메뉴 건너뛰기




Volumn 1864, Issue 1, 2017, Pages 39-50

The budding yeast orthologue of Parkinson's disease-associated DJ-1 is a multi-stress response protein protecting cells against toxic glycolytic products

Author keywords

Acetic acid; Environmental stress; Ethanol; Fermentation; Methylglyoxal; Saccharomyces cerevisiae

Indexed keywords

ACETIC ACID; ALCOHOL; BETA GALACTOSIDASE; DJ 1 PROTEIN; FUNGAL PROTEIN; GLYCEROL; GLYCOLYTIC ENZYME; HEAT SHOCK PROTEIN; HEAT SHOCK PROTEIN 31; METHYLGLYOXAL; SACCHAROMYCES CEREVISIAE PROTEIN; TRANSCRIPTION FACTOR; TRANSCRIPTION FACTOR CAD1P; TRANSCRIPTION FACTOR HAA1P; TRANSCRIPTION FACTOR HSF1P; TRANSCRIPTION FACTOR MSN2P; TRANSCRIPTION FACTOR MSN4P; TRANSCRIPTION FACTOR YAP1; UNCLASSIFIED DRUG; CAD1 PROTEIN, S CEREVISIAE; DNA BINDING PROTEIN; HAA1 PROTEIN, S CEREVISIAE; HSF1 PROTEIN, S CEREVISIAE; ISOPROTEIN; MSN2 PROTEIN, S CEREVISIAE; MSN4 PROTEIN, S CEREVISIAE; PARK7 PROTEIN, HUMAN; PROTEIN DEGLYCASE DJ-1; YAP1 PROTEIN, S CEREVISIAE;

EID: 84994059787     PISSN: 01674889     EISSN: 18792596     Source Type: Journal    
DOI: 10.1016/j.bbamcr.2016.10.016     Document Type: Article
Times cited : (17)

References (83)
  • 1
    • 34547840270 scopus 로고    scopus 로고
    • Yeast responses to stresses associated with industrial brewery handling
    • [1] Gibson, B.R., Lawrence, S.J., Leclaire, J.P.R., et al. Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol. Rev. 31 (2007), 535–569, 10.1111/j.1574-6976.2007.00076.x.
    • (2007) FEMS Microbiol. Rev. , vol.31 , pp. 535-569
    • Gibson, B.R.1    Lawrence, S.J.2    Leclaire, J.P.R.3
  • 3
    • 77953578881 scopus 로고    scopus 로고
    • The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae
    • [3] Stanley, D., Bandara, A., Fraser, S., et al. The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. J. Appl. Microbiol. 109 (2010), 13–24, 10.1111/j.1365-2672.2009.04657.x.
    • (2010) J. Appl. Microbiol. , vol.109 , pp. 13-24
    • Stanley, D.1    Bandara, A.2    Fraser, S.3
  • 4
    • 0031957626 scopus 로고    scopus 로고
    • Ethanol-induced water stress in yeast
    • [4] Hallsworth, J.E., Ethanol-induced water stress in yeast. J. Ferment. Bioeng. 85 (1998), 125–137, 10.1016/S0922-338X(97)86756-6.
    • (1998) J. Ferment. Bioeng. , vol.85 , pp. 125-137
    • Hallsworth, J.E.1
  • 5
    • 34250792218 scopus 로고    scopus 로고
    • N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species
    • [5] Du, X., Takagi, H., N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species. Appl. Microbiol. Biotechnol. 75 (2007), 1343–1351, 10.1007/s00253-007-0940-x.
    • (2007) Appl. Microbiol. Biotechnol. , vol.75 , pp. 1343-1351
    • Du, X.1    Takagi, H.2
  • 6
    • 84887607047 scopus 로고    scopus 로고
    • Reactive oxygen species production induced by ethanol in Saccharomyces cerevisiae increases because of a dysfunctional mitochondrial iron-sulfur cluster assembly system
    • [6] Pérez-Gallardo, R.V., Briones, L.S., Díaz-Pérez, A.L., et al. Reactive oxygen species production induced by ethanol in Saccharomyces cerevisiae increases because of a dysfunctional mitochondrial iron-sulfur cluster assembly system. FEMS Yeast Res. 13 (2013), 804–819, 10.1111/1567-1364.12090.
    • (2013) FEMS Yeast Res. , vol.13 , pp. 804-819
    • Pérez-Gallardo, R.V.1    Briones, L.S.2    Díaz-Pérez, A.L.3
  • 7
    • 77955663173 scopus 로고    scopus 로고
    • Mechanisms of ethanol tolerance in Saccharomyces cerevisiae
    • [7] Ma, M., Liu, Z.L., Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 87 (2010), 829–845, 10.1007/s00253-010-2594-3.
    • (2010) Appl. Microbiol. Biotechnol. , vol.87 , pp. 829-845
    • Ma, M.1    Liu, Z.L.2
  • 8
    • 0027396022 scopus 로고
    • The formation of methylglyoxal from triose phosphates. Investigation using a specific assay for methylglyoxal
    • [8] Phillips, S.A., Thornalley, P.J., The formation of methylglyoxal from triose phosphates. Investigation using a specific assay for methylglyoxal. Eur. J. Biochem. FEBS 212 (1993), 101–105.
    • (1993) Eur. J. Biochem. FEBS , vol.212 , pp. 101-105
    • Phillips, S.A.1    Thornalley, P.J.2
  • 9
    • 80051560164 scopus 로고    scopus 로고
    • Hsp31 of Escherichia coli K-12 is glyoxalase III
    • [9] Subedi, K.P., Choi, D., Kim, I., et al. Hsp31 of Escherichia coli K-12 is glyoxalase III. Mol. Microbiol. 81 (2011), 926–936, 10.1111/j.1365-2958.2011.07736.x.
