-
[40] Rodrigues-Pousada, C.A., Nevitt, T., Menezes, R., et al. Yeast activator proteins and stress response: an overview. FEBS Lett. 567 (2004), 80–85, 10.1016/j.febslet.2004.03.119.
-
(2004)
FEBS Lett.
, vol.567
, pp. 80-85
-
-
Rodrigues-Pousada, C.A.1
Nevitt, T.2
Menezes, R.3
-
41
-
-
84929683038
-
Yap7 is a transcriptional repressor of nitric oxide oxidase in yeasts, which arose from neofunctionalization after whole genome duplication
-
[41] Merhej, J., Delaveau, T., Guitard, J., et al. Yap7 is a transcriptional repressor of nitric oxide oxidase in yeasts, which arose from neofunctionalization after whole genome duplication. Mol. Microbiol. 96 (2015), 951–972, 10.1111/mmi.12983.
-
(2015)
Mol. Microbiol.
, vol.96
, pp. 951-972
-
-
Merhej, J.1
Delaveau, T.2
Guitard, J.3
-
42
-
-
0029013534
-
The role of the YAP1 and YAP2 genes in the regulation of the adaptive oxidative stress responses of Saccharomyces cerevisiae
-
[42] Stephen, D.W., Rivers, S.L., Jamieson, D.J., The role of the YAP1 and YAP2 genes in the regulation of the adaptive oxidative stress responses of Saccharomyces cerevisiae. Mol. Microbiol. 16 (1995), 415–423.
-
(1995)
Mol. Microbiol.
, vol.16
, pp. 415-423
-
-
Stephen, D.W.1
Rivers, S.L.2
Jamieson, D.J.3
-
43
-
-
4644229317
-
Rck1 and Rck2 MAPKAP kinases and the HOG pathway are required for oxidative stress resistance
-
[43] Bilsland, E., Molin, C., Swaminathan, S., et al. Rck1 and Rck2 MAPKAP kinases and the HOG pathway are required for oxidative stress resistance. Mol. Microbiol. 53 (2004), 1743–1756, 10.1111/j.1365-2958.2004.04238.x.
-
(2004)
Mol. Microbiol.
, vol.53
, pp. 1743-1756
-
-
Bilsland, E.1
Molin, C.2
Swaminathan, S.3
-
44
-
-
33846189837
-
The S. cerevisiae Yap1 and Yap2 transcription factors share a common cadmium-sensing domain
-
[44] Azevedo, D., Nascimento, L., Labarre, J., et al. The S. cerevisiae Yap1 and Yap2 transcription factors share a common cadmium-sensing domain. FEBS Lett. 581 (2007), 187–195, 10.1016/j.febslet.2006.11.083.
-
(2007)
FEBS Lett.
, vol.581
, pp. 187-195
-
-
Azevedo, D.1
Nascimento, L.2
Labarre, J.3
-
45
-
-
84881031155
-
Candidate target genes for the Saccharomyces cerevisiae transcription factor, Yap2
-
[45] Bang, S.Y., Kim, J.H., Lee, P.Y., et al. Candidate target genes for the Saccharomyces cerevisiae transcription factor, Yap2. Folia Microbiol. (Praha) 58 (2013), 403–408, 10.1007/s12223-013-0224-z.
-
(2013)
Folia Microbiol. (Praha)
, vol.58
, pp. 403-408
-
-
Bang, S.Y.1
Kim, J.H.2
Lee, P.Y.3
-
46
-
-
84897453901
-
Yap1 mediates tolerance to cobalt toxicity in the yeast Saccharomyces cerevisiae
-
[46] Pimentel, C., Caetano, S.M., Menezes, R., et al. Yap1 mediates tolerance to cobalt toxicity in the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta 1840 (2014), 1977–1986, 10.1016/j.bbagen.2014.01.032.