    • (2011) Mol. Microbiol. , vol.81 , pp. 926-936
    • Subedi, K.P.1    Choi, D.2    Kim, I.3
  • 10
    • 0031566231 scopus 로고    scopus 로고
    • DJ-1, a novel oncogene which transforms mouse NIH3T3 cells in cooperation with ras
    • [10] Nagakubo, D., Taira, T., Kitaura, H., et al. DJ-1, a novel oncogene which transforms mouse NIH3T3 cells in cooperation with ras. Biochem. Biophys. Res. Commun. 231 (1997), 509–513, 10.1006/bbrc.1997.6132.
    • (1997) Biochem. Biophys. Res. Commun. , vol.231 , pp. 509-513
    • Nagakubo, D.1    Taira, T.2    Kitaura, H.3
  • 11
    • 0032552851 scopus 로고    scopus 로고
    • Molecular cloning and expression of rat contraception associated protein 1 (CAP1), a protein putatively involved in fertilization
    • [11] Wagenfeld, A., Gromoll, J., Cooper, T.G., Molecular cloning and expression of rat contraception associated protein 1 (CAP1), a protein putatively involved in fertilization. Biochem. Biophys. Res. Commun. 251 (1998), 545–549, 10.1006/bbrc.1998.9512.
    • (1998) Biochem. Biophys. Res. Commun. , vol.251 , pp. 545-549
    • Wagenfeld, A.1    Gromoll, J.2    Cooper, T.G.3
  • 12
    • 0033103726 scopus 로고    scopus 로고
    • Identification and characterization of a novel protein that regulates RNA-protein interaction
    • [12] Hod, Y., Pentyala, S.N., Whyard, T.C., El-Maghrabi, M.R., Identification and characterization of a novel protein that regulates RNA-protein interaction. J. Cell. Biochem. 72 (1999), 435–444.
    • (1999) J. Cell. Biochem. , vol.72 , pp. 435-444
    • Hod, Y.1    Pentyala, S.N.2    Whyard, T.C.3    El-Maghrabi, M.R.4
  • 13
    • 1642527499 scopus 로고    scopus 로고
    • DJ-1 has a role in antioxidative stress to prevent cell death
    • [13] Taira, T., Saito, Y., Niki, T., et al. DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep. 5 (2004), 213–218, 10.1038/sj.embor.7400074.
    • (2004) EMBO Rep. , vol.5 , pp. 213-218
    • Taira, T.1    Saito, Y.2    Niki, T.3
  • 14
    • 84947914546 scopus 로고    scopus 로고
    • Activation of endogenous antioxidants as a common therapeutic strategy against cancer, neurodegeneration and cardiovascular diseases: a lesson learnt from DJ-1
    • [14] Chan, J.Y.H., Chan, S.H.H., Activation of endogenous antioxidants as a common therapeutic strategy against cancer, neurodegeneration and cardiovascular diseases: a lesson learnt from DJ-1. Pharmacol. Ther. 156 (2015), 69–74, 10.1016/j.pharmthera.2015.09.005.
    • (2015) Pharmacol. Ther. , vol.156 , pp. 69-74
    • Chan, J.Y.H.1    Chan, S.H.H.2
  • 15
    • 84864021706 scopus 로고    scopus 로고
    • Human DJ-1 and its homologs are novel glyoxalases
    • [15] Lee, J., Song, J., Kwon, K., et al. Human DJ-1 and its homologs are novel glyoxalases. Hum. Mol. Genet. 21 (2012), 3215–3225, 10.1093/hmg/dds155.
    • (2012) Hum. Mol. Genet. , vol.21 , pp. 3215-3225
    • Lee, J.1    Song, J.2    Kwon, K.3
  • 16
    • 84892632521 scopus 로고    scopus 로고
    • A glutathione-independent glyoxalase of the DJ-1 superfamily plays an important role in managing metabolically generated methylglyoxal in Candida albicans
    • [16] Hasim, S., Hussin, N.A., Alomar, F., et al. A glutathione-independent glyoxalase of the DJ-1 superfamily plays an important role in managing metabolically generated methylglyoxal in Candida albicans. J. Biol. Chem. 289 (2014), 1662–1674, 10.1074/jbc.M113.505784.
    • (2014) J. Biol. Chem. , vol.289 , pp. 1662-1674
    • Hasim, S.1    Hussin, N.A.2    Alomar, F.3
  • 17
    • 77951243670 scopus 로고    scopus 로고
    • Changes in the proteome of Candida albicans in response to azole, polyene, and echinocandin antifungal agents
    • [17] Hoehamer, C.F., Cummings, E.D., Hilliard, G.M., Rogers, P.D., Changes in the proteome of Candida albicans in response to azole, polyene, and echinocandin antifungal agents. Antimicrob. Agents Chemother. 54 (2010), 1655–1664, 10.1128/AAC.00756-09.
    • (2010) Antimicrob. Agents Chemother. , vol.54 , pp. 1655-1664
    • Hoehamer, C.F.1    Cummings, E.D.2    Hilliard, G.M.3    Rogers, P.D.4
  • 18
    • 84953320340 scopus 로고    scopus 로고
    • Presence of unique glyoxalase III proteins in plants indicates the existence of shorter route for methylglyoxal detoxification
    • [18] Ghosh, A., Kushwaha, H.R., Hasan, M.R., et al. Presence of unique glyoxalase III proteins in plants indicates the existence of shorter route for methylglyoxal detoxification. Sci. Rep., 6, 2016, 18358, 10.1038/srep18358.
    • (2016) Sci. Rep. , vol.6 , pp. 18358
    • Ghosh, A.1    Kushwaha, H.R.2    Hasan, M.R.3
  • 19
    • 33947535819 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae Hsp31p, a stress response protein conferring protection against reactive oxygen species
    • [19] Skoneczna, A., Miciałkiewicz, A., Skoneczny, M., Saccharomyces cerevisiae Hsp31p, a stress response protein conferring protection against reactive oxygen species. Free Radic. Biol. Med. 42 (2007), 1409–1420, 10.1016/j.freeradbiomed.2007.01.042.
    • (2007) Free Radic. Biol. Med. , vol.42 , pp. 1409-1420
    • Skoneczna, A.1    Miciałkiewicz, A.2    Skoneczny, M.3
  • 20
    • 84900475985 scopus 로고    scopus 로고
    • Yeast DJ-1 superfamily members are required for diauxic-shift reprogramming and cell survival in stationary phase
    • [20] Miller-Fleming, L., Antas, P., Pais, T.F., et al. Yeast DJ-1 superfamily members are required for diauxic-shift reprogramming and cell survival in stationary phase. Proc. Natl. Acad. Sci. U. S. A. 111 (2014), 7012–7017, 10.1073/pnas.1319221111.
    • (2014) Proc. Natl. Acad. Sci. U. S. A. , vol.111 , pp. 7012-7017
    • Miller-Fleming, L.1    Antas, P.2    Pais, T.F.3
  • 21
    • 84949008984 scopus 로고    scopus 로고
    • Absence of the Yeast Hsp31 chaperones of the DJ-1 superfamily perturbs cytoplasmic protein quality control in late growth phase
    • [21] Amm, I., Norell, D., Wolf, D.H., Absence of the Yeast Hsp31 chaperones of the DJ-1 superfamily perturbs cytoplasmic protein quality control in late growth phase. PLoS One, 10, 2015, e0140363, 10.1371/journal.pone.0140363.
    • (2015) PLoS One , vol.10 , pp. e0140363
    • Amm, I.1    Norell, D.2    Wolf, D.H.3
  • 22
    • 84943811273 scopus 로고    scopus 로고
    • Hsp31 Is a stress response chaperone that intervenes in the protein misfolding process
    • [22] Tsai, C.-J., Aslam, K., Drendel, H.M., et al. Hsp31 Is a stress response chaperone that intervenes in the protein misfolding process. J. Biol. Chem. 290 (2015), 24816–24834, 10.1074/jbc.M115.678367.
    • (2015) J. Biol. Chem. , vol.290 , pp. 24816-24834
    • Tsai, C.-J.1    Aslam, K.2    Drendel, H.M.3
  • 23
    • 84945897705 scopus 로고    scopus 로고
    • Robust glyoxalase activity of Hsp31, a ThiJ/DJ-1/PfpI family member protein, is critical for oxidative stress resistance in Saccharomyces cerevisiae
    • [23] Bankapalli, K., Saladi, S., Awadia, S.S., et al. Robust glyoxalase activity of Hsp31, a ThiJ/DJ-1/PfpI family member protein, is critical for oxidative stress resistance in Saccharomyces cerevisiae. J. Biol. Chem. 290 (2015), 26491–26507, 10.1074/jbc.M115.673624.
    • (2015) J. Biol. Chem. , vol.290 , pp. 26491-26507
    • Bankapalli, K.1    Saladi, S.2    Awadia, S.S.3
  • 24
    • 84900497210 scopus 로고    scopus 로고
    • Metabolic role for yeast DJ-1 superfamily proteins
    • [24] Wilson, M.A., Metabolic role for yeast DJ-1 superfamily proteins. Proc. Natl. Acad. Sci. U. S. A. 111 (2014), 6858–6859, 10.1073/pnas.1405511111.
    • (2014) Proc. Natl. Acad. Sci. U. S. A. , vol.111 , pp. 6858-6859
    • Wilson, M.A.1
  • 25
    • 84899966329 scopus 로고    scopus 로고
    • Identification of glutathione (GSH)-independent glyoxalase III from Schizosaccharomyces pombe
    • [25] Zhao, Q., Su, Y., Wang, Z., et al. Identification of glutathione (GSH)-independent glyoxalase III from Schizosaccharomyces pombe. BMC Evol. Biol., 14, 2014, 86, 10.1186/1471-2148-14-86.
    • (2014) BMC Evol. Biol. , vol.14 , pp. 86
    • Zhao, Q.1    Su, Y.2    Wang, Z.3
  • 26
    • 84879026126 scopus 로고    scopus 로고
    • The glyoxalase pathway: the first hundred years… and beyond
    • [26] Sousa Silva, M., Gomes, R.A., Ferreira, A.E.N., et al. The glyoxalase pathway: the first hundred years… and beyond. Biochem. J. 453 (2013), 1–15, 10.1042/BJ20121743.
    • (2013) Biochem. J. , vol.453 , pp. 1-15
    • Sousa Silva, M.1    Gomes, R.A.2    Ferreira, A.E.N.3
  • 27
    • 0023034916 scopus 로고
    • Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions
    • [27] Myers, A.M., Tzagoloff, A., Kinney, D.M., Lusty, C.J., Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions. Gene 45 (1986), 299–310.
    • (1986) Gene , vol.45 , pp. 299-310
    • Myers, A.M.1    Tzagoloff, A.2    Kinney, D.M.3    Lusty, C.J.4
  • 28
    • 0034663706 scopus 로고    scopus 로고
    • Oxygen and haem regulate the synthesis of peroxisomal proteins: catalase A, acyl-CoA oxidase and Pex1p in the yeast Saccharomyces cerevisiae; the regulation of these proteins by oxygen is not mediated by haem
    • [28] Skoneczny, M., Rytka, J., Oxygen and haem regulate the synthesis of peroxisomal proteins: catalase A, acyl-CoA oxidase and Pex1p in the yeast Saccharomyces cerevisiae; the regulation of these proteins by oxygen is not mediated by haem. Biochem. J. 350:Pt 1 (2000), 313–319.
    • (2000) Biochem. J. , vol.350 , pp. 313-319
    • Skoneczny, M.1    Rytka, J.2
  • 30
    • 0035186283 scopus 로고    scopus 로고
    • Parallel and comparative analysis of the proteome and transcriptome of sorbic acid-stressed Saccharomyces cerevisiae
    • [30] de Nobel, H., Lawrie, L., Brul, S., et al. Parallel and comparative analysis of the proteome and transcriptome of sorbic acid-stressed Saccharomyces cerevisiae. Yeast 18 (2001), 1413–1428, 10.1002/yea.793.