-
(2014)
Biochim. Biophys. Acta
, vol.1840
, pp. 1977-1986
-
-
Pimentel, C.1
Caetano, S.M.2
Menezes, R.3
-
47
-
-
63049131900
-
Genetic basis of arsenite and cadmium tolerance in Saccharomyces cerevisiae
-
[47] Thorsen, M., Perrone, G.G., Kristiansson, E., et al. Genetic basis of arsenite and cadmium tolerance in Saccharomyces cerevisiae. BMC Genomics, 10, 2009, 105, 10.1186/1471-2164-10-105.
-
(2009)
BMC Genomics
, vol.10
, pp. 105
-
-
Thorsen, M.1
Perrone, G.G.2
Kristiansson, E.3
-
48
-
-
79955965088
-
Glyoxalase system in yeasts: structure, function, and physiology
-
[48] Inoue, Y., Maeta, K., Nomura, W., Glyoxalase system in yeasts: structure, function, and physiology. Semin. Cell Dev. Biol. 22 (2011), 278–284, 10.1016/j.semcdb.2011.02.002.
-
(2011)
Semin. Cell Dev. Biol.
, vol.22
, pp. 278-284
-
-
Inoue, Y.1
Maeta, K.2
Nomura, W.3
-
49
-
-
84861921082
-
Comparative proteome analysis of Saccharomyces cerevisiae: a global overview of in vivo targets of the yeast activator protein 1
-
[49] Jun, H., Kieselbach, T., Jönsson, L.J., Comparative proteome analysis of Saccharomyces cerevisiae: a global overview of in vivo targets of the yeast activator protein 1. BMC Genomics, 13, 2012, 230, 10.1186/1471-2164-13-230.
-
(2012)
BMC Genomics
, vol.13
, pp. 230
-
-
Jun, H.1
Kieselbach, T.2
Jönsson, L.J.3
-
50
-
-
2942598422
-
Genome-wide analysis of the biology of stress responses through heat shock transcription factor
-
[50] Hahn, J.-S., Hu, Z., Thiele, D.J., Iyer, V.R., Genome-wide analysis of the biology of stress responses through heat shock transcription factor. Mol. Cell. Biol. 24 (2004), 5249–5256, 10.1128/MCB.24.12.5249-5256.2004.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 5249-5256
-
-
Hahn, J.-S.1
Hu, Z.2
Thiele, D.J.3
Iyer, V.R.4
-
51
-
-
33845925240
-
Genome-wide analysis reveals new roles for the activation domains of the Saccharomyces cerevisiae heat shock transcription factor (Hsf1) during the transient heat shock response
-
[51] Eastmond, D.L., Nelson, H.C.M., Genome-wide analysis reveals new roles for the activation domains of the Saccharomyces cerevisiae heat shock transcription factor (Hsf1) during the transient heat shock response. J. Biol. Chem. 281 (2006), 32909–32921, 10.1074/jbc.M602454200.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 32909-32921
-
-
Eastmond, D.L.1
Nelson, H.C.M.2
-
52
-
-
0033813390
-
Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast
-
[52] Estruch, F., Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol. Rev. 24 (2000), 469–486.
-
(2000)
FEMS Microbiol. Rev.
, vol.24
, pp. 469-486
-
-
Estruch, F.1
-
53
-
-
0345286865
-
RPH1 and GIS1 are damage-responsive repressors of PHR1
-
[53] Jang, Y.K., Wang, L., Sancar, G.B., RPH1 and GIS1 are damage-responsive repressors of PHR1. Mol. Cell. Biol. 19 (1999), 7630–7638.
-
(1999)
Mol. Cell. Biol.
, vol.19
, pp. 7630-7638
-
-
Jang, Y.K.1
Wang, L.2
Sancar, G.B.3
-
54
-
-
0035370872
-
Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae
-
[54] Alexandre, H., Ansanay-Galeote, V., Dequin, S., Blondin, B., Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett. 498 (2001), 98–103.
-
(2001)
FEBS Lett.
, vol.498
, pp. 98-103
-
-
Alexandre, H.1
Ansanay-Galeote, V.2
Dequin, S.3
Blondin, B.4
-
55
-
-
84961584072
-
Identifying cooperative transcription factors in yeast using multiple data sources
-
[55] Lai, F.-J., Jhu, M.-H., Chiu, C.-C., et al. Identifying cooperative transcription factors in yeast using multiple data sources. BMC Syst. Biol., S2(8 Suppl 5), 2014, 10.1186/1752–0509-8-S5-S2.
-
(2014)
BMC Syst. Biol.
, vol.S2
, Issue.8
-
-
Lai, F.-J.1
Jhu, M.-H.2
Chiu, C.-C.3
-
56
-
-
70350690683
-
Predicting eukaryotic transcriptional cooperativity by Bayesian network integration of genome-wide data
-
[56] Wang, Y., Zhang, X.-S., Xia, Y., Predicting eukaryotic transcriptional cooperativity by Bayesian network integration of genome-wide data. Nucleic Acids Res. 37 (2009), 5943–5958, 10.1093/nar/gkp625.
-
(2009)
Nucleic Acids Res.
, vol.37
, pp. 5943-5958
-
-
Wang, Y.1
Zhang, X.-S.2
Xia, Y.3
-
57
-
-
84886411673
-
Relationship between ethanol and oxidative stress in laboratory and brewing yeast strains
-
[57] Bleoanca, I., Silva, A.R.C., Pimentel, C., et al. Relationship between ethanol and oxidative stress in laboratory and brewing yeast strains. J. Biosci. Bioeng. 116 (2013), 697–705, 10.1016/j.jbiosc.2013.05.037.
-
(2013)
J. Biosci. Bioeng.
, vol.116
, pp. 697-705
-
-
Bleoanca, I.1
Silva, A.R.C.2
Pimentel, C.3
-
58
-
-
0021112010
-
The glutathione-dependent glyoxalase pathway in the yeast Saccharomyces cerevisiae
-
[58] Penninckx, M.J., Jaspers, C.J., Legrain, M.J., The glutathione-dependent glyoxalase pathway in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 258 (1983), 6030–6036.
-
(1983)
J. Biol. Chem.
, vol.258
, pp. 6030-6036
-
-
Penninckx, M.J.1
Jaspers, C.J.2
Legrain, M.J.3
-
59
-
-
84937975690
-
An integrated view on a eukaryotic osmoregulation system
-
[59] Hohmann, S., An integrated view on a eukaryotic osmoregulation system. Curr. Genet. 61 (2015), 373–382, 10.1007/s00294-015-0475-0.
-
(2015)
Curr. Genet.
, vol.61
, pp. 373-382
-
-
Hohmann, S.1
-
60
-
-
84890830350
-
Saccharomyces cerevisiae genes involved in survival of heat shock
-
[60] Jarolim, S., Ayer, A., Pillay, B., et al. Saccharomyces cerevisiae genes involved in survival of heat shock. G3 (Bethesda MD) 3 (2013), 2321–2333, 10.1534/g3.113.007971.
-
(2013)
G3 (Bethesda MD)
, vol.3
, pp. 2321-2333
-
-
Jarolim, S.1
Ayer, A.2
Pillay, B.3
-
61
-
-
2342487990
-
Cells have distinct mechanisms to maintain protection against different reactive oxygen species: oxidative-stress-response genes
-
[61] Thorpe, G.W., Fong, C.S., Alic, N., et al. Cells have distinct mechanisms to maintain protection against different reactive oxygen species: oxidative-stress-response genes. Proc. Natl. Acad. Sci. U. S. A. 101 (2004), 6564–6569, 10.1073/pnas.0305888101.
-
(2004)
Proc. Natl. Acad. Sci. U. S. A.
, vol.101
, pp. 6564-6569
-
-
Thorpe, G.W.1
Fong, C.S.2
Alic, N.3
-
62
-
-
58149337066
-
Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae
-
[62] Yoshikawa, K., Tanaka, T., Furusawa, C., et al. Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae. FEMS Yeast Res. 9 (2009), 32–44, 10.1111/j.1567-1364.2008.00456.x.