    • (2001) Yeast , vol.18 , pp. 1413-1428
    • de Nobel, H.1    Lawrie, L.2    Brul, S.3
  • 31
    • 33747337558 scopus 로고    scopus 로고
    • Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p
    • [31] Kawahata, M., Masaki, K., Fujii, T., Iefuji, H., Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res. 6 (2006), 924–936, 10.1111/j.1567-1364.2006.00089.x.
    • (2006) FEMS Yeast Res. , vol.6 , pp. 924-936
    • Kawahata, M.1    Masaki, K.2    Fujii, T.3    Iefuji, H.4
  • 32
    • 77953603455 scopus 로고    scopus 로고
    • Physiological and molecular analysis of the stress response of Saccharomyces cerevisiae imposed by strong inorganic acid with implication to industrial fermentations
    • [32] de Melo, H.F., Bonini, B.M., Thevelein, J., et al. Physiological and molecular analysis of the stress response of Saccharomyces cerevisiae imposed by strong inorganic acid with implication to industrial fermentations. J. Appl. Microbiol. 109 (2010), 116–127, 10.1111/j.1365-2672.2009.04633.x.
    • (2010) J. Appl. Microbiol. , vol.109 , pp. 116-127
    • de Melo, H.F.1    Bonini, B.M.2    Thevelein, J.3
  • 33
    • 60549092710 scopus 로고    scopus 로고
    • Insights into yeast adaptive response to the agricultural fungicide mancozeb: a toxicoproteomics approach
    • [33] Santos, P.M., Simões, T., Sá-Correia, I., Insights into yeast adaptive response to the agricultural fungicide mancozeb: a toxicoproteomics approach. Proteomics 9 (2009), 657–670, 10.1002/pmic.200800452.
    • (2009) Proteomics , vol.9 , pp. 657-670
    • Santos, P.M.1    Simões, T.2    Sá-Correia, I.3
  • 34
    • 55049118189 scopus 로고    scopus 로고
    • Identifying gene regulatory modules of heat shock response in yeast
    • [34] Wu, W.-S., Li, W.-H., Identifying gene regulatory modules of heat shock response in yeast. BMC Genomics, 9, 2008, 439, 10.1186/1471-2164-9-439.
    • (2008) BMC Genomics , vol.9 , pp. 439
    • Wu, W.-S.1    Li, W.-H.2
  • 35
    • 41649104650 scopus 로고    scopus 로고
    • Activation of heat shock and antioxidant responses by the natural product celastrol: transcriptional signatures of a thiol-targeted molecule
    • [35] Trott, A., West, J.D., Klaić, L., et al. Activation of heat shock and antioxidant responses by the natural product celastrol: transcriptional signatures of a thiol-targeted molecule. Mol. Biol. Cell 19 (2008), 1104–1112, 10.1091/mbc.E07-10-1004.
    • (2008) Mol. Biol. Cell , vol.19 , pp. 1104-1112
    • Trott, A.1    West, J.D.2    Klaić, L.3
  • 36
    • 77956235998 scopus 로고    scopus 로고
    • The HOG pathway dictates the short-term translational response after hyperosmotic shock
    • [36] Warringer, J., Hult, M., Regot, S., et al. The HOG pathway dictates the short-term translational response after hyperosmotic shock. Mol. Biol. Cell 21 (2010), 3080–3092, 10.1091/mbc.E10-01-0006.
    • (2010) Mol. Biol. Cell , vol.21 , pp. 3080-3092
    • Warringer, J.1    Hult, M.2    Regot, S.3
  • 37
    • 0033637153 scopus 로고    scopus 로고
    • Genomic expression programs in the response of yeast cells to environmental changes
    • [37] Gasch, A.P., Spellman, P.T., Kao, C.M., et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11 (2000), 4241–4257.
    • (2000) Mol. Biol. Cell , vol.11 , pp. 4241-4257
    • Gasch, A.P.1    Spellman, P.T.2    Kao, C.M.3
  • 38
    • 84888241538 scopus 로고    scopus 로고
    • Genome-wide identification of genes involved in the positive and negative regulation of acetic acid-induced programmed cell death in Saccharomyces cerevisiae
    • [38] Sousa, M., Duarte, A.M., Fernandes, T.R., et al. Genome-wide identification of genes involved in the positive and negative regulation of acetic acid-induced programmed cell death in Saccharomyces cerevisiae. BMC Genomics, 14, 2013, 838, 10.1186/1471-2164-14-838.
    • (2013) BMC Genomics , vol.14 , pp. 838
    • Sousa, M.1    Duarte, A.M.2    Fernandes, T.R.3
  • 39
    • 0023545322 scopus 로고
    • A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector
    • [39] Rose, M.D., Novick, P., Thomas, J.H., et al. A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene 60 (1987), 237–243.
    • (1987) Gene , vol.60 , pp. 237-243
    • Rose, M.D.1    Novick, P.2    Thomas, J.H.3
  • 40
    • 2542442466 scopus 로고    scopus 로고
    • Yeast activator proteins and stress response: an overview
    • [40] Rodrigues-Pousada, C.A., Nevitt, T., Menezes, R., et al. Yeast activator proteins and stress response: an overview. FEBS Lett. 567 (2004), 80–85, 10.1016/j.febslet.2004.03.119.
    • (2004) FEBS Lett. , vol.567 , pp. 80-85
    • Rodrigues-Pousada, C.A.1    Nevitt, T.2    Menezes, R.3
  • 41
    • 84929683038 scopus 로고    scopus 로고
    • Yap7 is a transcriptional repressor of nitric oxide oxidase in yeasts, which arose from neofunctionalization after whole genome duplication
    • [41] Merhej, J., Delaveau, T., Guitard, J., et al. Yap7 is a transcriptional repressor of nitric oxide oxidase in yeasts, which arose from neofunctionalization after whole genome duplication. Mol. Microbiol. 96 (2015), 951–972, 10.1111/mmi.12983.