-
(2009)
FEMS Yeast Res.
, vol.9
, pp. 32-44
-
-
Yoshikawa, K.1
Tanaka, T.2
Furusawa, C.3
-
63
-
-
0347419281
-
Glyoxalase I–structure, function and a critical role in the enzymatic defence against glycation
-
[63] Thornalley, P.J., Glyoxalase I–structure, function and a critical role in the enzymatic defence against glycation. Biochem. Soc. Trans. 31 (2003), 1343–1348, 10.1042/.
-
(2003)
Biochem. Soc. Trans.
, vol.31
, pp. 1343-1348
-
-
Thornalley, P.J.1
-
64
-
-
0027256148
-
Glyoxalase II: molecular characteristics, kinetics and mechanism
-
[64] Vander Jagt, D.L., Glyoxalase II: molecular characteristics, kinetics and mechanism. Biochem. Soc. Trans. 21 (1993), 522–527.
-
(1993)
Biochem. Soc. Trans.
, vol.21
, pp. 522-527
-
-
Vander Jagt, D.L.1
-
65
-
-
0348049804
-
Anti-glycation defences in yeast
-
[65] Ponces Freire, A., Ferreira, A., Gomes, R., Cordeiro, C., Anti-glycation defences in yeast. Biochem. Soc. Trans. 31 (2003), 1409–1412, 10.1042/.
-
(2003)
Biochem. Soc. Trans.
, vol.31
, pp. 1409-1412
-
-
Ponces Freire, A.1
Ferreira, A.2
Gomes, R.3
Cordeiro, C.4
-
66
-
-
84940462626
-
The DJ-1 superfamily member Hsp31 repairs proteins from glycation by methylglyoxal and glyoxal
-
[66] Mihoub, M., Abdallah, J., Gontero, B., et al. The DJ-1 superfamily member Hsp31 repairs proteins from glycation by methylglyoxal and glyoxal. Biochem. Biophys. Res. Commun. 463 (2015), 1305–1310, 10.1016/j.bbrc.2015.06.111.
-
(2015)
Biochem. Biophys. Res. Commun.
, vol.463
, pp. 1305-1310
-
-
Mihoub, M.1
Abdallah, J.2
Gontero, B.3
-
67
-
-
84922264295
-
Parkinsonism-associated protein DJ-1/Park7 is a major protein deglycase that repairs methylglyoxal- and glyoxal-glycated cysteine, arginine, and lysine residues
-
[67] Richarme, G., Mihoub, M., Dairou, J., et al. Parkinsonism-associated protein DJ-1/Park7 is a major protein deglycase that repairs methylglyoxal- and glyoxal-glycated cysteine, arginine, and lysine residues. J. Biol. Chem. 290 (2015), 1885–1897, 10.1074/jbc.M114.597815.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 1885-1897
-
-
Richarme, G.1
Mihoub, M.2
Dairou, J.3
-
68
-
-
84963704169
-
The Parkinsonism-associated protein DJ-1/Park7 prevents glycation damage in human keratinocyte
-
[68] Advedissian, T., Deshayes, F., Poirier, F., et al. The Parkinsonism-associated protein DJ-1/Park7 prevents glycation damage in human keratinocyte. Biochem. Biophys. Res. Commun. 473 (2016), 87–91, 10.1016/j.bbrc.2016.03.056.
-
(2016)
Biochem. Biophys. Res. Commun.
, vol.473
, pp. 87-91
-
-
Advedissian, T.1
Deshayes, F.2
Poirier, F.3
-
69
-
-
78651067361
-
The impact of acetate metabolism on yeast fermentative performance and wine quality: reduction of volatile acidity of grape musts and wines
-
[69] Vilela-Moura, A., Schuller, D., Mendes-Faia, A., et al. The impact of acetate metabolism on yeast fermentative performance and wine quality: reduction of volatile acidity of grape musts and wines. Appl. Microbiol. Biotechnol. 89 (2011), 271–280, 10.1007/s00253-010-2898-3.
-
(2011)
Appl. Microbiol. Biotechnol.
, vol.89
, pp. 271-280
-
-
Vilela-Moura, A.1
Schuller, D.2
Mendes-Faia, A.3
-
70
-
-
0030784854
-
The ALD6 gene of Saccharomyces cerevisiae encodes a cytosolic, Mg(2 +)-activated acetaldehyde dehydrogenase
-
[70] Meaden, P.G., Dickinson, F.M., Mifsud, A., et al. The ALD6 gene of Saccharomyces cerevisiae encodes a cytosolic, Mg(2 +)-activated acetaldehyde dehydrogenase. Yeast 13 (1997), 1319–1327, 10.1002/(SICI)1097-0061(199711)13:14<1319::AID-YEA183>3.0.CO;2-T.
-
(1997)
Yeast
, vol.13
, pp. 1319-1327
-
-
Meaden, P.G.1
Dickinson, F.M.2
Mifsud, A.3
-
71
-
-
2442666359
-
Identification of thermostable glyoxalase I in the fission yeast Schizosaccharomyces pombe
-
[71] Takatsume, Y., Izawa, S., Inoue, Y., Identification of thermostable glyoxalase I in the fission yeast Schizosaccharomyces pombe. Arch. Microbiol. 181 (2004), 371–377, 10.1007/s00203-004-0666-4.
-
(2004)
Arch. Microbiol.
, vol.181
, pp. 371-377
-
-
Takatsume, Y.1
Izawa, S.2
Inoue, Y.3
-
72
-
-
0029860016
-
Identification of the structural gene for glyoxalase I from Saccharomyces cerevisiae
-
[72] Inoue, Y., Kimura, A., Identification of the structural gene for glyoxalase I from Saccharomyces cerevisiae. J. Biol. Chem. 271 (1996), 25958–25965.
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 25958-25965
-
-
Inoue, Y.1
Kimura, A.2
-
73
-
-
84873289870
-
D-Lactate production as a function of glucose metabolism in Saccharomyces cerevisiae
-
[73] Stewart, B.J., Navid, A., Kulp, K.S., et al. D-Lactate production as a function of glucose metabolism in Saccharomyces cerevisiae. Yeast 30 (2013), 81–91, 10.1002/yea.2942.
-
(2013)
Yeast
, vol.30
, pp. 81-91
-
-
Stewart, B.J.1
Navid, A.2
Kulp, K.S.3
-
74
-
-
84896918903
-
Glyoxalases and stress tolerance in plants
-
[74] Kaur, C., Ghosh, A., Pareek, A., et al. Glyoxalases and stress tolerance in plants. Biochem. Soc. Trans. 42 (2014), 485–490, 10.1042/BST20130242.
-
(2014)
Biochem. Soc. Trans.
, vol.42
, pp. 485-490
-
-
Kaur, C.1
Ghosh, A.2
Pareek, A.3
-
75
-
-
84963502574
-
Genome-wide analysis and expression profiling of glyoxalase gene families in soybean (Glycine max) indicate their development and abiotic stress specific response
-
[75] Ghosh, A., Islam, T., Genome-wide analysis and expression profiling of glyoxalase gene families in soybean (Glycine max) indicate their development and abiotic stress specific response. BMC Plant Biol., 16, 2016, 87, 10.1186/s12870-016-0773-9.
-
(2016)
BMC Plant Biol.
, vol.16
, pp. 87
-
-
Ghosh, A.1
Islam, T.2
-
76
-
-
39649093370
-
Isolation by HPLC and characterisation of the bioactive fraction of New Zealand manuka (Leptospermum scoparium) honey
-
[76] Adams, C.J., Boult, C.H., Deadman, B.J., et al. Isolation by HPLC and characterisation of the bioactive fraction of New Zealand manuka (Leptospermum scoparium) honey. Carbohydr. Res. 343 (2008), 651–659, 10.1016/j.carres.2007.12.011.
-
(2008)
Carbohydr. Res.