    • (2015) Mol. Microbiol. , vol.96 , pp. 951-972
    • Merhej, J.1    Delaveau, T.2    Guitard, J.3
  • 42
    • 0029013534 scopus 로고
    • The role of the YAP1 and YAP2 genes in the regulation of the adaptive oxidative stress responses of Saccharomyces cerevisiae
    • [42] Stephen, D.W., Rivers, S.L., Jamieson, D.J., The role of the YAP1 and YAP2 genes in the regulation of the adaptive oxidative stress responses of Saccharomyces cerevisiae. Mol. Microbiol. 16 (1995), 415–423.
    • (1995) Mol. Microbiol. , vol.16 , pp. 415-423
    • Stephen, D.W.1    Rivers, S.L.2    Jamieson, D.J.3
  • 43
    • 4644229317 scopus 로고    scopus 로고
    • Rck1 and Rck2 MAPKAP kinases and the HOG pathway are required for oxidative stress resistance
    • [43] Bilsland, E., Molin, C., Swaminathan, S., et al. Rck1 and Rck2 MAPKAP kinases and the HOG pathway are required for oxidative stress resistance. Mol. Microbiol. 53 (2004), 1743–1756, 10.1111/j.1365-2958.2004.04238.x.
    • (2004) Mol. Microbiol. , vol.53 , pp. 1743-1756
    • Bilsland, E.1    Molin, C.2    Swaminathan, S.3
  • 44
    • 33846189837 scopus 로고    scopus 로고
    • The S. cerevisiae Yap1 and Yap2 transcription factors share a common cadmium-sensing domain
    • [44] Azevedo, D., Nascimento, L., Labarre, J., et al. The S. cerevisiae Yap1 and Yap2 transcription factors share a common cadmium-sensing domain. FEBS Lett. 581 (2007), 187–195, 10.1016/j.febslet.2006.11.083.
    • (2007) FEBS Lett. , vol.581 , pp. 187-195
    • Azevedo, D.1    Nascimento, L.2    Labarre, J.3
  • 45
    • 84881031155 scopus 로고    scopus 로고
    • Candidate target genes for the Saccharomyces cerevisiae transcription factor, Yap2
    • [45] Bang, S.Y., Kim, J.H., Lee, P.Y., et al. Candidate target genes for the Saccharomyces cerevisiae transcription factor, Yap2. Folia Microbiol. (Praha) 58 (2013), 403–408, 10.1007/s12223-013-0224-z.
    • (2013) Folia Microbiol. (Praha) , vol.58 , pp. 403-408
    • Bang, S.Y.1    Kim, J.H.2    Lee, P.Y.3
  • 46
    • 84897453901 scopus 로고    scopus 로고
    • Yap1 mediates tolerance to cobalt toxicity in the yeast Saccharomyces cerevisiae
    • [46] Pimentel, C., Caetano, S.M., Menezes, R., et al. Yap1 mediates tolerance to cobalt toxicity in the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta 1840 (2014), 1977–1986, 10.1016/j.bbagen.2014.01.032.
    • (2014) Biochim. Biophys. Acta , vol.1840 , pp. 1977-1986
    • Pimentel, C.1    Caetano, S.M.2    Menezes, R.3
  • 47
    • 63049131900 scopus 로고    scopus 로고
    • Genetic basis of arsenite and cadmium tolerance in Saccharomyces cerevisiae
    • [47] Thorsen, M., Perrone, G.G., Kristiansson, E., et al. Genetic basis of arsenite and cadmium tolerance in Saccharomyces cerevisiae. BMC Genomics, 10, 2009, 105, 10.1186/1471-2164-10-105.
    • (2009) BMC Genomics , vol.10 , pp. 105
    • Thorsen, M.1    Perrone, G.G.2    Kristiansson, E.3
  • 48
    • 79955965088 scopus 로고    scopus 로고
    • Glyoxalase system in yeasts: structure, function, and physiology
    • [48] Inoue, Y., Maeta, K., Nomura, W., Glyoxalase system in yeasts: structure, function, and physiology. Semin. Cell Dev. Biol. 22 (2011), 278–284, 10.1016/j.semcdb.2011.02.002.
    • (2011) Semin. Cell Dev. Biol. , vol.22 , pp. 278-284
    • Inoue, Y.1    Maeta, K.2    Nomura, W.3
  • 49
    • 84861921082 scopus 로고    scopus 로고
    • Comparative proteome analysis of Saccharomyces cerevisiae: a global overview of in vivo targets of the yeast activator protein 1
    • [49] Jun, H., Kieselbach, T., Jönsson, L.J., Comparative proteome analysis of Saccharomyces cerevisiae: a global overview of in vivo targets of the yeast activator protein 1. BMC Genomics, 13, 2012, 230, 10.1186/1471-2164-13-230.
    • (2012) BMC Genomics , vol.13 , pp. 230
    • Jun, H.1    Kieselbach, T.2    Jönsson, L.J.3
  • 50
    • 2942598422 scopus 로고    scopus 로고
    • Genome-wide analysis of the biology of stress responses through heat shock transcription factor
    • [50] Hahn, J.-S., Hu, Z., Thiele, D.J., Iyer, V.R., Genome-wide analysis of the biology of stress responses through heat shock transcription factor. Mol. Cell. Biol. 24 (2004), 5249–5256, 10.1128/MCB.24.12.5249-5256.2004.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 5249-5256
    • Hahn, J.-S.1    Hu, Z.2    Thiele, D.J.3    Iyer, V.R.4
  • 51
    • 33845925240 scopus 로고    scopus 로고
    • Genome-wide analysis reveals new roles for the activation domains of the Saccharomyces cerevisiae heat shock transcription factor (Hsf1) during the transient heat shock response
    • [51] Eastmond, D.L., Nelson, H.C.M., Genome-wide analysis reveals new roles for the activation domains of the Saccharomyces cerevisiae heat shock transcription factor (Hsf1) during the transient heat shock response. J. Biol. Chem. 281 (2006), 32909–32921, 10.1074/jbc.M602454200.
    • (2006) J. Biol. Chem. , vol.281 , pp. 32909-32921
    • Eastmond, D.L.1    Nelson, H.C.M.2
  • 52
    • 0033813390 scopus 로고    scopus 로고
    • Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast
    • [52] Estruch, F., Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol. Rev. 24 (2000), 469–486.
    • (2000) FEMS Microbiol. Rev. , vol.24 , pp. 469-486
    • Estruch, F.1
  • 53
    • 0345286865 scopus 로고    scopus 로고
    • RPH1 and GIS1 are damage-responsive repressors of PHR1
    • [53] Jang, Y.K., Wang, L., Sancar, G.B., RPH1 and GIS1 are damage-responsive repressors of PHR1. Mol. Cell. Biol. 19 (1999), 7630–7638.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 7630-7638
    • Jang, Y.K.1    Wang, L.2    Sancar, G.B.3
  • 54
    • 0035370872 scopus 로고    scopus 로고
    • Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae
    • [54] Alexandre, H., Ansanay-Galeote, V., Dequin, S., Blondin, B., Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett. 498 (2001), 98–103.
    • (2001) FEBS Lett. , vol.498 , pp. 98-103
    • Alexandre, H.1    Ansanay-Galeote, V.2    Dequin, S.3    Blondin, B.4
  • 55
    • 84961584072 scopus 로고    scopus 로고
    • Identifying cooperative transcription factors in yeast using multiple data sources
    • [55] Lai, F.-J., Jhu, M.-H., Chiu, C.-C., et al. Identifying cooperative transcription factors in yeast using multiple data sources. BMC Syst. Biol., S2(8 Suppl 5), 2014, 10.1186/1752–0509-8-S5-S2.
    • (2014) BMC Syst. Biol. , vol.S2 , Issue.8
    • Lai, F.-J.1    Jhu, M.-H.2    Chiu, C.-C.3
  • 56
    • 70350690683 scopus 로고    scopus 로고
    • Predicting eukaryotic transcriptional cooperativity by Bayesian network integration of genome-wide data
    • [56] Wang, Y., Zhang, X.-S., Xia, Y., Predicting eukaryotic transcriptional cooperativity by Bayesian network integration of genome-wide data. Nucleic Acids Res. 37 (2009), 5943–5958, 10.1093/nar/gkp625.
    • (2009) Nucleic Acids Res. , vol.37 , pp. 5943-5958
    • Wang, Y.1    Zhang, X.-S.2    Xia, Y.3
  • 57
    • 84886411673 scopus 로고    scopus 로고
    • Relationship between ethanol and oxidative stress in laboratory and brewing yeast strains
    • [57] Bleoanca, I., Silva, A.R.C., Pimentel, C., et al. Relationship between ethanol and oxidative stress in laboratory and brewing yeast strains. J. Biosci. Bioeng. 116 (2013), 697–705, 10.1016/j.jbiosc.2013.05.037.
    • (2013) J. Biosci. Bioeng. , vol.116 , pp. 697-705
    • Bleoanca, I.1    Silva, A.R.C.2    Pimentel, C.3
  • 58
    • 0021112010 scopus 로고
    • The glutathione-dependent glyoxalase pathway in the yeast Saccharomyces cerevisiae
    • [58] Penninckx, M.J., Jaspers, C.J., Legrain, M.J., The glutathione-dependent glyoxalase pathway in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 258 (1983), 6030–6036.
    • (1983) J. Biol. Chem. , vol.258 , pp. 6030-6036
    • Penninckx, M.J.1    Jaspers, C.J.2    Legrain, M.J.3
  • 59
    • 84937975690 scopus 로고    scopus 로고
    • An integrated view on a eukaryotic osmoregulation system
    • [59] Hohmann, S., An integrated view on a eukaryotic osmoregulation system. Curr. Genet. 61 (2015), 373–382, 10.1007/s00294-015-0475-0.
    • (2015) Curr. Genet. , vol.61 , pp. 373-382
    • Hohmann, S.1
  • 60
    • 84890830350 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae genes involved in survival of heat shock
    • [60] Jarolim, S., Ayer, A., Pillay, B., et al. Saccharomyces cerevisiae genes involved in survival of heat shock. G3 (Bethesda MD) 3 (2013), 2321–2333, 10.1534/g3.113.007971.
    • (2013) G3 (Bethesda MD) , vol.3 , pp. 2321-2333
    • Jarolim, S.1    Ayer, A.2    Pillay, B.3
  • 61
    • 2342487990 scopus 로고    scopus 로고
    • Cells have distinct mechanisms to maintain protection against different reactive oxygen species: oxidative-stress-response genes
    • [61] Thorpe, G.W., Fong, C.S., Alic, N., et al. Cells have distinct mechanisms to maintain protection against different reactive oxygen species: oxidative-stress-response genes. Proc. Natl. Acad. Sci. U. S. A. 101 (2004), 6564–6569, 10.1073/pnas.0305888101.
    • (2004) Proc. Natl. Acad. Sci. U. S. A. , vol.101 , pp. 6564-6569
    • Thorpe, G.W.1    Fong, C.S.2    Alic, N.3
  • 62
    • 58149337066 scopus 로고    scopus 로고
    • Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae
    • [62] Yoshikawa, K., Tanaka, T., Furusawa, C., et al. Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae. FEMS Yeast Res. 9 (2009), 32–44, 10.1111/j.1567-1364.2008.00456.x.