, vol.343
, pp. 651-659
-
-
Adams, C.J.1
Boult, C.H.2
Deadman, B.J.3
-
77
-
-
84984611633
-
Modifying yeast tolerance to inhibitory conditions of ethanol production processes
-
[77] Caspeta, L., Castillo, T., Nielsen, J., Modifying yeast tolerance to inhibitory conditions of ethanol production processes. Front. Bioeng. Biotechnol., 3, 2015, 184, 10.3389/fbioe.2015.00184.
-
(2015)
Front. Bioeng. Biotechnol.
, vol.3
, pp. 184
-
-
Caspeta, L.1
Castillo, T.2
Nielsen, J.3
-
78
-
-
0035846932
-
Multiple Yap1p-binding sites mediate induction of the yeast major facilitator FLR1 gene in response to drugs, oxidants, and alkylating agents
-
[78] Nguyên, D.T., Alarco, A.M., Raymond, M., Multiple Yap1p-binding sites mediate induction of the yeast major facilitator FLR1 gene in response to drugs, oxidants, and alkylating agents. J. Biol. Chem. 276 (2001), 1138–1145, 10.1074/jbc.M008377200.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 1138-1145
-
-
Nguyên, D.T.1
Alarco, A.M.2
Raymond, M.3
-
79
-
-
0030712874
-
Yap, a novel family of eight bZIP proteins in Saccharomyces cerevisiae with distinct biological functions
-
[79] Fernandes, L., Rodrigues-Pousada, C., Struhl, K., Yap, a novel family of eight bZIP proteins in Saccharomyces cerevisiae with distinct biological functions. Mol. Cell. Biol. 17 (1997), 6982–6993.
-
(1997)
Mol. Cell. Biol.
, vol.17
, pp. 6982-6993
-
-
Fernandes, L.1
Rodrigues-Pousada, C.2
Struhl, K.3
-
80
-
-
80052432738
-
Identification of a DNA-binding site for the transcription factor Haa1, required for Saccharomyces cerevisiae response to acetic acid stress
-
[80] Mira, N.P., Henriques, S.F., Keller, G., et al. Identification of a DNA-binding site for the transcription factor Haa1, required for Saccharomyces cerevisiae response to acetic acid stress. Nucleic Acids Res. 39 (2011), 6896–6907, 10.1093/nar/gkr228.
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. 6896-6907
-
-
Mira, N.P.1
Henriques, S.F.2
Keller, G.3
-
81
-
-
0028047311
-
Interactions between DNA-bound trimers of the yeast heat shock factor
-
[81] Bonner, J.J., Ballou, C., Fackenthal, D.L., Interactions between DNA-bound trimers of the yeast heat shock factor. Mol. Cell. Biol. 14 (1994), 501–508.
-
(1994)
Mol. Cell. Biol.
, vol.14
, pp. 501-508
-
-
Bonner, J.J.1
Ballou, C.2
Fackenthal, D.L.3
-
82
-
-
0342657757
-
Saccharomyces cerevisiae Ras/cAMP pathway controls post-diauxic shift element-dependent transcription through the zinc finger protein Gis1
-
[82] Pedruzzi, I., Bürckert, N., Egger, P., De Virgilio, C., Saccharomyces cerevisiae Ras/cAMP pathway controls post-diauxic shift element-dependent transcription through the zinc finger protein Gis1. EMBO J. 19 (2000), 2569–2579, 10.1093/emboj/19.11.2569.
-
(2000)
EMBO J.
, vol.19
, pp. 2569-2579
-
-
Pedruzzi, I.1
Bürckert, N.2
Egger, P.3
De Virgilio, C.4
-
83
-
-
0029879360
-
The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE)
-
[83] Martínez-Pastor, M.T., Marchler, G., Schüller, C., et al. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J. 15 (1996), 2227–2235.
-
(1996)
EMBO J.
, vol.15
, pp. 2227-2235
-
-
Martínez-Pastor, M.T.1
Marchler, G.2
Schüller, C.3
|