    • (2009) FEMS Yeast Res. , vol.9 , pp. 32-44
    • Yoshikawa, K.1    Tanaka, T.2    Furusawa, C.3
  • 63
    • 0347419281 scopus 로고    scopus 로고
    • Glyoxalase I–structure, function and a critical role in the enzymatic defence against glycation
    • [63] Thornalley, P.J., Glyoxalase I–structure, function and a critical role in the enzymatic defence against glycation. Biochem. Soc. Trans. 31 (2003), 1343–1348, 10.1042/.
    • (2003) Biochem. Soc. Trans. , vol.31 , pp. 1343-1348
    • Thornalley, P.J.1
  • 64
    • 0027256148 scopus 로고
    • Glyoxalase II: molecular characteristics, kinetics and mechanism
    • [64] Vander Jagt, D.L., Glyoxalase II: molecular characteristics, kinetics and mechanism. Biochem. Soc. Trans. 21 (1993), 522–527.
    • (1993) Biochem. Soc. Trans. , vol.21 , pp. 522-527
    • Vander Jagt, D.L.1
  • 66
    • 84940462626 scopus 로고    scopus 로고
    • The DJ-1 superfamily member Hsp31 repairs proteins from glycation by methylglyoxal and glyoxal
    • [66] Mihoub, M., Abdallah, J., Gontero, B., et al. The DJ-1 superfamily member Hsp31 repairs proteins from glycation by methylglyoxal and glyoxal. Biochem. Biophys. Res. Commun. 463 (2015), 1305–1310, 10.1016/j.bbrc.2015.06.111.
    • (2015) Biochem. Biophys. Res. Commun. , vol.463 , pp. 1305-1310
    • Mihoub, M.1    Abdallah, J.2    Gontero, B.3
  • 67
    • 84922264295 scopus 로고    scopus 로고
    • Parkinsonism-associated protein DJ-1/Park7 is a major protein deglycase that repairs methylglyoxal- and glyoxal-glycated cysteine, arginine, and lysine residues
    • [67] Richarme, G., Mihoub, M., Dairou, J., et al. Parkinsonism-associated protein DJ-1/Park7 is a major protein deglycase that repairs methylglyoxal- and glyoxal-glycated cysteine, arginine, and lysine residues. J. Biol. Chem. 290 (2015), 1885–1897, 10.1074/jbc.M114.597815.
    • (2015) J. Biol. Chem. , vol.290 , pp. 1885-1897
    • Richarme, G.1    Mihoub, M.2    Dairou, J.3
  • 68
    • 84963704169 scopus 로고    scopus 로고
    • The Parkinsonism-associated protein DJ-1/Park7 prevents glycation damage in human keratinocyte
    • [68] Advedissian, T., Deshayes, F., Poirier, F., et al. The Parkinsonism-associated protein DJ-1/Park7 prevents glycation damage in human keratinocyte. Biochem. Biophys. Res. Commun. 473 (2016), 87–91, 10.1016/j.bbrc.2016.03.056.
    • (2016) Biochem. Biophys. Res. Commun. , vol.473 , pp. 87-91
    • Advedissian, T.1    Deshayes, F.2    Poirier, F.3
  • 69
    • 78651067361 scopus 로고    scopus 로고
    • The impact of acetate metabolism on yeast fermentative performance and wine quality: reduction of volatile acidity of grape musts and wines
    • [69] Vilela-Moura, A., Schuller, D., Mendes-Faia, A., et al. The impact of acetate metabolism on yeast fermentative performance and wine quality: reduction of volatile acidity of grape musts and wines. Appl. Microbiol. Biotechnol. 89 (2011), 271–280, 10.1007/s00253-010-2898-3.
    • (2011) Appl. Microbiol. Biotechnol. , vol.89 , pp. 271-280
    • Vilela-Moura, A.1    Schuller, D.2    Mendes-Faia, A.3
  • 70
    • 0030784854 scopus 로고    scopus 로고
    • The ALD6 gene of Saccharomyces cerevisiae encodes a cytosolic, Mg(2 +)-activated acetaldehyde dehydrogenase
    • [70] Meaden, P.G., Dickinson, F.M., Mifsud, A., et al. The ALD6 gene of Saccharomyces cerevisiae encodes a cytosolic, Mg(2 +)-activated acetaldehyde dehydrogenase. Yeast 13 (1997), 1319–1327, 10.1002/(SICI)1097-0061(199711)13:14<1319::AID-YEA183>3.0.CO;2-T.
    • (1997) Yeast , vol.13 , pp. 1319-1327
    • Meaden, P.G.1    Dickinson, F.M.2    Mifsud, A.3
  • 71
    • 2442666359 scopus 로고    scopus 로고
    • Identification of thermostable glyoxalase I in the fission yeast Schizosaccharomyces pombe
    • [71] Takatsume, Y., Izawa, S., Inoue, Y., Identification of thermostable glyoxalase I in the fission yeast Schizosaccharomyces pombe. Arch. Microbiol. 181 (2004), 371–377, 10.1007/s00203-004-0666-4.
    • (2004) Arch. Microbiol. , vol.181 , pp. 371-377
    • Takatsume, Y.1    Izawa, S.2    Inoue, Y.3
  • 72
    • 0029860016 scopus 로고    scopus 로고
    • Identification of the structural gene for glyoxalase I from Saccharomyces cerevisiae
    • [72] Inoue, Y., Kimura, A., Identification of the structural gene for glyoxalase I from Saccharomyces cerevisiae. J. Biol. Chem. 271 (1996), 25958–25965.
    • (1996) J. Biol. Chem. , vol.271 , pp. 25958-25965
    • Inoue, Y.1    Kimura, A.2
  • 73
    • 84873289870 scopus 로고    scopus 로고
    • D-Lactate production as a function of glucose metabolism in Saccharomyces cerevisiae
    • [73] Stewart, B.J., Navid, A., Kulp, K.S., et al. D-Lactate production as a function of glucose metabolism in Saccharomyces cerevisiae. Yeast 30 (2013), 81–91, 10.1002/yea.2942.
    • (2013) Yeast , vol.30 , pp. 81-91
    • Stewart, B.J.1    Navid, A.2    Kulp, K.S.3
  • 74
    • 84896918903 scopus 로고    scopus 로고
    • Glyoxalases and stress tolerance in plants
    • [74] Kaur, C., Ghosh, A., Pareek, A., et al. Glyoxalases and stress tolerance in plants. Biochem. Soc. Trans. 42 (2014), 485–490, 10.1042/BST20130242.
    • (2014) Biochem. Soc. Trans. , vol.42 , pp. 485-490
    • Kaur, C.1    Ghosh, A.2    Pareek, A.3
  • 75
    • 84963502574 scopus 로고    scopus 로고
    • Genome-wide analysis and expression profiling of glyoxalase gene families in soybean (Glycine max) indicate their development and abiotic stress specific response
    • [75] Ghosh, A., Islam, T., Genome-wide analysis and expression profiling of glyoxalase gene families in soybean (Glycine max) indicate their development and abiotic stress specific response. BMC Plant Biol., 16, 2016, 87, 10.1186/s12870-016-0773-9.
    • (2016) BMC Plant Biol. , vol.16 , pp. 87
    • Ghosh, A.1    Islam, T.2
  • 76
    • 39649093370 scopus 로고    scopus 로고
    • Isolation by HPLC and characterisation of the bioactive fraction of New Zealand manuka (Leptospermum scoparium) honey
    • [76] Adams, C.J., Boult, C.H., Deadman, B.J., et al. Isolation by HPLC and characterisation of the bioactive fraction of New Zealand manuka (Leptospermum scoparium) honey. Carbohydr. Res. 343 (2008), 651–659, 10.1016/j.carres.2007.12.011.
    • (2008) Carbohydr. Res. , vol.343 , pp. 651-659
    • Adams, C.J.1    Boult, C.H.2    Deadman, B.J.3
  • 77
    • 84984611633 scopus 로고    scopus 로고
    • Modifying yeast tolerance to inhibitory conditions of ethanol production processes
    • [77] Caspeta, L., Castillo, T., Nielsen, J., Modifying yeast tolerance to inhibitory conditions of ethanol production processes. Front. Bioeng. Biotechnol., 3, 2015, 184, 10.3389/fbioe.2015.00184.
    • (2015) Front. Bioeng. Biotechnol. , vol.3 , pp. 184
    • Caspeta, L.1    Castillo, T.2    Nielsen, J.3
  • 78
    • 0035846932 scopus 로고    scopus 로고
    • Multiple Yap1p-binding sites mediate induction of the yeast major facilitator FLR1 gene in response to drugs, oxidants, and alkylating agents
    • [78] Nguyên, D.T., Alarco, A.M., Raymond, M., Multiple Yap1p-binding sites mediate induction of the yeast major facilitator FLR1 gene in response to drugs, oxidants, and alkylating agents. J. Biol. Chem. 276 (2001), 1138–1145, 10.1074/jbc.M008377200.
    • (2001) J. Biol. Chem. , vol.276 , pp. 1138-1145
    • Nguyên, D.T.1    Alarco, A.M.2    Raymond, M.3
  • 79
    • 0030712874 scopus 로고    scopus 로고
    • Yap, a novel family of eight bZIP proteins in Saccharomyces cerevisiae with distinct biological functions
    • [79] Fernandes, L., Rodrigues-Pousada, C., Struhl, K., Yap, a novel family of eight bZIP proteins in Saccharomyces cerevisiae with distinct biological functions. Mol. Cell. Biol. 17 (1997), 6982–6993.
    • (1997) Mol. Cell. Biol. , vol.17 , pp. 6982-6993
    • Fernandes, L.1    Rodrigues-Pousada, C.2    Struhl, K.3
  • 80
    • 80052432738 scopus 로고    scopus 로고
    • Identification of a DNA-binding site for the transcription factor Haa1, required for Saccharomyces cerevisiae response to acetic acid stress
    • [80] Mira, N.P., Henriques, S.F., Keller, G., et al. Identification of a DNA-binding site for the transcription factor Haa1, required for Saccharomyces cerevisiae response to acetic acid stress. Nucleic Acids Res. 39 (2011), 6896–6907, 10.1093/nar/gkr228.
    • (2011) Nucleic Acids Res. , vol.39 , pp. 6896-6907
    • Mira, N.P.1    Henriques, S.F.2    Keller, G.3
  • 81
    • 0028047311 scopus 로고
    • Interactions between DNA-bound trimers of the yeast heat shock factor
    • [81] Bonner, J.J., Ballou, C., Fackenthal, D.L., Interactions between DNA-bound trimers of the yeast heat shock factor. Mol. Cell. Biol. 14 (1994), 501–508.
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 501-508
    • Bonner, J.J.1    Ballou, C.2    Fackenthal, D.L.3
  • 82
    • 0342657757 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae Ras/cAMP pathway controls post-diauxic shift element-dependent transcription through the zinc finger protein Gis1
    • [82] Pedruzzi, I., Bürckert, N., Egger, P., De Virgilio, C., Saccharomyces cerevisiae Ras/cAMP pathway controls post-diauxic shift element-dependent transcription through the zinc finger protein Gis1. EMBO J. 19 (2000), 2569–2579, 10.1093/emboj/19.11.2569.
    • (2000) EMBO J. , vol.19 , pp. 2569-2579
    • Pedruzzi, I.1    Bürckert, N.2    Egger, P.3    De Virgilio, C.4
  • 83
    • 0029879360 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE)
    • [83] Martínez-Pastor, M.T., Marchler, G., Schüller, C., et al. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J. 15 (1996), 2227–2235.
    • (1996) EMBO J. , vol.15 , pp. 2227-2235
    • Martínez-Pastor, M.T.1    Marchler, G.2    Schüller, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.